Submit an Article
Become a reviewer

Search articles for by keywords:
geological strength index

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-20
  • Date accepted
    2024-11-07
  • Date published
    2025-02-27

Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation

Article preview

The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values ​​of pressure drawdown and changes in stress-strain properties depending on the area of ​​mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.

How to cite: Popov S.N., Chernyshov S.E., Wang X. Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation // Journal of Mining Institute. 2025. p. EDN VOBTXU
Economic Geology
  • Date submitted
    2024-07-28
  • Date accepted
    2024-11-26
  • Date published
    2024-12-12

From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry

Article preview

Achieving technological sovereignty implies accelerating innovation and reducing import dependence. An effective tool for addressing these challenges is local content policy (LCP). The purpose of this study is to assess the impact of LCP on innovation activity in oil and gas companies and to provide recommendations for enhancing the effectiveness of this policy in Russia. The paper analyzes the influence of LCP on innovation levels in the oil and gas sector, drawing on examples from 10 countries. A positive short-term impact of LCP on innovation was identified in Brazil, Malaysia, and Saudi Arabia, with long-term effects observed in China and South Africa. Recommendations for improving the effectiveness of LCP in Russia are supplemented with a methodology for calculating the level of technological sovereignty. A refinement of the method for solving the «responsiveness» problem, incorporating the level of localization, has been proposed.

How to cite: Zhdaneev O.V., Ovsyannikov I.R. From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry // Journal of Mining Institute. 2024. p. EDN KMCTLU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-16
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources

Article preview

The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.

How to cite: Kontorovich A.E., Burshtein L.M., Gubin I.A., Parfenova T.M., Safronov P.I. Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources // Journal of Mining Institute. 2024. Vol. 269 . p. 721-737. EDN WDBEOS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-05
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Complete extraction of conditioned ores from complex-structured blocks due to partial admixture of substandard ores

Article preview

The paper presents mining-technological substantiation of complete extraction of conditioned ores from complex-structured blocks of benches by mixing a layer of substandard ores of certain sizes. The relevance of the work consists in the development of innovative methods of establishing the parameters of the substandard layer of ores to be added to the conditioned ores. The main problem is to ensure complete extraction of useful components into concentrate from shipped ore with acceptable deviations from the required ones. A new typification of complex-structured ore blocks of the bench has been carried out. Analytical dependences of mining and geological characteristics of complex-structured ore blocks were obtained. Theoretical dependences for determining the main indicators of mineral processing are derived. Analytical dependences for determination of the content of useful component in shipped ore α' – mixture of conditioned ore with the content of useful component α and admixed layer of substandard ore with the content of useful component α'' are offered. For the first time in mining science, a new approach of complete extraction of conditioned ores from complex-structured blocks of benches by grabbing a certain part of substandard ores during excavation, increasing the volume of extracted ore and expanding the extraction of useful components in the concentrate has been substantiated. The increment of useful components can reach 10-15 % of the total volume of extraction, which allows predicting a significant increase in the completeness of mineral extraction from the Earth's interior.

How to cite: Rakishev B.R. Complete extraction of conditioned ores from complex-structured blocks due to partial admixture of substandard ores // Journal of Mining Institute. 2024. Vol. 270 . p. 919-930. EDN HNCZSX
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-04
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

Localization and involvement in development of residual recoverable reserves of a multilayer oil field

Article preview

During waterflooding of a multilayer oil field there is a constant deterioration of the structure and composition of residual reserves due to geological and technological reasons. The largest share of residual reserves is localized in pillars, which arise from uneven development of the production facility and are undrained or poorly drained zones. The results of a quantitative assessment of the distribution of residual oil reserves in the Middle and Upper Devonian deposits of the Romashkinskoe oil field of the Republic of Tatarstan are presented. A retrospective method is proposed to identify reserves by analyzing and summarizing historical exploration data and the long history of reservoir development, and a calculation algorithm is proposed to quantify them. It has been established that residual oil reserves are localized in rows of dividing and injection wells, as well as in the central rows of producing wells in a three-line drive, in abandoned and piezometric wells, in the areas adjacent to the zones of reservoir confluence, pinch-out, oil-bearing contours, distribution of reservoirs with deteriorated porosity and permeability properties. Depending on geological conditions, algorithms for selecting geological and technical measures to include localized reserves in development and forecasting production profiles were proposed. According to the proposed method, residual recoverable reserves were identified and a number of wells were recommended for experimental works on their additional recovery: in well 16 (hereinafter in the text, conventional well numbers are used) after isolation of overlying high-water-cut formations, the additional perforation was carried out and oil flow was obtained. Additional perforation in well 6 resulted in oil recovery during development as well. Thus, the developed approaches to identifying residual recoverable reserves and patterns of their spatial distribution can be recommended in other multilayer oil fields with a long history of development.

How to cite: Burkhanov R.N., Lutfullin A.A., Raupov I.R., Maksyutin A.V., Valiullin I.V., Farrakhov I.M., Shvydenko M.V. Localization and involvement in development of residual recoverable reserves of a multilayer oil field // Journal of Mining Institute. 2024. Vol. 268 . p. 599-612. EDN DKXZSP
Economic Geology
  • Date submitted
    2024-04-08
  • Date accepted
    2024-06-13
  • Date published
    2024-12-25

Analysing the problems of reproducing the mineral resource base of scarce strategic minerals

Article preview

The results of studying the scarcity of strategic minerals in the Russian Federation are presented, domestic consumption of which is largely provided by forced imports and/or stored reserves. Relevance of the work is due to aggravation of the geopolitical situation and a growing necessity to meet the demand of national economy for raw materials from own sources. Analysis of the state of mineral resource base of scarce minerals in the Russian Federation was accomplished, problems were identified and prospects for its development were outlined taking into account the domestic demand for scarce minerals, their application areas and the main consumers. Reducing the deficit through the import of foreign raw materials and the development of foreign deposits does not ensure the reproduction of the domestic mineral resource base, independence of the country from imported raw materials as well as additional competitive advantages, economic stability and security. It was ascertained that a major factor holding back the development of the mineral resource base is insufficient implementation of new technological solutions for the use of low-quality ore. Improving the technologies in the industry is relevant for all types of scarce minerals to solve the problem of reproducing their resource base. Taking into account the prospects for the development of the resource base for the minerals under consideration (manganese, uranium, chromium, fluorspar, zirconium, titanium, graphite) requires a set of legal and economic measures aimed at increasing the investment attractiveness of geological exploration for subsoil users at their own expense without attracting public funding. The proposed measures, taking into account the analysis of positive experience of foreign countries, include the development of junior businesses with expansion of the “declarative” principle, the venture capital market, various tax incentives, preferential loans as well as conditions for the development of infrastructure in remote regions. The proposed solution to the problem of scarcity of strategic minerals will make it possible in future to present measures to eliminate the scarcity of certain types of strategic minerals taking into account their specificity.

How to cite: Pashkevich N.V., Khloponina V.S., Pozdnyakov N.A., Avericheva A.A. Analysing the problems of reproducing the mineral resource base of scarce strategic minerals // Journal of Mining Institute. 2024. Vol. 270 . p. 1004-1023. EDN HNTQBF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-05-19
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

Development and research of backfill compounds with improved elastic and strength properties for oil and gas well lining

Article preview

This article describes operations from the well construction cycle where the cement rock behind the casing is subjected to dynamic action (impacts of the drill stem during drilling and normalization of the cement sleeve, secondary drilling operations, hydraulic fracturing, etc.). The developed cement mortar compositions were tested following API 10B-2, API 10B-6, API STD-65-2, and GOST 28985-91 standards. The composition of the cement system without the use of imported components (CM-5) was developed, which improved elastic and strength properties compared to existing industry solutions. An improvement in the elastic and strength features and technological properties of cement rock when using epoxy resins was identified, the optimal composition of the cement-and-epoxy grout was determined, and the internal structure of the formed backfill rock, its permeability, and porosity were studied.

How to cite: Blinov P.A., Sadykov M.I., Gorelikov V.G., Nikishin V.V. Development and research of backfill compounds with improved elastic and strength properties for oil and gas well lining // Journal of Mining Institute. 2024. Vol. 268 . p. 588-598. EDN OWJFHS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-03-14
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Predictive assessment of ore dilution in mining thin steeply dipping deposits by a system of sublevel drifts

Article preview

The purpose of research is the study of stress-strain state of marginal rock mass around the stope and predictive assessment of ore dilution with regard for changes in ore body thickness in mining thin ore deposits on the example of the Zholymbet mine. Study of the specific features of the stress-strain state development was accomplished applying the methodology based on numerical research methods taking into account the geological strength index (GSI) which allows considering the structural features of rocks, fracturing, lithology, water content and other strength indicators, due to which there is a correct transition from the rock sample strength to the rock mass strength. The results of numerical analysis of the stress-strain state of the marginal part of the rock mass using the finite element method after the Hoek – Brown strength criterion made it possible to assess the geomechanical state in the marginal mass provided there are changes in ore body thickness and to predict the volume of ore dilution. It was ascertained that when mining thin ore deposits, the predicted value of ore dilution is influenced by the ore body thickness and the GSI. The dependence of changes in ore dilution values on the GSI was recorded taking into account changes in ore body thickness from 1 to 3 m. Analysis of the research results showed that the predicted dimensions of rock failure zone around the stopes are quite large, due to which the indicators of the estimated ore dilution are not attained. There is a need to reduce the seismic impact of the blasting force on the marginal rock mass and update the blasting chart.

How to cite: Imashev A.Z., Suimbaeva A.M., Musin A.A. Predictive assessment of ore dilution in mining thin steeply dipping deposits by a system of sublevel drifts // Journal of Mining Institute. 2024. Vol. 266 . p. 283-294. EDN GPKEBJ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-20
  • Date accepted
    2023-04-03
  • Date published
    2024-02-29

Impact of carbon dioxide on the main geotechnical quality criteria and preparation cost of cemented paste backfill

Article preview

There is a global upsurge in the use of cemented paste backfill (CPB) for various mining functions. However, the cost of the Portland cement binder is prohibitive, thus warranting strategies to reduce cement usage without overly diminishing the CPB quality. Since carbon dioxide is used for patented sand moulding processes, this study is premised on that physicochemical ability of CO2 to enhance the curing of consolidated inorganic materials. It evaluated the impact of carbon dioxide on the uniaxial compressive strength UCS and preparation cost of CPB standard samples (ASTM C109). The preparation cost was delimited to the purchase cost of the Portland cement. The backfill material was silica sand tailings with 4.5 wt.% Portland cement binder and a water-cement ratio of 7.6. Distilled water of pH 5.4 was used for the control samples while variable amounts of carbon dioxide were dissolved in distilled water to generate carbonated mixing water with pH values of 3.8; 4 and 4.2. The lower the carbonated water pH, the higher is the CO2 concentration. UCS tests were conducted on the samples after curing for 3, 7, 28, and 90 days. There was an observable increase in the UCSs and reduction in curing time with increasing carbon dioxide. Samples prepared with carbonated water of pH 3.8 had almost double the strength of those prepared with pure distilled water of pH 5.4, implying that more dissolved CO2 corresponds to higher CPB strength. This is supported by the trendline equations for the graphical simulation of strength on curing time. Thus, CPB with much less binder can be expected to attain the requisite UCS if carbon dioxide is incorporated. The average reduction in Portland cement consumption was 0.61 %, which translates to a cost saving of the same percentage points. If calculated over the operational life of a mine, this is a massive saving of millions of dollars.

How to cite: Bukasa P.M., Mashingaidze M.M., Simasiku S.L. Impact of carbon dioxide on the main geotechnical quality criteria and preparation cost of cemented paste backfill // Journal of Mining Institute. 2024. Vol. 265 . p. 45-54. EDN ZBZTKN
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-06-20
  • Date accepted
    2023-01-10
  • Date published
    2023-08-28

Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir

Article preview

Results are discussed for evaluation of effectiveness of the cyclic geomechanical treatment (CGT) on a Tournaisian carbonate reservoir. Analysis of laboratory experiments performed according to a special program to assess permeability changes for Tournaisian samples under cyclic changes in pore pressure is presented. The main conclusion is the positive selectivity of the CGT: an increase in permeability is observed for samples saturated with hydrocarbons (kerosene) with connate water, and maximal effect is related to the tightest samples. For water-saturated samples, the permeability decreases after the CGT. Thus, the CGT improves the drainage conditions for tight oil-saturated intervals. It is also confirmed that the CGT reduces the fracturing pressure in carbonate reservoirs. Using flow simulations on detailed sector models taking into account the results of laboratory experiments, a possible increase in well productivity index after CGT with different amplitudes of pressure variation was estimated. Results of a pilot CGT study on a well operating a Tournaisian carbonate reservoir are presented, including the interpretation of production logging and well testing. The increase in the well productivity index is estimated at 44-49 % for liquid and at 21-26 % for oil, with a more uniform inflow profile after the treatment. The results of the field experiment confirm the conclusions about the mechanisms and features of the CGT obtained from laboratory studies and flow simulations.

How to cite: Indrupskiy I.M., Ibragimov I.I., Tsagan-Mandzhiev T.N., Lutfullin A.A., Chirkunov A.P., Shakirov R.I., Alekseeva Y.V. Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir // Journal of Mining Institute. 2023. Vol. 262 . p. 581-593. DOI: 10.31897/PMI.2023.5
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-25
  • Date accepted
    2023-02-02
  • Date published
    2023-08-28

Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors

Article preview

Experimental data on the relationship of the residual shear strength of rocks in closed cracks with the functional characteristics of intact rocks – the tensile and compressive components of adhesion, the roughness of the crack surfaces, and the level of normal stresses are presented. A unified integrated approach determines the shear strength of intact and destroyed rocks, the residual shear strength of closed rough cracks has been developed. The approach provides for the selection of stress intervals corresponding to different types of fracture, for each of which a strength criterion is proposed, expressed in terms of functional characteristics of intact rock. An express method for estimating the residual shear strength of rocks by cracks with a rough surface has been developed, in which an improved method of loading samples with spherical indentors is used as a basic test method. The express method implements the transition from the data of mechanical tests of samples with spherical indentors to the shear strength indicators for cracks in the rock mass, taking into account the level of normal stresses and the roughness of the crack surfaces measured in field conditions. In this case the roughness scale developed by Barton is used. The express method is informative and available in the fieldwork.

How to cite: Korshunov V.A., Pavlovich A.A., Bazhukov A.A. Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors // Journal of Mining Institute. 2023. Vol. 262 . p. 606-618. DOI: 10.31897/PMI.2023.16
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-11-04
  • Date accepted
    2023-03-03
  • Date published
    2023-04-25

Efficiency of acid sulphate soils reclamation in coal mining areas

Article preview

During the development of coal deposits, acid mine waters flowing to the surface cause the formation of acid sulphate soils. We study the effectiveness of soil reclamation by agrochemical and geochemical methods at the site of acid mine water discharge in the Kizel Coal Basin, carried out in 2005 using alkaline waste from soda production and activated sludge. A technosol with a stable phytocenosis was detected on the reclaimed site, and soddy-podzolic soil buried under the technogenic soil layer with no vegetation on the non-reclaimed site. The buried soddy-podzolic soil retains a strong acid рН concentration Н 2 О = 3. A high content of organic matter (8-1.5 %) is caused by carbonaceous particles; the presence of sulphide minerals reaches a depth of 40 cm. Technosol has a slightly acid pH reaction H 2 O = 5.5, the content of organic matter due to the use of activated sludge is 19-65 %, the presence of sulphide minerals reaches a depth of 20-40 cm. The total iron content in the upper layers of the technosol did not change (190-200 g/kg), the excess over the background reaches 15 times. There is no contamination with heavy metals and trace elements, single elevated concentrations of Li, Se, B and V are found.

How to cite: Mitrakova N.V., Khayrulina E.A., Blinov S.M., Perevoshchikova A.A. Efficiency of acid sulphate soils reclamation in coal mining areas // Journal of Mining Institute. 2023. Vol. 260 . p. 266-278. DOI: 10.31897/PMI.2023.31
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-06-09
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields

Article preview

Scientific and technological progress over the last century has led to an enormous increase in the consumption of minerals, including energy resources. Most of the exploited oil and gas fields are already considerably depleted, so it is necessary to search for new hydrocarbon resources, particularly at great depths. Deep drilling plays a special role in solving this problem. The article considers the world and Russian experience of ultra-deep wells drilling. The methods and technologies used in the construction of wells, as well as complications and accidents occurring during their drilling were analyzed. The analysis revealed that the existing limitations for drilling parameters of deep and ultra-deep wells are caused by the technical characteristics of surface and bottomhole drilling equipment, which do not meet the extreme drilling conditions. The directions for development of deep and ultra-deep well drilling machinery and technologies are suggested. The notion of extreme rock and geological drilling conditions is introduced, which describes drilling in conditions of hydrostatic pressure of flushing fluid column and high bottomhole temperature both at stable and unstable wellbore conditions, coming close to the upper limit of operating technical characteristics of bottomhole assembly, the drill string and flushing fluid.

How to cite: Dvoynikov M.V., Sidorkin D.I., Yurtaev S.L., Grokhotov E.I., Ulyanov D.S. Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields // Journal of Mining Institute. 2022. Vol. 258 . p. 945-955. DOI: 10.31897/PMI.2022.55
Geology
  • Date submitted
    2022-04-18
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Results and prospects of geological mapping of the Arctic shelf of Russia

Article preview

The results of compiling the sets of the State Geological Map at a scale of 1:1,000,000 for the Arctic continental shelf of Russia are analyzed. Results are summed up, and the main problems of geological mapping are outlined. The results of geological and geophysical studies of the Arctic Ocean are of great importance for deciphering the geological evolution. The Arctic shelf is the widest shelf in the world, while the spreading ocean basin is one of the narrowest and is characterized by anomalous structural features. The main problems of geological mapping include identification the sedimentary cover/folded basement boundary, interpretation the geodynamic evolution of the shelf and adjacent ocean, determining the rates of sedimentation and stratigraphic subdivision of the sedimentary cover due to a small number of key boreholes. It is promising to further study problem areas with unclear features of geological structure as well as small-scale mapping in areas of industrial development on the Arctic continental shelf.

How to cite: Gusev E.A. Results and prospects of geological mapping of the Arctic shelf of Russia // Journal of Mining Institute. 2022. Vol. 255 . p. 290-298. DOI: 10.31897/PMI.2022.50
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-16
  • Date accepted
    2022-04-07
  • Date published
    2022-07-13

The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis

Article preview

The article reviews the issues concerned with correctness of the engineering-geological and hydrogeological assessment of the Upper Kotlin clays, which serve as the foundation or host medium for facilities of various applications. It is claimed that the Upper Kotlin clays should be regarded as a fissured-block medium and, consequently, their assessment as an absolutely impermeablestratum should be totally excluded. Presence of a high-pressure Vendian aquifer in the lower part of the geological profile of the Vendian sediments causes inflow of these saline waters through the fissured clay strata, which promotes upheaval of tunnels as well as corrosion of their lining. The nature of the corrosion processes is defined not only by the chemical composition and physical and chemical features of these waters, but also by the biochemical factor, i.e. the availability of a rich microbial community. For the first time ever, the effect of saline water inflow into the Vendian complex on negative transformation of the clay blocks was studied. Experimental results revealed a decrease in the clay shear resistance caused by transformation of the structural bonds and microbial activity with the clay’s physical state being unchanged. Typification of the Upper Kotlin clay section has been performed for the region of Saint Petersburg in terms of the complexity of surface and underground building conditions. Fissuring of the bedclays, the possibility of confined groundwater inflow through the fissured strata and the consequent reduction of the block strength as well as the active corrosion of underground load-bearing structures must be taken into account in designing unique and typical surface and underground facilities and have to be incorporated into the normative documents.

How to cite: Dashko R.E., Lokhmatikov G.A. The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis // Journal of Mining Institute. 2022. Vol. 254 . p. 180-190. DOI: 10.31897/PMI.2022.13
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-24
  • Date accepted
    2022-04-06
  • Date published
    2022-07-13

Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow

Article preview

The reduction kinetics of serial phase transitions of iron oxides during reduction to a metallized state with different modes of technical hydrogen supply has been studied and substantiated. The results of the pellets formation when 3-5 % molasses is added to the red mud as a binding reagent are presented. The dependences of the reduction rate of iron oxides on the hydrogen flow rate are obtained. Based on the results of the experiments, a kinetic model was constructed, and with the help of X-ray phase and spectral analysis, it was proved that the agglomerates formed after heat treatment received high strength due to the adhesion of reduced iron particles with red mud particles. The use of a new type of charge materials in melting units will reduce the amount of emissions and dust fractions, as well as increase the metal yield.

How to cite: Khalifa A.A., Bazhin V.Y., Ustinova Y.V., Shalabi M.E. Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow // Journal of Mining Institute. 2022. Vol. 254 . p. 261-270. DOI: 10.31897/PMI.2022.18
Oil and gas
  • Date submitted
    2020-06-16
  • Date accepted
    2020-11-09
  • Date published
    2020-12-29

Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology

Article preview

To solve the problems accompanying the development of forecasting methods, a probabilistic method of data analysis is proposed. Using a carbonate object as an example, the application of a probabilistic technique for predicting the effectiveness of proppant hydraulic fracturing (HF) technology is considered. Forecast of the increase in the oil production of wells was made using probabilistic analysis of geological and technological data in different periods of HF implementation. With the help of this method, the dimensional indicators were transferred into a single probabilistic space, which allowed performing a comparison and construct individual probabilistic models. An assessment of the influence degree for each indicator on the HF efficiency was carried out. Probabilistic analysis of indicators in different periods of HF implementation allowed identifying universal statistically significant dependencies. These dependencies do not change their parameters and can be used for forecasting in different periods of time. Criteria for the application of HF technology on a carbonate object have been determined. Using individual probabilistic models, integrated indicators were calculated, on the basis of which regression equations were constructed. Equations were used to predict the HF efficiency on forecast samples of wells. For each of the samples, correlation coefficients were calculated. Forecast results correlate well with the actual increase (values ​​of the correlation coefficient r = 0.58-0.67 for the examined samples). Probabilistic method, unlike others, is simple and transparent. With its use and with careful selection of wells for the application of HF technology, the probability of obtaining high efficiency increases significantly.

How to cite: Galkin V.I., Koltyrin A.N. Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology // Journal of Mining Institute. 2020. Vol. 246 . p. 650-659. DOI: 10.31897/PMI.2020.6.7
Oil and gas
  • Date submitted
    2019-12-25
  • Date accepted
    2020-06-30
  • Date published
    2020-10-08

Accounting of geomechanical layer properties in multi-layer oil field development

Article preview

Amid the ever-increasing urgency to develop oil fields with complex mining and geological conditions and low-efficiency reservoirs, in the process of structurally complex reservoir exploitation a number of problems arise, which are associated with the impact of layer fractures on filtration processes, significant heterogeneity of the structure, variability of stress-strain states of the rock mass, etc. Hence an important task in production engineering of such fields is a comprehensive accounting of their complex geology. In order to solve such problems, the authors suggest a methodological approach, which provides for a more reliable forecast of changes in reservoir pressure when constructing a geological and hydrodynamic model of a multi-layer field. Another relevant issue in the forecasting of performance parameters is accounting of rock compressibility and its impact on absolute permeability, which is the main factor defining the law of fluid filtration in the productive layer. The paper contains analysis of complex geology of a multi-layer formation at the Alpha field, results of compression test for 178 standard core samples, obtained dependencies between compressibility factor and porosity of each layer. By means of multiple regression, dependencies between permeability and a range of parameters (porosity, density, calcite and dolomite content, compressibility) were obtained, which allowed to take into account the impact of secondary processes on the formation of absolute permeability. At the final stage, efficiency of the proposed methodological approach for construction of a geological and hydrodynamic model of an oil field was assessed. An enhancement in the quality of well-by-well adaptation of main performance parameters, as well as an improvement in predictive ability of the adjusted model, was identified.

How to cite: Galkin S.V., Krivoshchekov S.N., Kozyrev N.D., Kochnev A.A., Mengaliev A.G. Accounting of geomechanical layer properties in multi-layer oil field development // Journal of Mining Institute. 2020. Vol. 244 . p. 408-417. DOI: 10.31897/PMI.2020.4.3
Oil and gas
  • Date submitted
    2019-12-20
  • Date accepted
    2020-09-01
  • Date published
    2020-10-08

Features of the underground storages construction in depleted oil and gas condensate fields

Article preview

The paper considers the features of the underground storages (US) construction in depleted oil and gas condensate fields (DOGCFs). The requirements for the structure of the formation, corresponding to the parameters of the object for possible US creation are presented. The influence of geological, hydrogeological, mining and technical rock formation conditions on the reliability and tightness of underground storages, including underground gas storages, has been evaluated. The necessary conditions for the US design are analyzed at the example of the Ach-Su oil and gas condensate field, in the presence of a well-explored trap with acceptable parameters for the construction of an underground storage. An important aspect is the geological conditions that meet the criteria for selecting the object: the required structure, the absence of fracturing faults, high reservoir properties of the formation, a sufficient volume of the deposit for the storage. Geological conditions lay the basis for determining the individual characteristics of the US construction technology at each DOGCF. The refined results for the current gas-saturated pore volume and the rate of pressure drop in the formation are presented, which makes it possible to select improved technological indicators in the course of operation of the created US. In order to select the optimal option for the design and construction of the US, the results of economic and geological scenarios analysis were studied concurrently with the capabilities of the technological operation of the object and transport system, which can ensure the maximum daily production of the storage.

How to cite: Gasumov R.A., Gasumov E.R., Minchenko Y.S. Features of the underground storages construction in depleted oil and gas condensate fields // Journal of Mining Institute. 2020. Vol. 244 . p. 418-427. DOI: 10.31897/PMI.2020.4.4
Mining
  • Date submitted
    2020-06-12
  • Date accepted
    2020-06-12
  • Date published
    2020-06-30

Management of hardening mixtures properties when stowing mining sites of ore deposits

Article preview

Underground mining is characterized by the weakening of the bearing rock mass strata competence and the accumulation of mineral waste. The full use of subsurface resources is ensured by the use of technologies with filling voids by hardening mixtures, which requires high-quality raw materials to obtain the required strength. The deficit of the binding component can be filled with the use of granulated slags of blast-furnace process, mill tailings, ash-slags and other wastes. Most often, voids are laid by mixtures with a combination of cement and a binding component. Mixtures with ash-slag additives to cement in an equivalent amount are not inferior to the strength of the mixture only with cement, especially when grinding ash-slag. The properties of stowing rock masses when using composite binding components and inert fillers are controlled by mechanical, chemical, physical and energy effects at the stages of preparation and transportation of hardening mixtures. To obtain the active fraction of cement substitutes, disintegrators are used that apply the inertia forces of materials at a high speed of rotation with an increase in high activity indicators and lower energy costs. The components of hardening mixtures can be the majority of waste from mining and related industries, which is determined experimentally in specific conditions.

How to cite: Golik V.I., Dmitrak Y.V., Komashchenko V.I., Kachurin N.M. Management of hardening mixtures properties when stowing mining sites of ore deposits // Journal of Mining Institute. 2020. Vol. 243 . p. 285-292. DOI: 10.31897/PMI.2020.3.285
Oil and gas
  • Date submitted
    2020-06-11
  • Date accepted
    2020-06-11
  • Date published
    2020-06-30

Improving the geological and hydrodynamic model of a carbonate oil object by taking into account the permeability anisotropy parameter

Article preview

Significant share of the developed oil assets related to carbonate complex-built objects has formidably increased in Russia, including the Perm Region. Reliable knowledge of the parameters for the cavern-pore type of the reservoir allows clarifying the existing geological and hydrodynamic models (GHM), selecting a rational development system, regulating the development processes and providing optimal geological and technical measures for this formation. In the construction and adaptation of GHM for oil fields, especially those related to complex-built carbonate reservoirs, knowledge of both horizontal and vertical permeability (anisotropy parameter) is important. When creating GHM of carbonate objects in Perm Region deposits, vertical permeability is often taken to be zero, although this is far from being the case. Determining the vertical permeability (anisotropy parameter), its dynamics when changing the formation and bottomhole pressures and using it in GHM is an urgent task that will improve the quality and reliability of using digital models to calculate and predict the oil production process. Article describes the methodology for determining permeability anisotropy according to the interpretation of hydrodynamic investigations of wells. Proposed methodology for determining the anisotropy parameter processed the results of more than 200 studies conducted on production and injection wells of the Famennian deposit at the Gagarinskoye field. For each lithological-facies zone, dependence of the permeability anisotropy index on the bottomhole pressure is constructed. To predict and evaluate the effectiveness of the applied geological and technical measures and technological development indicators, author modified the geological and hydrodynamic model taking into account the obtained dependencies on the change in the anisotropy parameter. Using a modified hydrodynamic model, it was possible to significantly improve the adaptation of both production and injection wells. Thus, the quality and reliability of the digital model of the Famennian deposit at the Gagarinskoye field for calculating and predicting the oil production process has improved.

How to cite: Martyushev D.A. Improving the geological and hydrodynamic model of a carbonate oil object by taking into account the permeability anisotropy parameter // Journal of Mining Institute. 2020. Vol. 243 . p. 313-318. DOI: 10.31897/PMI.2020.3.313
Geoecology and occupational health and safety
  • Date submitted
    2019-02-01
  • Date accepted
    2019-09-16
  • Date published
    2020-02-25

Priority parameters of physical processes in a rock mass when determining the safety of radioactive waste disposal

Article preview

Consideration of geodynamic, hydrogeochemical, erosion and other quantitative characteristics describing evolutionary processes in a rock mass is carried out when choosing a geological formation for the disposal of radioactive waste. However, the role of various process parameters is not equal for safety ensuring and additional percentages of measurement accuracy are far from always being of fundamental importance. This makes it necessary to identify various types of indicators of the geological environment that determine the safety of radioactive waste disposal for their detailed study in the conditions of the burial site. An approach is proposed to determine the priority indicators of physical processes in the rock mass that determine the safety of disposal of various types of radio active waste and require increased attention (accuracy, frequency of measurements) when determining in - situ conditions. To identify such factors, we used the sensitivity analysis method that is a system change in the limits of variable values during securty modeling in order to assess their impact on the final result and determine the role of various physical processes in ensuring safety.

How to cite: Gupalo V.S. Priority parameters of physical processes in a rock mass when determining the safety of radioactive waste disposal // Journal of Mining Institute. 2020. Vol. 241 . p. 118-124. DOI: 10.31897/PMI.2020.1.118
Mining
  • Date submitted
    2019-04-30
  • Date accepted
    2019-07-16
  • Date published
    2019-10-23

Salt Rock Deformation under Bulk Multiple-Stage Loading

Article preview

The paper presents experimental justification of the possibility to use bulk multiple-stage loading to study the process of salt rock deformation in the laboratory conditions. Results of comparative tests between bulk multiple- stage and single-stage loading of salt rock samples are demonstrated. The paper contains results of research on the rate of lateral pressure and its impact on strength limit and residual strength limit of sylvinite, estimated using single- stage and multiple-stage methods. Research results demonstrate how the rate of lateral pressure impacts dilatancy boundary of salt rocks. Analysis of how the loading method influences certificate parameters of Mohr-Coulomb strength of sylvinite has been carried out. The dynamics of elastic modulus in the process of salt rock deformation is analyzed depending on the rate of lateralpressure. It is demonstrated how the method of multiple-stage loading adequately reflects the processes of salt rock de- formation and decomposition, and facilitates not only lowering impact of sample’s inner structure heterogeneities on the experimental results, but also significant reduction in the required amount of rock material.

How to cite: Pankov I.L., Morozov I.A. Salt Rock Deformation under Bulk Multiple-Stage Loading // Journal of Mining Institute. 2019. Vol. 239 . p. 510-519. DOI: 10.31897/PMI.2019.5.510
Mining
  • Date submitted
    2019-04-27
  • Date accepted
    2019-07-10
  • Date published
    2019-10-23

Estimation of Rock Mass Strength in Open-Pit Mining

Article preview

The paper presents results of an experimental study on strength characteristics of the rock mass as applied to the assessment of open-pit slope stability. Formulas have been obtained that describe a correlation between ultimate and residual strength of rock samples and residual shear strength along the weakening surface. A new method has been developed to calculate residual interface strength of the rock mass basing on data from the examination of small-scale monolith samples with opposing spherical indentors. A method has been proposed to estimate strength characteristics (structural weakening coefficients and internal friction angles) of the fractured near-slope rock mass. The method relies on test data from shattering small-scale monolith samples with spherical indentors, taking into ac- count contact conditions along the weakening surface, and can be applied in the field conditions. It is acceptable to use irregular-shaped samples in thetests.

How to cite: Pavlovich A.A., Korshunov V.A., Bazhukov A.A., Melnikov N.Y. Estimation of Rock Mass Strength in Open-Pit Mining // Journal of Mining Institute. 2019. Vol. 239 . p. 502-509. DOI: 10.31897/PMI.2019.5.502
Metallurgy and concentration
  • Date submitted
    2019-05-20
  • Date accepted
    2019-07-12
  • Date published
    2019-10-23

Development of Manufacturing Technology for High-Strength Hull Steel Reducing Production Cycle and Providing High-Quality Sheets

Article preview

The article presents the results of scientific research and industrial experiments aimed at the development of technology to reduce the production cycle of high-strength hull steel. The technology includes an improved reduced heat treatment of ingots made using rare-earth metals and uphill teeming of large sheet ingots. The proposed technology for the preliminary heat treatment of ingots eliminates the high-temperature phase re- crystallization operation, which is unnecessary, according to the authors, since it does not allow partial crushing (grinding) of the metal dendritic structure and homogenization. When using the proposed technology of reduced pre- treatment, phase and structural stresses are sharply reduced. Experiments have shown that the modification of steel with rare-earth metals has a positive effect on the crystallization of ingots, changing the macro- and microstructure of alloy steel. The developed manufacturing technology of high-strength hull steel provides a high level of sheet quality and a reduction in the production cycle time by 10-12 %.

How to cite: Milyuts V.G., Tsukanov V.V., Pryakhin E.I., Nikitina L.B. Development of Manufacturing Technology for High-Strength Hull Steel Reducing Production Cycle and Providing High-Quality Sheets // Journal of Mining Institute. 2019. Vol. 239 . p. 536-543. DOI: 10.31897/PMI.2019.5.536