Submit an Article
Become a reviewer
Vol 239
Pages:
544
Download volume:
RUS ENG

Determination of Optimal Fluorine Leaching Parameters from the Coal Part of the Waste Lining of Dismantled Electrolytic Cells for Aluminum Production

Authors:
N. V. Nemchinova1
A. A. Tyutrin2
V. V. Somov3
About authors
  • 1 — Irkutsk National Research Technical University
  • 2 — Irkutsk National Research Technical University ▪ Orcid
  • 3 — Irkutsk National Research Technical University
Date submitted:
2019-04-28
Date accepted:
2019-06-28
Date published:
2019-10-27

Abstract

When aluminum is obtained by electrolysis of cryolite-alumina melts when the baths are sent for   capital repairs, a solid technogenic product is formed – waste lining of electrolytic cells (WLEC). The volume of formation of WLEC is 30-50 kg per 1 ton of aluminum. Currently, it is mainly stored at landfills near industrial enterprises, causing harm to the environment. However, this technogenic raw material contains valuable components (fluorine, aluminum, sodium) that can be extracted to produce fluoride salts, which are in demand during the electrolytic production of aluminum. The objects of research were samples of the coal part of the waste lining of dismantled S-8BM (E) type electrolytic cells of «RUSAL Krasnoyarsk» JSC (Krasnoyarsk) of RUSAL company. According to the X-ray experiment diffraction analysis (using a Bruker D8 ADVANCE diffractometer) of the phase composition of the samples, it was found that the main fluorine-containing compounds are cryolite, chiolite, sodium and calcium fluorides. The total fluorine   content   in   the   studied   samples   averaged   13.1   %.   We   conducted   studies   on   the   leaching   of fluorine from WLEC with a solution of caustic alkali (NaOH concentration – 17.5 g/dm 3 ). The process was   carried out in a mechanically agitated reactor using a BIOSAN MM-1000 top drive laboratory stirrer with a two-blade nozzle. By the method of mathematical planning of a three-factor experiment, the mutual influence of three leaching conditions on the optimization parameter was established – the extraction of fluorine in solution (in percent). The maximum recovery of fluorine from WLEC to the leach solution averaged 86.4 % and was achieved with the following indicators: process temperature –95 ° C, the ratio of liquid to solid phase– 9:1, duration – 210 min.

10.31897/pmi.2019.5.544
Go to volume 239

References

  1. Baranov A.N., Timkina E.V., Tyutrin A.A. Research on leading fluorine from carbon-containing materials of alumi- num production. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. Vol. 21. N 7, p.143-151. DOI: 10.21285/1814-3520-2017-7-143-151 (in Russian).
  2. Borovikov V.V. A popular introduction to modern data analysis in the STATISTICA system. Мoscow: Goryachaya liniya- Telekom, 2013, p.288 (in Russian).
  3. Galevskij G.V. Kulagin N.M., Mincis M.Ya. Ecology and recycling of waste in the production of aluminum. Novosibirsk: Nauka, 1997, p.159 (in Russian).
  4. Zenkin E.Yu., Gavrilenko A.A., Nemchinova N.V. On «RUSAL BRATSK» JSC primary aluminum production waste recycling. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. Vol. 21. N 3, p. 123-132. DOI: 10.21285/1814-3520-2017-3-123-132 (in Russian).
  5. Shepelev I.I., Sakhachev A.Y., Zhyzhaev A.M., Dashkevich R.Ya., Golovnykh N.V. Extraction of valuable components from alumosilicate natural and technogenic materials under alumina production by sintering. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. Vol. 22. N 4, p. 202-214. DOI: 10.21285/1814-3520-2018-4-202-214 (in Russian).
  6. Nemchinova N.V., Shumilova L.V., Salkhofer S.P., Razmakhnin K.K., Chernova O.A. Integrated sustainable waste man- agement. Metallurgical industry. Мoscow: Izd. dom Akademii estestvoznaniya. 2016, p. 494 (in Russian).
  7. Kulikov B.P., Istomin S.P. Aluminum production waste treatment. Krasnoyarsk: ООО Кlassik, 2004, p. 480 (in Russian).
  8. Bogdanov Yu.V., Pavlov S.Yu., Somov V.V., Suss A.G., Damaskin A.A., Pingin V.V., Zherdev A.S. Patent N 2616753 RF. A method for processing fluorocarbon-containing wastes of electrolytic aluminum production. Publ. 18.04.2017. Bul. N 11 (in Russian).
  9. Radionov E.Yu., Tret'yakov Ya.A., Nemchinova N.V. Influence of the position of the anode frame on the magnetohydrody- namic parameters of the electrolyzer S-8BME. Tekhnologiya metallov. 2018. N 4, p. 31-39 (in Russian).
  10. Mineev G.G., Mineeva T.S., Zhuchkov I.A., Zelinskaya E.V. Theory of metallurgical processes. Irkutsk: Izd-vo Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2010, p. 524 (in Russian).
  11. Timkina E.V., Baranov A.N., Petrovskaya V.N., Ershov V.A. Thermodynamics of fluorine leaching from aluminum production waste. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2016. Vol. 20. N 12, p. 190-200. DOI: 10.21285/1814-3520-2016-12-182-192 (in Russian).
  12. Shenk Kh. Theory of Engineering Experiment. Мoscow: Mir, 1972, p. 381 (in Russian).
  13. Grjotheim K., Welch В. Aluminium Smelter Technology. Dusseldorf: Aluminium Verlag, 1993, p. 634.
  14. Holywell G., Breault R. An Overview of Useful Methods to Treat, Recover, or Recycle Spent Potlining. JOM. 2013. Vol. 65. N 11, p. 1441-1451. DOI: 10.1007/s11837-013-0769-y
  15. Burdonov A.E., Zelinskaya E.V., Gavrilenko L.V., Gavrilenko A.A. Investigation of substantial composition of alumina- bearing material of aluminium electrolysers for usage in primary aluminium technology. Tsvetnye Metally. 2018. Vol. 3, p. 32-38. DOI: 10.17580/tsm.2018.03.05
  16. Medvedev V.V., Akhmedov S.N. Evolution of the Technology for the Production of Alumina from Bauxites. Light Metals. 2014. Vol. 2014, p. 5-9. DOI: 10.1007/978-3-319-48144-9_1
  17. Meirelles B., Santos H. Economic and Environmental Alternative for Destination of Spent Pot Lining from Primary Alu- minum Production. Light Metals. 2014. Vol. 2014, p. 565-570. DOI: 10.1007/978-3-319-48144-9_96
  18. Patrin R.K., Bazhin V.Y. Spent Linings from Aluminum Cells as a Raw Material for the Metallurgical, Chemical, and Construction Industries. Metallurgist. 2014. Vol. 58. Iss. 7-8, p. 625-629. DOI: 10.1007/s11015-014-9967-2
  19. Pawlek R.P. Spent Potlining: an Update. Light Metals. 2012. Vol. 2012, p. 1313-1317. DOI: 10.1007/978-3-319-48179-1_227
  20. Bazhin V.Yu., Brichkin V.N., Sizyakov V.M., Cherkasova M.V. Pyrometallurgical treatment of a nepheline charge using additives of natural and technogenic origin. Metallurgist. 2017. Vol. 61. Iss. 1, p. 147-154. DOI: 10.1007/s11015-017-0468-y
  21. Mann V., Buzunov V., Pitertsev N., Chesnyak V., Polyakov P. Reduction in Power Consumption at UC RUSAL’s Smelt- ers 2012-2014. Light Metals. 2015. Vol. 2015, p. 757-762. DOI: 10.1007/978-3-319-48248-4_128
  22. Sizyakov V.M., Bazhin V.Y., Sizyakova E.V. Feasibility study of the use of nepheline-limestone charges instead of bauxite.
  23. Metallurgist. 2016. Vol. 11. N 59, p. 1135-1141. DOI 10.1007/s11015-016-0228-4
  24. Smagulov D.U., Belov N.A., Dostayeva A.M. Roasting effect on the electrical resistivity of the Al-0,5 % Zr alloys. Bulletin of the university of Karaganda-Physics. 2015. Vol. 80. Iss. 4, p.19-23.
  25. Solheim A., Skybakmoen E. The future of the Hall-Héroult technology. Non-Ferrous Metals and Minerals. 2018, p. 300-309.
  26. Somov V.V., Nemchinova N.V., Korepina N.A. Analytical methods of researching the aluminium electrolysis cell fulfilled lining samples. Journal of Siberian Federal University – Engineering and technologies. 2017. Vol. 10(5), p. 607-620. DOI: 10.17516 / 1999-494X-2017-10-5-607-620
  27. Buzunov V., Mann V., Chichuk E., Frizorger V., Pinaev A., Nikitin E. The First Results of the Industrial Applica- tion of the EcoSoderberg Technology at the Krasnoyarsk Aluminium Smelter. Light Metals. 2013. Vol. 2013, p. 573-576. DOI: 10.1002/9781118663189.ch98
  28. Sorlie M., Oye H. Cathodes in Aluminium Electrolysis. Dusseldorf: Aluminium – Verlag Marketing and Kommunikation GmbH, 2010, p.650.
  29. Yurkov A. Refractories for Aluminum: Electrolysis and the Cast House. Springer International Publishing, 2015, p. 286. DOI: 10.1007/978-3-319-53589-0
  30. Zhao X., Ma L. Hazardous waste treatment for spent pot liner. IOP Conf. Series: Earth and Environmental Science. January 2018. 108(4): 042023. DOI: 10.1088/1755-1315/108/4/042023

Similar articles

Ensuring the Safety of Construction Works During the Erection of Buildings and Structures
2019 L. A. Goldobina, P. A. Demenkov, O. V. Trushko
The Nature of the Elongated Form of Diamond Crystals From Urals Placers
2019 E. A. Vasilev, I. V. Klepikov, A. V. Kozlov, A. V. Antonov
Effect of Temperature on Solid-state Hydride Metal Synthesis According to Thermodynamic Modeling
2019 A. A. Slobodov, A. G. Syrkov, L. A. Yachmenova, A. N. Kushchenko, N. R. Prokopchuk, V. S. Kavun
Scraper Face Conveyors Dynamic Load Control
2019 E. K. Eshchin
Estimation of Rock Mass Strength in Open-Pit Mining
2019 A. A. Pavlovich, V. A. Korshunov, A. A. Bazhukov, N. Ya. Melnikov
Salt Rock Deformation under Bulk Multiple-Stage Loading
2019 I. L. Pankov, I. A. Morozov