Submit an Article
Become a reviewer
Vol 243
Pages:
285-292
Download volume:
RUS ENG

Management of hardening mixtures properties when stowing mining sites of ore deposits

Authors:
Vladimir I. Golik1
Yury V. Dmitrak2
Vitaly I. Komashchenko3
Nikolay M. Kachurin4
About authors
  • 1 — Ph.D. Professor Geophysical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences
  • 2 — Ph.D., Dr.Sci. Rector North Caucasian State Technological University
  • 3 — Ph.D., Dr.Sci. Professor Belgorod State National Research University
  • 4 — Ph.D., Dr.Sci. Professor Tula State University
Date submitted:
2020-06-12
Date accepted:
2020-06-12
Date published:
2020-06-30

Abstract

Underground mining is characterized by the weakening of the bearing rock mass strata competence and the accumulation of mineral waste. The full use of subsurface resources is ensured by the use of technologies with filling voids by hardening mixtures, which requires high-quality raw materials to obtain the required strength. The deficit of the binding component can be filled with the use of granulated slags of blast-furnace process, mill tailings, ash-slags and other wastes. Most often, voids are laid by mixtures with a combination of cement and a binding component. Mixtures with ash-slag additives to cement in an equivalent amount are not inferior to the strength of the mixture only with cement, especially when grinding ash-slag. The properties of stowing rock masses when using composite binding components and inert fillers are controlled by mechanical, chemical, physical and energy effects at the stages of preparation and transportation of hardening mixtures. To obtain the active fraction of cement substitutes, disintegrators are used that apply the inertia forces of materials at a high speed of rotation with an increase in high activity indicators and lower energy costs. The components of hardening mixtures can be the majority of waste from mining and related industries, which is determined experimentally in specific conditions.

Keywords:
underground mining mineral waste hardening mixture activator strength properties disintegrator mill
10.31897/pmi.2020.3.285
Go to volume 243

References

  1. Ermolovich O.V., Ermolovich E.A. Composite stowing materials with the addition of mechanically activated waste. Izvestiya TulGU. Nauki o Zemle. 2016. Iss. 3, p. 24-30 (in Russian).
  2. Guzanov P.S., Lytneva A.E., Anushenkov A.N., Volkov E.P. Stowing mixtures based on ore dressing waste in underground mining systems of the Norilsk industrial district. Gornyi zhurnal. 2015. N 6, p. 85-88 (in Russian).
  3. Kaplunov D.R., Melnik V.V., Rylnikova M.V. Сomprehensive exploitation of resources. Tula: Tulskii gosudarstvennyi universitet, 2016, p. 333 (in Russian).
  4. Vilchinskii V.B., Trofimov A.V., Koreivo A.B., Galaov R.B., Marysyuk V.P. Expediency justification of using hardening stowing mixtures at the Talnakh mines. Tsvetnye metally. 2014. N 9, p. 23-28 (in Russian).
  5. Golik V.I., Razorenov Yu.I., Stradanchenko S.G., Khasheva Z.M. Principles and economic efficiency of combining the ore mining technologies. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2015. Vol. 326. N 7, p. 6-14 (in Russian).
  6. Progressive methods of enrichment and complex processing of natural and man-made mineral raw materials (Plaksin readings-2014): Materialy mezhdunarodnogo soveshchaniya, 16-19 sentyabrya 2014 g. Almaty: AO “Tsentr nauk o Zemle, metallurgii i obogashcheniya”, 2014, p. 624 (in Russian).
  7. Krupnik L.A., Shaposhnik Yu.N., Shaposhnik S.N., Nurshaiykova G.T., Tungushbaeva Z.K. Development of the technology of backfilling operations on the basis of the cement-slag binder at Orlovsky mine. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2017. N 1, p. 84-91 (in Russian).
  8. Doifode S.K., Matani A.G. Effective Industrial Waste Utilization Technologies towards Cleaner Environment. International Journal of Chemical and Physical Sciences. 2015. Vol. 4. Special Issue, p. 536-540.
  9. Golik V., Komashchenko V., Morkun V., Zaalishvili V.B. Enhancement of lost ore production efficiency by usage of canopies. Metallurgical and Mining Industry. 2015. Vol. 7. Iss. 4, p. 325-329.
  10. Khasheva Z.M., Golik V.I. The ways of recovery in economy of the depressed mining enterprises of the Russian Caucasus. International Business Management. 2015. Vol. 9. Iss. 6, p. 1210-1216. DOI: 10.36478/ibm.2015.1210.1216
  11. Packey D.J. Multiproduct mine output and the case of mining waste utilization. Resources Policy. 2012. Vol. 37. Iss. 1, p. 104-108. DOI: 10.1016/j.resourpol.2011.11.002
  12. Franks D.M., Boger D.V., Cote C.M., Mulligan D.R. Sustainable development principles for the disposal of mining and mineral processing wastes. Resources Policy. 2011. Vol. 36. Iss. 2, p. 114-122. DOI: 10.1016/j.resourpol.2010.12.001
  13. Bian Zhengfu, Miao Xiexing, Shaogang Lei, Chen Shenen, Wang Wenfeng, Struthers Sue. The challenges of reusing mining and mineral-processing wastes. Science. 2012. Vol. 337. N 6095, p. 702-703. DOI: 10.1126/science.1224757
  14. Golik V., Komaschenko V., Morkun V., Khasheva Z. The effectiveness of combining the stages of ore fields development. Metallurgical and Mining Industry. 2015. Vol. 7. Iss. 5, p. 401-405.
  15. Golik V.I., Razorenov Yu.I., Ignatov V.N., Khasheva Z.M. The history of Russian Caucasus ore deposit development. The Social Sciences (Pakistan). 2016. Vol. 11. Iss. 15, p. 3742-3746. DOI: 10.36478/science.2016.3742.3746
  16. Vrancken C., Longhurst P.J., Wagland S.T. Critical review of real-time methods for solid waste characterisation: Informing material recovery and fuel production. Waste Management. 2017. Vol. 61, p. 40-57. DOI: 10.1016/j.wasman.2017.01.019

Similar articles

The age of mineralization of Mayskoe gold ore deposit (Central Chukotka): results of Re-Os isotopic dating
2020 Dmitry S. Artemiev, Robert Sh. Krymsky, Boris V. Belyatsky, Dmitry S. Ashikhmin
Description of steady inflow of fluid to wells with different configurations and various partial drilling-in
2020 Valery A. Iktissanov
Geochemical approach in assessing the technogenic impact on soils
2020 Galina I. Sarapulova
Justification of stripping and development of a modular mine site for a combined coal mining method in Kuzbass on the example Baikaimskaya mine site
2020 Roman I. Shishkov, Valerii A. Fedorin
Multi-terminal dc grid overall control with modular multilevel converters
2020 Miguel Jiménez Carrizosa, Nikola Stankovic, Jean-Claude Vannier, Yaroslav E. Shklyarskiy, Aleksei I. Bardanov
Revisiting the evolution of deformation zones under platform conditions in the case study of the Kungur Ice Cave (Cis-Urals)
2020 Nataliya V. Lavrova