Submit an Article
Become a reviewer
Vol 239
Pages:
510
Download volume:

Salt Rock Deformation under Bulk Multiple-Stage Loading

Authors:
I. L. Pankov1
I. A. Morozov2
About authors
  • 1 — Mining Institute of the Ural Branch of the Russian Academy of Sciences
  • 2 — Perm National Research Polytechnic University ▪ Orcid
Date submitted:
2019-04-30
Date accepted:
2019-07-16
Date published:
2019-10-27

Abstract

The paper presents experimental justification of the possibility to use bulk multiple-stage loading to study the process of salt rock deformation in the laboratory conditions. Results of comparative tests between bulk multiple- stage and single-stage loading of salt rock samples are demonstrated. The paper contains results of research on the rate of lateral pressure and its impact on strength limit and residual strength limit of sylvinite, estimated using single- stage and multiple-stage methods. Research results demonstrate how the rate of lateral pressure impacts dilatancy boundary of salt rocks. Analysis of how the loading method influences certificate parameters of Mohr-Coulomb strength of sylvinite has been carried out. The dynamics of elastic modulus in the process of salt rock deformation is analyzed depending on the rate of lateralpressure. It is demonstrated how the method of multiple-stage loading adequately reflects the processes of salt rock de- formation and decomposition, and facilitates not only lowering impact of sample’s inner structure heterogeneities on the experimental results, but also significant reduction in the required amount of rock material.

10.31897/pmi.2019.5.510
Go to volume 239

References

  1. Baryakh A.A., Konstantinova S.A., Asanov V.A. Deformation of Salt Rocks. Ekaterinburg: UrO RAN, 1996, p. 203 (in Russian).
  2. Baryakh A.A., Asanov V.A., Pan'kov I.L. Physical and Mechanical Properties of Salt Rocks at Upper Kama Potash Salt Deposit. Perm': Izd-vo Perm. gos. tekhn. un-ta, 2008, p. 199 (in Russian).
  3. GOST 21153.8-88. Mineral Rocks. Method of Strength Limit Estimation under Bulk Compression. Мoscow: Gosudarstvennyi komitet SSSR po standartam, 1988, p. 17 (in Russian).
  4. Laptev B.V. Emergency Situations at Upper Kama Deposit of Potash-Magnesium Salts. Bezopasnost' truda v promyshlennosti. 2009. N 8, p. 28-31 (in Russian).
  5. Laptev B.V. Historiography of Accidents in the Process of Salt Deposit Development. Bezopasnost' truda v promyshlennosti. 2011. N 12, p. 41-46 (in Russian).
  6. Morozov I.A. Estimation of Salt Rocks Strength Characteristics by the Results of Bulk Multiple-Stage Loading. Strategiya i protsessy osvoeniya georesursov. 2017. N 15, p. 142-145 (in Russian).
  7. Alkan H., Cinar Y., Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. International Journal of Rock Mechanics and Mining Sciences. 2007. Vol. 44. N 1, p. 108-119. DOI: 10.1016/j.ijrmms.2006.05.003
  8. Amann F., Kaiser P., Button E.A. Experimental Study of Brittle Behavior of Clay Shale in Rapid Triaxial Compression.
  9. Rock Mechanics and Rock Engineering. 2012. Vol. 45. N 1, p.21-23. DOI: 10.1007/s00603-011-0195-9
  10. ASTM D7012-14e1. Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. ASTM International, West Conshohocken, PA. 2014, p. 9. DOI: 10.1520/D7012-14E01
  11. Baryakh A.A., Lobanov S.Y., Lomakin I.S.Analysis of time-to-time variation of load on interchamber pillars in mines of the Upper Kama Potash Salt Deposit. Journal of Mining Science. 2015. Vol. 51. N 4, p.696-706. DOI: 10.1134/S1062739115040064
  12. Baryakh A.A., Samodelkina N.A. Geomechanical Estimation of Deformation Intensity above the Flooded Potash Mine.
  13. Journal of Mining Science. 2018. Vol.53. N 4, p. 630-642. DOI: 10.1134/S106273911705303X
  14. Baryakh A.A., Devyatkov S.Yu., Samodelkina N.A. Theoretical explanation of conditions for sinkholes after emergency flooding of potash mines. Journal of Mining Science. 2016. Vol. 52. N 1, p. 36-45. DOI: 10.1134/S1062739116010101
  15. Zhang H.Q., Tannant D.D., Jing H.W., Nunoo S., Niu S.J., Wang S.Y. Evolution of cohesion and friction angle during microfracture accumulation in rock. Nat Hazards. 2015. Vol. 77, p. 497-510. DOI: 10.1007/s11069-015-1592-2
  16. Ferreira S.M. Reis, Gomes Correia A., Roque A.J. Strength of Non-Traditional Granular Materials Assessed from Drained Multistage Triaxial Tests. Procedia Engineering. 2016. Vol. 143, p. 67-74. DOI: 10.1016/j.proeng.2016.06.009
  17. Jihoon Wang, Woodong Jung, Yawei Li, Ahmad Ghassemi. Geomechanical characterization of Newberry Tuff. Geother- mics. 2016. Vol. 63, p. 74-96. DOI: 10.1016/j.geothermics.2016.01.016
  18. Kovári K., Tisa A. Multiple Failure State and Strain Controlled Triaxial Tests. Rock Mechanics. 1975. Vol. 7. N 1, p. 17- 33. DOI: 10.1007/BF01239232
  19. Litvinenko V. Advancement of geomechanics and geodynamics at the mineral ore mining and underground space devel- opment. Geomechanics and Geodynamics of Rock Masses: Proceedings of the 2018 European Rock Mechanics Symposium. EUROCK 2018 (Saint-Petersburg, 22-26 May 2018). London: Taylor and Francis Group. 2018. Vol. 1, p. 3-16.
  20. Erling Fjar, Holt R.M., Raaen A.M., Risnes R., Horsrud P. Petroleum Related Rock Mechanics. Vol. 53. 2nd Edition. El- sevier Science. 2008, p. 514.
  21. Sheng-Qi Yang. Strength and deformation behavior of red sandstone under multi-stage triaxial compression. Canadian Geotechnical Journal. 2012. Vol. 49. N 6, p. 694-709. DOI: 10.1139/t2012-035
  22. Silberschmidt V.G., Silberschmidt V.V. Analysis of Cracking in Rock Salt. Rock Mechanics and Rock Engineering. 2000. Vol. 33. N 1, p. 53-70. DOI: 10.1007/s006030050004
  23. Taheri A., Sasaki Y., Tatsuoka F., Watanabe K. Strength and deformation characteristics of cement-mixed gravelly soil in multiple-step triaxial compression. Soils and Foundations. 2012. Vol. 52. N 1, p. 126-145. DOI: 10.1016/j.sandf.2012.01.015
  24. Taheri A., Tani K. Use of down-hole triaxial apparatus to estimate the mechanical properties of heterogeneous mudstone. International Journal of Rock Mechanics and Mining Sciences. 2008. Vol. 45. N 8, p. 1390-1402. DOI: 10.1016/j.ijrmms.2008.01.017
  25. Vergara M.R., Kudella P., Triantafyllidis T. Large Scale Tests on Jointed and Bedded Rocks Under Multi-Stage Triaxial Compression and Direct Shear. Rock Mechanics and Rock Engineering. 2015. Vol. 48. N 1, p. 75-92. DOI: 10.1007/s00603-013-0541-1
  26. Villamor Lora R., Ghazanfari E., Asanza Izquierdo E. Geomechanical Characterization of Marcellus Shale. Rock Mechanics and Rock Engineering. 2016. Vol. 49. N 9, p. 3403-3424. DOI: 10.1007/s00603-016-0955-7
  27. Heejung Youn, Fulvio Tonon. Multi-stage triaxial test on brittle rock. International Journal of Rock Mechanics & Mining Sciences. 2010. Vol. 47. N 4, p. 678-684. DOI: 10.1016/j.ijrmms.2009.12.017

Similar articles

Improving the Energy Efficiency of the Electromechanical Transmission of an Open-pit Dump Truck
2019 A. E. Kozyaruk, A. M. Kamyshyan
Ensuring the Safety of Construction Works During the Erection of Buildings and Structures
2019 L. A. Goldobina, P. A. Demenkov, O. V. Trushko
Ensuring Stability of Undermining Inclined Drainage Holes During Intensive Development of Multiple Gas-Bearing Coal Layers
2019 V. S. Brigida, V. I. Golik, Yu. V. Dmitrak, O. Z. Gabaraev
Composition Heterogeneity of Xenoliths of Mantle Peridotites from Alkaline Basalts of the Sverre Volcano, the Svalbard Archipelago
2019 S. G. Skublov, D. S. Ashikhmin
Intensification of Bacterial-Chemical Leaching of Nickel, Copper and Cobalt from Sulfide Ores Using Microwave Radiation
2019 A. V. Kioresku
Estimation of Rock Mass Strength in Open-Pit Mining
2019 A. A. Pavlovich, V. A. Korshunov, A. A. Bazhukov, N. Ya. Melnikov