-
Date submitted2023-12-07
-
Date accepted2024-11-07
-
Date published2025-04-25
Determination of the tangential component of cutting resistance during frozen sedimentary rock cutting using blocked, deeply blocked and cell cutting methods
Due to the insufficient accuracy of existing studies of frozen sedimentary rock cutting process for practical calculations, the article solves the problem of determining the tangential component cutting resistance for blocked, deep blocked and cell cutting, which are currently the most commonly used methods in earthmoving equipment. The cutting tool and rock mass force interaction is considered from the point of view of the emerging stresses, which act on the separated chip element. The analytical dependences for determining the tangential component of cutting resistance were obtained. The numerical explanation of the choice of cell cutting in relation to blocked and deeply blocked cutting is given. For all three methods of cutting, under equal geometrical parameters of the cutting tool and the physical and mechanical properties of the frozen rock, the numerical value of the tangential component of cutting resistance is obtained. The comparison of the cutting resistance estimated values has shown that cell cutting requires relatively less energy and is preferred during the process of frozen sedimentary rock excavation. During field and laboratory investigations with the use of a multi-purpose cutting stand, a sufficient convergence of the analytical statements with the physics of frozen sedimentary rock cutting process was established. The results of the research allow a more reasonable approach to the adjustment of existing methods for determining the required tractive force and power for the drive of an excavation machine, and, therefore, to the actual efficiency and profitability of work.
-
Date submitted2023-12-15
-
Date accepted2024-06-13
-
Date published2025-02-25
Development of equipment and improvement of technology for inertial thickening of backfill hydraulic mixtures at the final stages of transportation
The results of the study of the functioning of the developed thickening equipment as part of the stowing complex for the formation of a flow of high-concentration hydromixture are presented. To explain the operation of the hydrotransport system of the stowing complex, equipped with a thickener of the developed design, its basic diagram is presented. A mathematical model has been created that describes the mechanism of inertial sedimentation of a solid component of a hydraulic mixture in a working chamber equipped with hydrodynamic profiles. Interaction with the profile leads to flow stratification due to a change in the trajectory of movement and a decrease in speed. The interval of rational velocity of primary pulp entering the input of the working chamber of the inertial thickener is substantiated. The synthesis of solutions of the thickening process model is performed in the COMSOL Multiphysics and Ansys Fluent programs. This made it possible to eliminate physical contradictions in the operation of the equipment and justify the overall dimensions of its main elements, ensuring the implementation of the mechanism of inertial sedimentation of the slurry. It was found that the concentration of the thickened flow at the outlet branch pipe of the thickener working chamber is determined by the level of the primary hydraulic fluid velocity, the characteristic length of the section of interaction with the deflecting profile, and the ratio of the flow and attack angles. A nomogram of the dynamics of the change in the hydraulic fluid concentration in the section of the outlet branch pipe depending on the ratios of the overall dimensions of the deflecting profile of the working chamber was compiled. The results of the study allowed formulating recommendations for selecting the dimensions of the thickener's deflecting hydrodynamic profile to form a flow of hydraulic mixture with a concentration of about 50 % by weight. The developed equipment can be used in a stowage complex and will increase the range of supply of the stowage mixture. This is due to the fact that a flow of primary slurry with a low concentration, due to lower pressure losses, can be moved in a pipeline system over a greater distance than a flow with a high filler content. The use of a thickener at the final stage of transportation is intended to increase the concentration of the hydraulic mixture immediately before production.
-
Date submitted2022-09-26
-
Date accepted2023-09-20
-
Date published2024-04-25
Technology of absorption elimination with cross-linking plugging material based on cement and cross-linked polymer
The peculiarity of the geological structure of carbonate reservoirs is their complex permeability and porosity characteristics, reflecting the simultaneous presence of cavities variety (fractures, caverns, pores). Loss of circulation during penetration of fractured rock intervals significantly increases well construction time due to lack of efficient plugging isolation compositions. The main disadvantages of traditional compositions are high sensitivity to dilution in the process of their injection into the absorption zone, as well as insufficient structural strength to prevent the isolation composition from spreading during the induction period. For efficient isolation of catastrophic absorption zones in conditions of high opening of absorption channels a new cross-linking plugging isolation composition has been developed, which allows to exclude disadvantages of traditional isolation compositions. Application of the composition will allow to reduce the injection volume of the isolation composition and the time of isolation works due to its resistance to dilution and movement of formation water in the absorption interval.
-
Date submitted2022-10-31
-
Date accepted2023-03-02
-
Date published2023-12-25
Lightweight ash-based concrete production as a promising way of technogenic product utilization (on the example of sewage treatment waste)
- Authors:
- Tatyana E. Litvinova
- Denis V. Suchkov
The study is devoted to the development of a method for the technogenic raw materials utilization. Special attention is paid to the prospect of involving products based on them in the production of new building materials. The results of Russian and foreign studies on the reuse of wastes, such as phosphogypsum, metallurgical slag, waste from municipal and industrial wastewater treatment, etc., in the building materials industry are considered. It has been established that the use of incinerated sewage sludge ash in construction is a promising direction in terms of environmental and economic efficiency. The research confirmed the compliance of the lightweight ash-based concrete components to the regulatory documentation requirements for a number of indicators. As a result of the research, the composition of the raw mixture for the lightweight concrete production with incinerated sewage sludge ash as a replacement for a part of the cement has been developed. In terms of parameters, the developed concrete corresponds to standard lightweight concrete, marked in accordance with the regulatory documents of the Russian Federation as D1300 (density not less than 1.3 g/cm3), Btb2 (flexural strength not less than 2 MPa), M200/B15 (compressive strength not less than 15 MPa). Lightweight ash-based concrete is suitable for use in construction, repair of roads and improvement of urban areas.
-
Date submitted2021-12-15
-
Date accepted2022-09-12
-
Date published2023-08-28
Substantiation and selection of the design parameters of the hydroficated equipment complex for obtaining backfill mixtures from current enrichment tailings
The issue of the influence of the concentration of the solid phase on the reduction of energy costs and specific energy consumption during pulp transportation is considered. The procedure for preparing slurry from the current enrichment tailings is shown. A scheme is given and the operation of a hydroficated unit for thickening and hydraulic transport of backfill mixtures is described. A diagram of the movement of solid particles in one of the units of the complex – a lamellar thickener is shown. The summary table shows the main design parameters and characteristics of the lamellar thickener. A general view of the laboratory setup used for experimental studies with slurry at various concentrations is given. An example of calculating productivity, density and specific load is presented. The dependence of the shear stress on the velocity gradient was determined for various pulp concentrations. Experimental studies of the process of thickening the production of slurry from the current enrichment tailings have been carried out. It was found that the geometric dimensions of the thickener depend on the concentration of the solid phase in the transported mixture. It is concluded that the flow rate of the slurry and the head loss are functions of the rheological characteristics of the viscoplastic slurry and can be calculated from the derived calculated dependencies.
-
Date submitted2022-11-08
-
Date accepted2022-11-21
-
Date published2023-02-27
Assessment of the role of the state in the management of mineral resources
Mineral resources as natural capital can be transformed into human, social and physical capital that guarantees the sustainable development of a country, exclusively through professional public management. Public management of a country's mineral resource potential is seen as an element of transnational governance which provides for the use of laws, rules and regulations within the jurisdictional and sectoral capabilities of the state, minimising its involvement as a producer of minerals. The features of the ideology of economic liberalism, which polarises the societies of mineral-producing countries and denies the role of the state as a market participant, have been studied. The analysis of the influence of the radical new order of neoliberal world ideology on the development of the extractive sector and state regulation has been presented.
-
Date submitted2022-06-17
-
Date accepted2022-10-18
-
Date published2022-11-03
Scientific experimental bases for dry beneficiation of mineral ores
The article presents the results of research on the development of processes and equipment for ore preparation and pneumatic dry beneficiation of mineral ores. The methods of crushing and grinding before enrichment of minerals have been considered, dry enrichment of geomaterials is investigated. Highly efficient prototypes of beneficiation equipment are developed and tested: crushers of multiple dynamic impact RD-MDV-900, DKD-300, centrifugal grinders CMVU-800 and VCI-12, pneumatic separator POS-2000. Fundamental designs are created, and a number of new ore preparation and pneumatic beneficiation instruments are being designed. The efficiency of approbation of an autonomous dry beneficiation complex with new safe environmental standards for the processing of gold-bearing ores, which makes it possible to fully release and extract free gold with a particle size from 10,000 to 100 µm, is shown. The introduction of the dry beneficiation method is very promising for the mining industry. It will allow to reduce capital costs for the construction of stationary beneficiation plants, completely or partially withdraw from the use of process water, the construction of a water supply system, a traditional tailing dam, etc.
-
Date submitted2021-03-31
-
Date accepted2022-04-26
-
Date published2022-11-03
Features of obtaining metallurgical products in the solid-state hydride synthesis conditions
- Authors:
- Andrey G. Syrkov
- Lyudmila A. Yachmenova
A scientific substantiation of solid-phase feedstock choice and preparation has been carried out, and the thermodynamic and kinetic aspects of solid-state hydride synthesis (SHS) of metal products have been analyzed using the nickel dichloride reduction as an example. The preliminary dehydration modes and methods for controlling the complete removal of crystalline water from chloride raw materials and Olenegorsk superconcentrate, which is natural oxide raw material, are described. Conditions, including initial solid chloride particle sizes, are established under which diffusion complications of reduction to metal in methyldichlorosilane vapor are minimized. Thermodynamic estimates of nickel chlorides and oxides reduction possibility, iron and copper with ammonia and methane at temperatures of 400-1000 K in equilibrium conditions have been carried out. It has been shown that the stoichiometric coefficients of the nickel dichloride in ammonia overall reduction reaction calculated by thermodynamic modeling are in agreement with experimental data. In contrast to the copper dichloride reduction, for nickel dichloride the formation of metal monochloride at the intermediate stage is uncharacteristic, which is associated with a higher thermal stability of nickel dichloride. The main kinetic regularities of the reduction of nickel, copper, and iron to metal under SHS conditions in ammonia, monosilane, and methane, as well as the nickel dichloride with methyldichlorosilane vapor and methane successive reduction, are considered. Approximation of experimental data by topochemical equations in a linear form showed that for reduction degrees a up to 0.7-0.8, these data are satisfactorily described by the Roginsky – Schultz equation. For a > 0,8 the “shrinking sphere” model works better, which confirms the localization of the solid-state reduction reaction at the interface, moves deep into the crystal with the formation of a of interlocked metal germs. The importance and prospects of the results obtained for the theory development of metallurgical processes, deep complex processing of natural iron oxide raw materials, metal products and new generation materials production, including superhydrophobic ones, are discussed. The relevance of the study from the point of view of applying the method of physical and chemical analysis to the study of complex heterogeneous metallurgical processes is noted.
-
Date submitted2021-10-15
-
Date accepted2022-09-06
-
Date published2022-11-10
Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter
- Authors:
- Danil V. Serbin
- Andrey N. Dmitriev
During the seasonal work of the 64th Russian Antarctic Expedition in 2018-2019 at the “Vostok” drilling facility named after B.B.Kudryashov (“Vostok” station, Antarctic) specialists of Saint Petersburg Mining University conducted experimental investigations on the process of drilling by melting with simultaneous expansion of wells in the ice mass. A test bench and a full-scale model of a thermohydraulic reamer-drilling tool were developed, manufactured and tested for the research. The first bench tests of the full-scale model proved its efficiency and suitability for experimental drilling with simultaneous expansion of wells in ice mass; its operational capabilities were determined and the drawbacks that will be taken into account in future were found out. The article substantiates the choice of constructive elements for thermohydraulic reamer-drilling tool. It is determined that the technology of full diameter drilling with simultaneous expansion of the well in ice mass can be implemented by combining contact drilling by melting and convective expansion with creation of forced near-bottomhole annular circulation of the heated heat carrier. Dependencies of expansion rate on main technological parameters were determined: active heat power of heating elements in penetrator and circulation system, mechanical drilling rate, pump flow rate. According to the results of investigations, the experimental model of thermohydraulic reamer-drilling tool will be designed and manufactured for testing in conditions of well 5G.
-
Date submitted2022-06-02
-
Date accepted2022-07-21
-
Date published2022-10-05
Substantiation of the optimal performance parameters for a quarry during the stage-wise development of steeply dipping ore deposits
- Authors:
- Sergey I. Fomin
- Maxim P. Ovsyannikov
The use of stage-wise schemes in the development of deep quarries is one of the ways to increase the economic efficiency of mining a deposit and determining the optimal stage parameters remains an urgent task. Such parameters are stage depth, bench height, block length, etc. However, there is a wide range of values for these parameters. Therefore, to select the optimal values and evaluate the effectiveness of design solutions, it is advisable to use the net present value, which is an international notion. As a result of the analysis of data on deposits, a large number of variable indicators can be identified that presumably affect the efficiency of mining. The article proposes to divide all parameters of the quarry mining into two types: mine engineering and economic. The importance of each of them is determined by the measure of influence on the net present value. Thus, to assess the measure of influence of mining indicators, the average values of each of them are taken, and as a result of the alternating change of one parameter under study, the measure of its influence on the discounted income received is estimated. The results of the analysis of relevant factors, their evaluation and comparative analysis are important indicators that significantly affect the design decisions made and the effectiveness of the investment project.
-
Date submitted2022-03-03
-
Date accepted2022-04-27
-
Date published2022-07-26
Peculiarities of rare-metal mineralization and genetic relationship of mineral associations in the eastern rim of Murzinsko-Aduysky anticlinorium (the Ural Emerald Belt)
- Authors:
- Mikhail P. Popov
The paper presents features of the location and composition, as well as a generalization of data on the age of rare-metal mineralization developed at the deposits and occurrences of rare metals and gemstones in the eastern rim of Murzinsko-Aduysky anticlinorium, within the Ural Emerald Belt, which is a classic ore and mineralogical object and has been studied for almost two hundred years. With a significant number and variety of prospecting, research and scientific works devoted mainly to emerald-bearing mica complexes and beryl mineralization, as well as rare-metal pegmatites, scientific literature has so far lacked generalizations on the formation of numerous mineral associations and ore formations that represents a uniform genetic process in this ore district. The aim of the work is a comprehensive geological-mineralogical analysis of mineral associations of the eastern rim of Murzinsko-Aduysky anticlinorium and studying their age, formation conditions and characteristic features to determine the possibility of expanding and using the mineral resource base of the Urals through developing new prognostic and prospecting criteria for rare-metal and gemstone ore formations and creating the new devices for promising objects prospecting
-
Date submitted2021-10-14
-
Date accepted2022-04-07
-
Date published2022-04-29
The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow
The results of the analysis of statistical data on accidents at Russian mines caused by explosions in the workings space have shown that explosions of methane-dust-air mixtures at underground coal mines are the most severe accidents in terms of consequences. A detailed analysis of literature sources showed that in the total number of explosions prevails total share of hybrid mixtures, i.e. with the simultaneous participation of gas (methane) and coal dust, as well as explosions with the possible or partial involvement of coal dust. The main causes contributing to the occurrence and development of dust-air mixture explosions, including irregular monitoring of by mine engineers and technicians of the schedule of dust explosion protective measures; unreliable assessment of the dust situation, etc., are given. The main problem in this case was the difficulty of determining the location and volume of dust deposition zones in not extinguished and difficult to access for instrumental control workings. Determination of the class-shape of coal dust particles is a necessary condition for constructing a model of the dust situation reflecting the aerosol distribution in the workings space. The morphological composition of coal mine dust fractions with dispersion less than 0.1 has been studied. Particle studies conducted using an LEICA DM 4000 optical microscope and IMAGE SCOPE M software made it possible to establish the different class-shapes of dust particles found in operating mines. It was found that the coal dust particles presented in the samples correspond to the parallelepiped shape to the greatest extent. The mathematical model based on the specialized ANSYS FLUENT complex, in which this class-form is incorporated, is used for predicting the distribution of explosive and combustible coal dust in the workings space. The use of the obtained model in production conditions will allow to determine the possible places of dust deposition and to develop measures to prevent the transition of coal dust from the aerogel state to the aerosol state and thereby prevent the formation of an explosive dust-air mixture.
-
Date submitted2021-07-05
-
Date accepted2022-01-24
-
Date published2022-04-29
Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings
- Authors:
- Oleg I. Kazanin
- Andrei A. Ilinets
On the basis of analysis of mining plans and field studies at mines of JSC SUEK-Kuzbass, it is shown that in conditions of increasing the size of excavation columns during the development of flat-lying coal seams the stress-strain state of the rock mass along the workings length changes significantly. The necessity of predicting the stress-strain state at the design stage of the workings timbering standards, as well as subsequent monitoring of the workings roof state and its changes in the mining operations using video endoscopes, is noted. The results of numerical studies of the stress-strain state of the rock mass during the development of excavation sites by three workings for various combinations of width of the pillars between the workings for mining-geological and mining-technical conditions of the “Taldinskaya-Zapadnaya-2” mine are provided. The stresses in the vicinity of the three workings are compared with the values obtained during the development of the excavation sites by double drift. A set of recommendations on the choice of the location of the workings, the width of pillars, timbering standards that ensure the stable condition of the workings throughout the entire service life at the minimal losses of coal in the pillars is presented.
-
Date submitted2021-06-17
-
Date accepted2021-10-18
-
Date published2021-12-16
Dissolution kinetics of rare earth metal phosphates in carbonate solutions of alkali metals
- Authors:
- Tatyana E. Litvinova
- Ivan L. Oleynik
Treatment of apatite raw materials is associated with the formation of large-tonnage waste – phosphogypsum. The content of rare earth metals in such waste reaches 1 %, which makes it possible to consider it a technogenic source for obtaining rare earth metals and their compounds. Up to the present moment, there are neither processing plants, nor an efficient process flow to handle phosphogypsum dumps. It is rational to use a way that involves extraction of valuable components and overall reduction of phosphogypsum dumps. Such process flow is available with carbonate conversion of phosphogypsum to alkali metal or ammonium sulfate and calcium carbonate upon the condition of associated extraction of rare earth metal (REM) compounds. Associated extraction of REM compounds becomes possible since they form strong and stable complexes with hard bases according to Pearson, which among other things include carbonate, phosphate and sulfate anions. Formation of lanthanide complexes with inorganic oxygen-containing anions is facilitated by the formation of high-energy Ln-O bonds. The study focuses on the dissolution of lanthanide phosphates in carbonate media. It was established that formation of REM carbonate complexes from their phosphates is a spontaneous endothermic process and that formation of lanthanide carbonates and hydroxides serves as thermodynamic limitation of dissolution. A shift in equilibrium towards the formation of carbonate complexes is achieved by increasing the temperature to 90-100 °C and providing an excess of carbonate. The limiting stage of REM phosphate dissolution in carbonate media is external diffusion. This is indicated by increasing rate of the process with an intensification of stirring, first order of the reaction and the value of activation energy for phosphate dissolution from 27 to 60 kJ/mol. A combination of physical and chemical parameters of the process allowed to develop an engineering solution for associated REM extraction during carbonate conversion of phosphogypsum, which included a 4-5 h conversion of phosphogypsum at temperature of 90-110 °C by an alkali metal or ammonium carbonate solution with a concentration of 2-3 mol/l. As a result, a solution with alkali metal (ammonium) sulfate is obtained, which contains REMs in the form of carbonate complexes and calcium carbonate. The rate of REM extraction into the solution reaches no less than 93 %. Rare earth metals are separated from the mother liquor by precipitation or sorption on anion exchange resins, while the excess of alkali metal or ammonium carbonate is returned to the start of the process.
-
Date submitted2021-06-15
-
Date accepted2021-10-18
-
Date published2021-12-16
Study on hydrometallurgical recovery of copper and rhenium in processing of substandard copper concentrates
- Authors:
- Denis S. Lutskiy
- Aleksander S. Ignatovich
Over the past decade, there has been a steady growth in demand for rare metals, with rhenium being one of the most highly demanded, but also one of the most expensive and difficult to obtain. The high demand for rhenium is due to its use as a key component of metallurgical alloys or as a component of catalysts used in the oil refining industry. The aggregate of facts causes profitability of processing of the rhenium-containing mineral resources, which also are the copper substandard concentrates obtained at processing of the Zhezkazgan sandstones. The study focuses on the processes of extraction of copper and sorption recovery of rhenium from solutions of ammonia leaching of copper substandard concentrates. Model solutions similar in the elemental composition to solutions of ammonia leaching solutions of copper substandard concentrates obtained during the processing of Zhezkazgan sandstones were used as an object of the study. The paper estimates extraction characteristics of copper recovery using LIX 84-I solution in kerosene, as well as sorption characteristics of the rhenium recovery process using the Purolite PPA100 anion exchanger. Based on the obtained characteristics the possibility of hydrometallurgical processing of ammonia leaching solutions of substandard copper-sulfide concentrates, and recovery of the obtained commercial products is shown.
-
Date submitted2021-07-13
-
Date accepted2021-10-18
-
Date published2021-12-16
Prediction of the stress state of the shotcreting support under repeated seismic load
- Authors:
- Maksim A. Karasev
- Roman O. Sotnikov
The article assesses the impact of repeated blasts on the stress-strain state of the shotcreting support, which negatively affects the bearing capacity of the support and can lead to the formation of local rock falls in places of significant degradation of the shotcreting strength. Despite the fact that a single seismic load usually does not have a significant impact on the technical condition of the shotcreting support, repeated dynamic loading can lead to the development of negative processes and affect the safety. The article considers unreinforced and dispersed-reinforced shotcreting concrete as a shotcreting support. Models of deformation of rock and shotcreting support have been studied. To describe the deformation model of a rock mass, an elastic–plastic model based on the Hook-Brown plasticity condition has been accepted, which accurately describes the elastic-plastic behavior of a fractured medium. When performing the prediction of the stress-strain state of the shotcreting support, a model of plastic deformation of concrete with the accumulation of Concrete Damage Plasticity (CDP) was adopted, which allows to comprehensively consider the process of concrete deformation both under conditions of uniaxial compression and stress, and with minor edging draft. At the first calculation stage, a forecast of the seismic waves propagation in the immediate vicinity of the explosive initiation site was made. At the second stage, forecasts of the seismic waves propagation to the mine working and the stress-strain state of the support were made. On the basis of the performed studies, a methodology for assessing the impact of repeated blasts on the stress-strain state of the shotcreting support of the mine working is proposed.
-
Date submitted2021-03-30
-
Date accepted2021-07-27
-
Date published2021-10-21
Integrated development of iron ore deposits based on competitive underground geotechnologies
- Authors:
- Vladimir L. Trushko
- Olga V. Trushko
The article presents an analytical review of the current state of the iron ore base of the ferrous metallurgy of Russia and the world, identifies the largest iron ore provinces and iron ore producers. The promising directions of development and improvement of the quality of the iron ore base of Russia and the features of the development of new deposits of rich iron ores are identified. Effective technologies for the development of rich iron ores deposits that ensure an increase in production volumes are proposed. The geomechanical justification of rational technological parameters that are easily adapted to changes in mining and geological conditions has been performed. Based on the results of field studies, the use of an elastic-plastic model with the Coulomb – Mohr strength criterion for modeling changes in the stress-strain state of an ore rock mass during mining operations is justified and recommendations for ensuring the stability of mine workings are developed. Effective engineering and technical solutions for the complex development and deep processing of rich iron ores with the production of fractionated sinter ore, which increases the efficiency of metallurgical processes, the production of high-grade iron oxide pigments and iron ore briquettes, which increase the competitiveness of iron ore companies and the full use of the resource potential of deposits, are presented.
-
Date submitted2021-03-31
-
Date accepted2021-09-29
-
Date published2021-10-21
Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials
- Authors:
- Boris Yu. Zuev
The research purpose is to develop a methodology that increases the reliability of reproduction and research on models made of equivalent materials of complex nonlinear processes of deformation and destruction of structured rock masses under the influence of underground mining operations to provide a more accurate prediction of the occurrence of dangerous phenomena and assessment of their consequences. New approaches to similarity criterion based on the fundamental laws of thermodynamics; new types of equivalent materials that meet these criteria; systems for the formation of various initial and boundary conditions regulated by specially developed computer programs; new technical means for more reliable determination of stresses in models; new methods for solving inverse geomechanical problems in the absence of the necessary initial field data have been developed. Using the developed methodology, a number of complex nonlinear problems have been solved related to estimates of the oscillatory nature of changes in the bearing pressure during dynamic roof collapse processes; ranges of changes in the frequency of processes during deformation and destruction of rock mass elements, ranges of changes in their accelerations; parameters of shifts with a violation of the continuity of the rock mass under the influence of mining: secant cracks, delaminations, gaping voids, accounting for which is necessary to assess the danger of the formation of continuous water supply canals in the water-protection layer.
-
Date submitted2021-02-20
-
Date accepted2021-05-21
-
Date published2021-09-20
Analysis of the screw press mouthpiece parameters for 3D extrusion of peat pieces of tubular type
The results of theoretical and experimental studies on the creation of a screw press composite mouthpiece screw press for 3D-forming of peat pieces of a tubular type in the field for intensifying the process of field drying of material in a complex mechanized pit are presented. The main purpose of the study was to substantiate the geometric and design parameters of the screw press composite mouthpiece of the spread machine for the production of peat-agglomerated products of the tubular type. The parameters of the mouthpiece are selected based on the geometric characteristics of the peat pieces. An increase in moisture loss during drying of peat-agglomerated products is provided by forming a peat piece in the form of a thick-walled pipe made of a peat raw materials composed of low and high decomposition degrees in a ratio of 1:3. Additive production of polymer-fiber peat composites by extrusion allows to produce products with improved mechanical properties in comparison with non-reinforced raw materials. The vertical arrangement of the peat tubular piece on the drying field allows to increase the loading of the field area by 10 %, increase the convective heat supply to the piece and reduce the contact coefficient of the piece with the field by three times in comparison with the peat spreading of the pieces in the form of a horizontal tape. Based on the analysis of the shape and size of the agglomerated products, the design of a screw press composite mouthpiece consisting of two conditional molding zones of various configurations has been developed. The article presents a parametric analysis of the volumetric productivity of a screw press with a composite mouthpiece of a tubular type, the energy intensity of mechanical processing is determined, the degree of mechanical processing of peat raw materials is estimated with the optimization of the screw parameters for the production of agglomerated products of a tubular type.
-
Date submitted2020-05-21
-
Date accepted2020-10-05
-
Date published2020-11-24
Method of calculating pneumatic compensators for plunger pumps with submersible drive
- Authors:
- Eduard O. Timashev
One of the most promising ways to improve the efficiency of mechanized oil production is a plunger pump with a submersible drive, which allows obtaining harmonic reciprocating movement of the plunger. In the pumping process of well products by plunger pumps, oscillations in the velocity and pressure of the liquid in the lifting pipes occur, which lead to an increase in cyclic variable loads on the plunger, a decrease in the drive life period and the efficiency of the pumping unit. To eliminate the pulsation characteristics of the plunger pump and increase the reliability indicators of the pumping unit (in particular, the overhaul period), pneumatic compensators can be used. A method for calculating the optimal technological parameters of a system of deep pneumatic compensators for plunger pumping units with a submersible drive, based on mathematical modeling of hydrodynamic processes in pipes, has been developed. Calculations of the forming flow velocity and pressure in the lifting pipes of submersible plunger units equipped with pneumatic compensators (PC) have been carried out. Influence of the PC technological parameters on the efficiency of smoothing the oscillations of velocity and pressure in the pipes has been analyzed. Non-linear influence of the charging pressure and PC total volume on the efficiency of their work has been established. Optimal pressure of PC charging, corresponding to the minimum pressure in the tubing during the pumping cycle for the considered section of the tubing, is substantiated. Two ultimate options of PC system placement along the lifting pipes are considered. In the first option, PC are placed sequentially directly at the outlet of the plunger pump, in the second - evenly along the lift. It is shown that the first option provides the minimum amplitude of pressure oscillations at the lower end of the tubing and, accordingly, variable loads on the pump plunger. Nature of the pressure and flow velocity oscillations in the tubing at the wellhead for both options of PC placement has similar values .
-
Date submitted2019-04-04
-
Date accepted2019-08-04
-
Date published2020-04-24
Chemical heterogeneity as a factor of improving the strength of steels manufactured by selective laser melting technology
The aim of this paper was to establish the causes of the heterogeneity of the chemical composition of the metal obtained by the LC technology. The powdered raw material was made from a monolithic alloy, which was fused by the SLM, the initial raw material was a laboratory melting metal of a low-carbon chromium-manganese-nickel composition based on iron. To determine the distribution pattern of alloying chemical elements in the resulting powder, electron-microscopic images of thin sections were combined with X-ray analysis data on the cross-sections of the powder particles. As a result, it was found that transition (Mn, Ni) and heavy (Mo) metals are uniformly distributed over the powder particle cross-sections, and the mass fraction of silicon (Si) is uneven: in the center of the particles, it is several times larger in some cases. The revealed feature in the distribution of silicon is supposedly due to the formation of various forms of SiO 4 upon the cooling of the formed particles. The internal structure of the manufactured powder is represented by the martensitic structure of stack morphology. After laser fusion, etched thin sections revealed traces of segregation heterogeneity in the form of a grid with cells of ~ 200 μm.
-
Date submitted2020-01-09
-
Date accepted2020-01-26
-
Date published2020-02-25
Mining excavator working equipment load forecasting according to a fuzzy-logistic model
- Authors:
- V. S. Velikanov
Due to the fact that the loads occurring in the working equipment of mining excavators are determined by a large number of random factors that are difficult to represent by analytical formulas, for estimating and predicting loads the models must be introduced using non-standard approaches. In this study, we used the methodology of the theory of fuzzy logic and fuzzy pluralities, which allows to overcome the difficulties associated with the incompleteness and vagueness of the data in assessing and predicting the forces encountered in the working equipment of mining excavators, as well as with the qualitative nature of these data. As a result of computer simulation in the fuzzyTECH environment, data comparable with experimental studies were obtained to determine the level of loading of the main elements of the working equipment of mining excavators. Based on a representative sample, a statistical analysis of the data was performed, as a result of which the equation of linear multiple stress regression in the handle of mining excavators was obtained, which allows to make an accurate forecast of the loading of the working equipment of the excavator.
-
Date submitted2019-06-28
-
Date accepted2019-09-03
-
Date published2019-12-24
Development of a drilling process control technique based on a comprehensive analysis of the criteria
- Authors:
- V. V. Neskoromnykh
- M. S. Popova
Compliance with drilling operations requirements is achieved by introducing advanced approaches to the management of the drilling process. Main requirement is to reduce the time and material costs for construction of the well. Increase in drilling speed is provided by rational selection of rock cutting tools and modes of its use. Development of a new generation of rock cutting tools is a complex process and requires systematic, integrated approach. In order for high costs of developing and manufacturing the tool to pay off without significantly increasing the cost of drilling, considerable attention should be paid to scientifically justified methods for its running. At well drilling using bottomhole telemetry systems with full computer support for the drilling process, there is a reasonable possibility of using a control technique based on objective results of the drilling process coming directly from the bottomhole of the well in real time. Use of a full factorial experiment is justified for processing data that affect drilling performance. Aim of the research is to develop a drilling process management technique based on a comprehensive analysis of criteria online. Objects of research: rock destruction mechanism during drilling; parameters affecting the process of well drilling; optimization of well drilling processes. The research used the following: experimental drilling with a diamond tool at the bench, method of a full factorial experiment, analytical studies. Article highlights the factors affecting the performance of a diamond rock cutting tool in the process of drilling a well, notes main criteria affecting the efficiency of the drilling process. It also describes mechanism of volumetric destruction, defines the conditions for the destruction of rock at various drilling modes and the dependence of the change in deepening per round on the parameters of the drilling modes. Technique of controlling the parameters of the drilling mode is considered, which allows determining indirectly the mode of rock destruction at the bottomhole of the well and choosing optimal values of the parameters for the drilling mode that correspond to the most favorable conditions.
-
Date submitted2019-04-28
-
Date accepted2019-06-28
-
Date published2019-10-23
Determination of Optimal Fluorine Leaching Parameters from the Coal Part of the Waste Lining of Dismantled Electrolytic Cells for Aluminum Production
- Authors:
- N. V. Nemchinova
- A. A. Tyutrin
- V. V. Somov
When aluminum is obtained by electrolysis of cryolite-alumina melts when the baths are sent for capital repairs, a solid technogenic product is formed – waste lining of electrolytic cells (WLEC). The volume of formation of WLEC is 30-50 kg per 1 ton of aluminum. Currently, it is mainly stored at landfills near industrial enterprises, causing harm to the environment. However, this technogenic raw material contains valuable components (fluorine, aluminum, sodium) that can be extracted to produce fluoride salts, which are in demand during the electrolytic production of aluminum. The objects of research were samples of the coal part of the waste lining of dismantled S-8BM (E) type electrolytic cells of «RUSAL Krasnoyarsk» JSC (Krasnoyarsk) of RUSAL company. According to the X-ray experiment diffraction analysis (using a Bruker D8 ADVANCE diffractometer) of the phase composition of the samples, it was found that the main fluorine-containing compounds are cryolite, chiolite, sodium and calcium fluorides. The total fluorine content in the studied samples averaged 13.1 %. We conducted studies on the leaching of fluorine from WLEC with a solution of caustic alkali (NaOH concentration – 17.5 g/dm 3 ). The process was carried out in a mechanically agitated reactor using a BIOSAN MM-1000 top drive laboratory stirrer with a two-blade nozzle. By the method of mathematical planning of a three-factor experiment, the mutual influence of three leaching conditions on the optimization parameter was established – the extraction of fluorine in solution (in percent). The maximum recovery of fluorine from WLEC to the leach solution averaged 86.4 % and was achieved with the following indicators:processtemperature–95 ° C, the ratio ofliquidtosolidphase–9:1,duration– 210 min.
-
Date submitted2018-10-28
-
Date accepted2018-12-30
-
Date published2019-04-23
Development and research of formation technologies on specialized presses with subsequent sintering of high-density details from iron-based powders
- Authors:
- A. M. Dmitriev
- N. V. Korobov
- A. Zh. Badalyan
Creating shifts of the lyaers in a deforming workpieces improves the quality of the product produced by pressure treatment. qual-channel angular pressing and precipitations of a cylindrical billet with a rotating turnaround were developed by specialists earlier and became basic for scientists engaged in nanotechnology. One of the most modern schemes for creating nanostructures by processing on presses is the «Cyclic Extrusion Compression» scheme (in Russia – «Hourglass»), which has significant drawbacks. To date, research on the creation of layer shifts in compacted metal powders is substantially less than in compaction of compact blanks. The article developed compaction schemes for presses of blanks from iron-based powders that have a certain analogy with the «Hourglass», while lacking the disadvantages inherent in the named scheme and implemented on the created samples of specialized hydraulic presses. The results of the studies of density, strength and microhardness before sintering the samples molded from a number of domestic and imported powders on iron base, including those doped with carbon and other alloying components, are described. It has been established that with the use of the formation schemes for powders providing large shifts between particles, the density of the preforms increases on average by 10-12 %. With an average stress (16.32 MPa) of the transverse section of the molded specimen prior to its sintering, molding with shifts between particles increases this stress by 78 %. The strength after sintering of samples made using the compaction schemes developed by the authors of the article increases approximately by 2 times. Magnetic pulse treatment (MPT) of a molded sample prior to its sintering increases its resistance to shearing before sintering, regardless of the molding pattern. When MPT of both the powder and the molded sample is executed, the most uniform distribution of microhardness in the sample is achieved, and after subsequent sintering, the most uniform distribution of the mechanical characteristics of the product. The results of all studies are described by regression equations.