Submit an Article
Become a reviewer

Search articles for by keywords:
digital elevation model

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-20
  • Date accepted
    2024-11-07
  • Date published
    2025-02-27

Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation

Article preview

The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values ​​of pressure drawdown and changes in stress-strain properties depending on the area of ​​mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.

How to cite: Popov S.N., Chernyshov S.E., Wang X. Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation // Journal of Mining Institute. 2025. p. EDN VOBTXU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-10
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Consideration of the geomechanical state of a fractured porous reservoir in reservoir simulation modelling

Article preview

This paper presents reservoir simulation modeling of a hydrocarbon accumulation with a fractured porous reservoir, incorporating the geomechanical effects of fracture closure during variations in formation pressure. The fracture permeability parameter is derived from the impact of stress on fracture walls. The fracturing parameter is determined based on 3D seismic data analysis. A permeability reduction model is implemented in the tNavigator reservoir simulation platform. The proposed approach improves the convergence of formation pressure dynamics in well data while maintaining flow rate and water cut adaptation accuracy. This results in enhanced formation pressure prediction and optimization of the pressure maintenance system.

How to cite: Kashnikov Y.A., Shustov D.V., Yakimov S.Y. Consideration of the geomechanical state of a fractured porous reservoir in reservoir simulation modelling // Journal of Mining Institute. 2025. Vol. 271. p. 42-52. EDN BANZQB
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-09-05
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Investigation of the accuracy of constructing digital elevation models of technogenic massifs based on satellite coordinate determinations

Article preview

At all stages of the life cycle of buildings and structures, geodetic support is provided by electronic measuring instruments – a laser scanning system, unmanned aerial vehicles, and satellite equipment. In this context, a set of geospatial data is obtained that can be presented as a digital model. The relevance of this work is practical recommendations for constructing a local quasigeoid model and a digital elevation model (DEM) of a certain accuracy. A local quasigeoid model and a DEM were selected as the study objects. It is noted that a DEM is often produced for vast areas, and, therefore, it is necessary to build a local quasigeoid model for such models. The task of assessing the accuracy of constructing such models is considered; its solution will allow obtaining a better approximation to real data on preassigned sets of field materials. A general algorithm for creating both DEM and local quasigeoid models in the Golden Software Surfer is presented. The constructions were accomplished using spatial interpolation methods. When building a local quasigeoid model for an area project, the following methods were used: triangulation with linear interpolation (the least value of the root mean square error (RMSE) of interpolation was 0.003 m) and kriging (0.003 m). The least RMSE value for determining the heights by control points for an area project was obtained using the natural neighbour (0.004 m) and kriging (0.004 m) methods. To construct a local quasigeoid model for a linear project, the following methods were applied: kriging (0.006 m) and triangulation with linear interpolation (0.006 m). Construction of the digital elevation model resulted in the least aggregate value of the estimated parameters: on a flat plot of the earth’s surface – the natural neighbour method, for a mountainous plot with anthropogenic topography – the quadric kriging method, for a mountainous plot – quadric kriging.

How to cite: Bryn M.Y., Mustafin M.G., Bashirova D.R., Vasilev B.Y. Investigation of the accuracy of constructing digital elevation models of technogenic massifs based on satellite coordinate determinations // Journal of Mining Institute. 2025. Vol. 271. p. 95-107. EDN ZDVPPC
Economic Geology
  • Date submitted
    2024-03-18
  • Date accepted
    2024-11-07
  • Date published
    2025-01-14

Public-private partnership in the mineral resources sector of Russia: how to implement the classical model?

Article preview

A comparative financial and economic analysis is conducted of different public-private partnership (PPP) models for industrial infrastructure construction projects in an underdeveloped resource-rich region. The Stackelberg game theory-based model is used to build a parametrized family of bilevel mathematical programming models that describe an entire spectrum of partnership schemes. This approach enables a comparison of different strategies for the distribution of infrastructure investments between the government and the subsoil user and hence a scenario of transformation of Russia’s current PPP scheme into the classical partnership model, which is practiced in developed economies. To this end, a database is created on fifty polymetallic deposits in Transbaikalia, and a comparative analysis is conducted of Stackelberg-equilibrium development programs that implement different PPP models. The numerical experiment results show the classical PPP model to be most effective in the case of a budget deficit. The analysis helps assess the economic consequences of a gradual transformation of the partnership institution in industrial infrastructure construction from investor support in the Russian model to government support in the classical scheme. Intermediate partnership models, which act as a transitional institution, help reduce the budget burden. These models can be implemented by clustering the deposits, developing subsoil user consortia, and practicing shared construction of necessary transport and energy infrastructure. The intensification of horizontal connections between subsoil users creates favorable conditions for additional effects from the consolidation of resources and can serve as a foundation for a practical partnership scheme within the framework of the classical model.

How to cite: Lavlinskii S.M., Panin A.A., Plyasunov A.V. Public-private partnership in the mineral resources sector of Russia: how to implement the classical model? // Journal of Mining Institute. 2025. p. EDN VQCWOF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-30
  • Date accepted
    2024-10-14
  • Date published
    2024-11-12

Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths

Article preview

The possibility of discovering oil and gas occurrences at great (more than 5 km) and super-great (more than 6 km) depths is considered in two aspects. The first one is the preservation conditions of large hydrocarbon accumulations forming at depths to 4 km and caused by different geological and tectonic processes occurring at great and super-great depths with partial oil-to-gas transformation. It was ascertained that among the factors controlling preservation of liquid and gaseous hydrocarbons are the temperature, pressure, subsidence rate (rate of temperature and pressure increase), time spent under ultrahigh thermobaric conditions, and initial composition of organic matter. The possibility of existence of liquid components of oil at great and super-great depths is characteristic of sedimentary basins of China, the Gulf of Mexico, the Santos and Campos basins on the Brazilian shelf, and in the Russian Federation it is most probable for the Caspian Depression, some submontane troughs and zones of intense accumulation of young sediments. Determination of critical temperatures and pressures of phase transitions and the onset of cracking is possible using the approach considered in the article, based on estimation of organic matter transformation degree, kinetic and thermobaric models taking into account the composition of hydrocarbon fluid. The second aspect is the estimation of composition of hydrocarbons associated with rocks forming at great depths or rocks transformed under conditions of critical temperatures and pressures. This aspect of considerable science intensity can hardly be considered as practically significant. The study focuses on the investigation of the possibilities of thermodynamic modelling and the use of alternative methods for studying the transformation degree of liquid formation fluid into components of the associated gas through the example of two areas with identified oil, condensate and gas accumulations.

How to cite: Prishchepa O.M., Lutskii D.S., Kireev S.B., Sinitsa N.V. Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths // Journal of Mining Institute. 2024. Vol. 269. p. 815-832. EDN CWLSTC
Energy industry
  • Date submitted
    2023-11-10
  • Date accepted
    2024-06-03
  • Date published
    2025-02-25

Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations

Article preview

The objective of this study is to enhance user trust in electricity consumption forecasting systems for mining enterprises by applying explainable artificial intelligence methods that provide not only forecasts but also their justifications. The research object comprises a complex of mines and ore processing plants of a company purchasing electricity on the wholesale electricity and power market. Hourly electricity consumption data for two years, schedules of planned repairs and equipment shutdowns, and meteorological data were utilized. Ensemble decision trees were applied for time series forecasting, and an analysis of the impact of various factors on forecasting accuracy was conducted. An algorithm for interpreting forecast results using the SHapley Additive exPlanation method was proposed. The mean absolute percentage error was 7.84 % with consideration of meteorological factors, 7.41 % with consideration of meteorological factors and a load plan formulated by an expert, and the expert's forecast error was 9.85 %. The results indicate that the increased accuracy of electricity consumption forecasting, considering additional factors, further improves when combining machine learning methods with expert evaluation. The development of such a system is only feasible using explainable artificial intelligence models.

How to cite: Matrenin P.V., Stepanova A.I. Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations // Journal of Mining Institute. 2025. Vol. 271. p. 154-167. EDN DEFRIP
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-13
  • Date accepted
    2024-09-05
  • Date published
    2024-11-12

Potential trace element markers of naphthogenesis processes: modeling and experimentation

Article preview

With the growing demand for hydrocarbon energy resources, there is a need to involve oil fields at deeper horizons in processing and increase the profitability of their development. Reduction of expenses on prospecting works is possible at revealing and substantiation of physicochemical markers of the naphthogenesis processes. One of the key markers is the transition metals content, which are both a measure of oil age and markers of potential associated processes in the migration and formation of hydrocarbons in the Earth's strata. The elemental composition of samples of oil and reservoir rocks of the Timan-Pechora field was studied. Based on the results of thermodynamic modeling, plausible processes of contact rock minerals transformation were proposed. Based on the results of molecular modeling the probable structure of vanadium and nickel host molecules in the heavy fraction of oils is proposed. The ratios of transition metal and sulfur contents were experimentally established, and assumptions about possible mechanisms of formation of deep hydrocarbon reservoirs were made. Analysis of the obtained ratios of transition metal contents in reservoir rocks and oil samples allowed to suggest possible processes of mantle fluids contact with the host rock and subsequent accumulation of hydrocarbons on sorption active rocks. According to the combined results of experimental and theoretical studies it was found that polymers of heavy fraction more selectively capture vanadium, which indicates the predominance of vanadium content in oil-bearing rocks in relation to the content of nickel. In this case, oil acts as a transport of transition metals, leaching them from the bedrock.

How to cite: Aleksandrova T.N., Kuznetsov V.V., Nikolaeva N.V. Potential trace element markers of naphthogenesis processes: modeling and experimentation // Journal of Mining Institute. 2024. Vol. 269. p. 687-699. EDN OXGNYL
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-20
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

A new formula for calculating the required thickness of the frozen wall based on the strength criterion

Article preview

The study delves into the elastoplastic deformation of a frozen wall (FW) with an unrestricted advance height, initially articulated by S.S.Vyalov. It scrutinizes the stress and displacement fields within the FW induced by external loads across various boundary scenarios, notably focusing on the inception and propagation of a plastic deformation zone throughout the FW's thickness. This delineation of the plastic deformation zone aligns with the FW's state of equilibrium, for which S.S.Vyalov derived a formula for FW thickness based on the strength criterion. These findings serve as a pivotal launchpad for the shift from a one-dimensional (1D) to a two-dimensional (2D) exploration of FW system deformation with finite advance height. The numerical simulation of FW deformation employs FreeFEM++ software, adopting a 2D axisymmetric approach and exploring two design schemes with distinct boundary conditions at the FW cylinder's upper base. The initial scheme fixes both vertical and radial displacements at the upper base, while the latter applies a vertical load equivalent to the weight of overlying soil layers. Building upon the research outcomes, a refined version of S.S.Vyalov's formula emerges, integrating the Mohr – Coulomb strength criterion and introducing a novel parameter – the advance height. The study elucidates conditions across various soil layers wherein the ultimate advance height minimally impacts the calculated FW thickness. This enables the pragmatic utilization of S.S.Vyalov's classical formula for FW thickness computation, predicated on the strength criterion and assuming an unrestricted advance height.

How to cite: Semin M.А., Levin L.Y. A new formula for calculating the required thickness of the frozen wall based on the strength criterion // Journal of Mining Institute. 2024. Vol. 268. p. 656-668. EDN WEJUBT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-10-22
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

The mechanism and thermodynamics of ethyl alcohol sorption process on activated petroleum coke

Article preview

The low-quality petcoke does not find qualified application and is stockpiled at refineries or used as solid fuel. One of the promising ways to use low-quality petroleum coke is its physical or chemical activation in order to obtain a highly porous carbon material that can be used as a catalyst carrier, adsorbent, base for electrodes, etc. The possibility of using petroleum coke to produce sorbent for organic compounds was studied. The activated petroleum cake was obtained by chemical activation with KOH, a specific surface area is 1218 m2/g. Sorption of ethyl alcohol was studied at temperatures 285, 293 and 300 K. It is a physical process proceeding mainly in pores of activated petroleum coke, also sorption can be described as a reversible exothermic process. The effective Gibbs energy at a temperature of 293 K is –12.74 kJ/mol, the heat of sorption is –26.07 kJ/mol. The obtained data confirm that porous carbon material obtained from petroleum coke can be used as sorbent for ethanol at room temperature. For example, for adsorption of bioethanol from the effluent of the fermentation process or for purification of wastewater from organic compounds.

How to cite: Litvinova T.E., Tsareva A.A., Poltoratskaya M.E., Rudko V.A. The mechanism and thermodynamics of ethyl alcohol sorption process on activated petroleum coke // Journal of Mining Institute. 2024. Vol. 268. p. 625-636. EDN YUGLTO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-09
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies

Article preview

Nature-like technologies are being introduced into many human activities including mining wastewater treatment. This work is based on long-term studies of the Sibay copper-zinc-pyrite deposit development. It is dedicated to assessment of geochemical barriers effectiveness in Cu, Zn, Cd removal from water of the Karagayly River (receiving quarry and dump drainage water). The research is based on the elements’ content and forms in water and bottom sediments, pH values etc. Four types of hydrogeochemical environment (formed due to changes in the water use over the past 20 years) were distinguished using discriminant analysis. The mechanisms of barriers formation and destruction were described. Statistical modeling of the metals’ precipitation was performed by multivariate regression analysis. Cu is adsorbed by recently formed Fe hydroxides, and, to a lesser extent, precipitates with sulfates as water pH increases. Antagonism to Mn hydroxides has been demonstrated, due to different physicochemical conditions for their precipitation. Zn enters solid phase mainly with sulfates, this element also forms its own mineral phases. The second mechanism is adsorption by recently formed Mn hydroxides, which corresponds to the idea of similar conditions for the precipitation of metal hydroxides. Cd behavior reflects conditions intermediate between these of Cu and Zn. Contribution of both mechanisms (related to Fe hydroxides and aqueous sulfates) is equal. Antagonism to Mn is absent. According to the assessment results using of nature-like technologies in situ in watercourses, canals and other water drainage systems is promising. Developed statistical models can be used for needs of experimental studies and artificial geochemical barriers engineering.

How to cite: Opekunov A.Y., Korshunova D.V., Opekunova M.G., Somov V.V., Akulov D.A. Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies // Journal of Mining Institute. 2024. Vol. 267. p. 343-355. EDN KKNLQG
Geology
  • Date submitted
    2023-02-28
  • Date accepted
    2024-03-05
  • Date published
    2024-04-25

Assessment of the contribution of Precambrian deposits in forming the petroleum potential of the eastern part of the Volga-Urals basin using results of modeling

Article preview

Consideration is given to results of geochemical analysis of organic matter and oils of the Proterozoic (the RF-V complex) and the Paleozoic (the pay intervals D2, D3, C1-2) of the eastern part of the Volga-Urals petroleum basin. The obtained data is corroborated by results of 2D basin modeling along four regional profiles two of which are situated in the Kama and two in the Belaya parts of the Kama-Belaya aulacogen. An update is given to earlier data on degree of catagenetic alteration of oil/gas source rocks of the Riphean-Vendian play, maps of catagenesis are constructed. New evidence is provided concerning presence of Precambrian oils in the Paleozoic plays. The oils under investigation are mixed – those formed from generation products of the Precambrian (Riphean, Vendian) and Paleozoic (Devonian and Early Carboniferous) source rock intervals. The results of modeling have shown that the principal source rock intervals in the RF-V play of the Kama part of the Kama-Belaya aulacogen are deposits of the Kaltasy formation of the Lower Riphean and the Vereshchagino formation of the Upper Vendian, while in the Belaya part these are rocks of the Kaltasy, Kabakov, Olkhovo, Priyutovo, Shikhan and Leuza formations of the Riphean and the Staropetrovo formation of the Vendian. It is found that the interval of the main oil and gas window increases in the southeastward direction. In both depressions of the Kama-Belaya aulacogen, a single oil play is distinguished that functions within the stratigraphic interval from the Riphean to the Lower Carboniferous. As the principal petroleum source rock intervals within this play, Riphean-Vendian deposits are considered, reservoirs are confined to the Riphean carbonate complex, Upper Vendian and Middle Devonian clastic deposits, while the Upper Devonian – Tournaisian deposits serve as the upper seal.

How to cite: Kozhanov D.D., Bolshakova M. Assessment of the contribution of Precambrian deposits in forming the petroleum potential of the eastern part of the Volga-Urals basin using results of modeling // Journal of Mining Institute. 2024. Vol. 266. p. 199-217. EDN OCPXEH
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-14
  • Date accepted
    2023-12-27
  • Date published
    2024-12-25

Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons

Article preview

In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.

How to cite: Kusochkova E.V., Indrupskii I.M., Surnachev D.V., Alekseeva Y.V., Drozdov A.N. Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons // Journal of Mining Institute. 2024. Vol. 270. p. 904-918. EDN QBQQCT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-06
  • Date accepted
    2023-12-27
  • Date published
    2024-04-25

Localization of sites for the development of geomechanical processes in underground workings based on the results of the transformation and classification analysis of seismic data

Article preview

The paper considers an approach to localizing the intervals of development of geomechanical processes in underground structures based on the classification and transformation of seismic data. The proposed approach will make it possible to identify the intervals of fracturing, rock decompression, water inflow and other geomechanical processes when interpreting the results of seismic surveys. The technique provides for the formation of matrices of longitudinal (Vp), transverse (Vs) velocities and velocity ratios (Vs/Vp) along the research profile to perform sequential filtration. The filtration results serve as the basis for the formation of a bank of informative materials for further classification. Based on the domestic KOSKAD 3D software, four approaches have been implemented for a combined digital model of the Vp, Vs and Vs/Vp parameters. One of the key elements in the classification process is to combine grids to increase the probability of detecting intervals with heterogeneous identification features. The result of the application of this methodical approach is the construction of a comprehensive interpretative model, on which potential zones of geomechanical risks development are clearly manifested.

How to cite: Danilev S.M., Sekerina D.D., Danileva N.A. Localization of sites for the development of geomechanical processes in underground workings based on the results of the transformation and classification analysis of seismic data // Journal of Mining Institute. 2024. Vol. 266. p. 260-271. EDN IEWVBO
Geology
  • Date submitted
    2022-10-29
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site)

Article preview

The study presents the results of the research on geodynamic and geological conditions of the Enisei site (Krasnoyarsk Krai), chosen for the construction of an underground research laboratory. The laboratory is being built at a depth of 500 m to assess the suitability of the rock mass for burying high-level radioactive waste. The rocks consist of weakly fractured gneisses, granites, and dikes of metadolerites. Field observations were conducted on bedrock outcrops. They included the determination of rock mass quality indicators, measurement of rock fracturing, and a rating classification of stability using N.Barton's method. GNSS observations were also made to monitor surface deformations. These data were used to develop a three-dimensional structural model, including lithology, fault disruptions, intrusive bodies, elastic-strength properties of rocks, and the sizes of zones influenced by faulting. It will serve as a basis for boundary conditions and the construction of three-dimensional variational models of stress-strain states, identifying zones of concentration of hazardous stresses, and planning in situ geomechanical experiments in underground mines of the laboratory. The obtained values of the modified QR index for the main types of rocks allowed their classification as stable and moderately stable, corresponding to strong and very strong rocks on Barton's scale and the massif rating according to geomechanical classification.

How to cite: Akmatov D.Z., Manevich A.I., Tatarinov V.N., Shevchuk R.V., Zabrodin S.M. Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site) // Journal of Mining Institute. 2024. Vol. 266. p. 167-178. EDN ECCWUV
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-06-25
  • Date accepted
    2023-06-20
  • Date published
    2024-02-29

Determination of the accuracy of leveling route based on GNSS/leveling and Earth gravitational model data SGG-UGM-2 at some typical regions in Vietnam

Article preview

This paper presents the accuracy of leveling routes determined by using GNSS/leveling at three grades and Earth gravitational model data SGG-UGM-2 in four regions of Vietnam by calculating the difference between the measured height anomalies and the model of pairs of points. The calculation is made based on the total points of three grades for four regions (99 in the Northwest, 34 in the Red River Delta, 130 in the Central Highlands, and 96 in the Mekong River Delta) with the leveling routes, connected between pair of points in each region are 189, 92, 294, and 203. The calculated results of the percentage of accuracy of the leveling routes of the four regions have shown that most of the leveling routes are satisfactory (grades I-IV, and technical leveling). The determination of the accuracy of the leveling route is completely applicable to other areas when the points have simultaneous ellipsoid and leveling heights and it also helps managers and surveyors to predict the accuracy of the height points when the above-mentioned leveling routes are connected and to take reasonable measures when implementing the project.

How to cite: Tham B.T.H., Thanh P.T. Determination of the accuracy of leveling route based on GNSS/leveling and Earth gravitational model data SGG-UGM-2 at some typical regions in Vietnam // Journal of Mining Institute. 2024. Vol. 265. p. 34-44. EDN UGMFEW
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-01-21
  • Date accepted
    2023-09-20
  • Date published
    2023-12-25

Adaptation of transient well test results

Article preview

Transient well tests are a tool for monitoring oil recovery processes. Research technologies implemented in pumping wells provide for a preliminary conversion of measured parameters to bottomhole pressure, which leads to errors in determining the filtration parameters. An adaptive interpretation of the results of well tests performed in pumping wells is proposed. Based on the original method of mathematical processing of a large volume of field data for the geological and geophysical conditions of developed pays in oil field, multidimensional models of well flow rates were constructed including the filtration parameters determined during the interpretation of tests. It is proposed to consider the maximum convergence of the flow rate calculated using a multidimensional model and the value obtained during well testing as a sign of reliability of the filtration parameter. It is proposed to use the analysis of the developed multidimensional models to assess the filtration conditions and determine the individual characteristics of oil flow to wells within the pays. For the Bashkirian-Serpukhovian and the Tournaisian-Famennian carbonate deposits, the influence of bottomhole pressure on the well flow rates has been established, which confirms the well-known assumption about possible deformations of carbonate reservoirs in the bottomhole areas and is a sign of physicality of the developed multidimensional models. The advantage of the proposed approach is a possibility of using it to adapt the results of any research technology and interpretation method.

How to cite: Martyushev D.A., Ponomareva I.N., Shen W. Adaptation of transient well test results // Journal of Mining Institute. 2023. Vol. 264. p. 919-925. EDN VHGTUT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-27
  • Date accepted
    2023-06-20
  • Date published
    2023-12-25

Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif

Article preview

The specificity of the behavior of the soil massif near the tunnel under construction in difficult mining conditions is considered. It was revealed through the joint interpretation of the results of geophysical measurements in the tunnel and computer simulation. The results of field geophysical studies to identify areas of decompacted soil behind the lining in two existing tunnels during successive drilling of two new tunnels under them are described. A method to analyze the response of the lining to impact was used providing for the calculation of its energy. It has been established that the decompaction zones are mainly located in the lateral lower areas of the tunnel. To substantiate the mechanism of formation of cavities, computer simulations were carried out using the finite element method with the COMSOL Multiphysics software. The finite element model is built on the Drucker – Prager criterion in the variant of a two-dimensional problem statement. It is shown that at the initial position of two old tunnels, the areas of decompaction can develop mainly on the sides. The position of the zones changes significantly when excavating two new tunnels. Soil decompaction zones appear between the tunnels and there is a tendency for the areas to spread to the upper point of the tunnel. According to geophysical data time delays in the impact of new tunnels on the existing line are noted, as well as a decrease in the size of decompacted soil areas over time. There is a satisfactory agreement between the positions of the decompaction areas and voids obtained by the geophysical method and the results of numerical simulation.

How to cite: Nabatov V.V., Voznesenskii A.S. Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif // Journal of Mining Institute. 2023. Vol. 264. p. 926-936. EDN JNNOAW
Energy industry
  • Date submitted
    2022-07-10
  • Date accepted
    2023-06-20
  • Date published
    2024-02-29

Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline

Article preview

A mathematical model of the in-line control of the insulation resistance state for cathodically polarized main pipelines according to electrometry data is considered. The relevance of the work is caused by the opportunity to create in-line internal isolation defects indicators of the main pipelines for transported liquids that are good conductors and expand the functionality of monitoring and controlling cathodic protection systems of the main pipelines. Features of the mathematical model are: consideration of the electric conductivity of transported liquid influence on electric field distribution; consideration of the influence of external and internal insulating coating resistance; use of the electric field of an in-line diagnostic probe for quality control of internal insulation. Practical significance consists in the development of modeling methods for control subsystems of main pipeline protection against corrosion and the development of special mathematical and algorithmic support systems for monitoring and controlling the operating modes of the cathodic protection station of main pipelines.

How to cite: Krizskii V.N., Kosarev O.V., Aleksandrov P.N., Luntovskaya Y.A. Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline // Journal of Mining Institute. 2024. Vol. 265. p. 156-164. EDN XRDQFW
Energy industry
  • Date submitted
    2021-05-12
  • Date accepted
    2022-05-11
  • Date published
    2023-07-19

Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption

Article preview

The article considers a cybernetic model for the price-dependent demand response (DR) consumed by an underground mining enterprise (UGME), in particular, the main fan unit (MFU). A scheme of the model for managing the energy consumption of a MFU in the DR mode and the implementation of the cybernetic approach to the DR based on the IoT platform are proposed. The main functional requirements and the algorithm of the platform operation are described, the interaction of the platform with the UGME digital model simulator, on which the processes associated with the implementation of the technological process of ventilation and electricity demand response will be simulated in advance, is shown. The results of modeling the reduction in the load on the MFU of a mining enterprise for the day ahead are given. The presented solution makes it possible to determine in advance the necessary power consumption for the operation of the main power supply unit, manage its operation in an energy-saving mode and take into account the predicted changes in the planned one (e.g., when men hoisting along an air shaft) and unscheduled (e.g., when changing outdoor air parameters) modes. The results of the study can be used to reduce the cost of UGME without compromising the safety of technological processes, both through the implementation of energy-saving technical, technological or other measures, and with the participation of enterprises in the DR market. The proposed model ensures a guaranteed receipt of financial compensation for the UGME due to a reasonable change in the power consumption profile of the MFU during the hours of high demand for electricity, set by the system operator of the Unified Energy System.

How to cite: Nikolaev A.V., Vöth S., Kychkin A.V. Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption // Journal of Mining Institute. 2023. Vol. 261. p. 403-414. DOI: 10.31897/PMI.2022.33
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

The wireless charging system for mining electric locomotives

Article preview

The electric vehicles development has a high potential for energy saving: an energy-saving traffic control can reduce energy resource consumption, and integration with the power grid provides the ability of daily load pattern adjustment. These features are also relevant for underground mining. The critical element of vehicle-to-grid integration is the charging infrastructure, where wireless charging is promising to develop. The implementation of such systems in underground mining is associated with energy efficiency issues and explosion safety. The article discusses the development and research of a wireless charging system for mining electric locomotive A-5.5-600-U5. The analytic hierarchy process is used for justification of the circuitry and design solution by a comparison of different technical solutions based on energy efficiency and safety criteria. A complex computer model of the wireless charging system has been developed that gives the transients in the electrical circuit of a wireless charging system and the high-frequency field density distribution near the transmitting and receiving coils in a 3D setting. An approach to ignition risk evaluation based on the analysis of high-frequency field density in the charging area between the coils of the wireless charging system is proposed. The approach using a complex computer model is applied to the developed system. The study showed that the wireless charging system for mining electric locomotives operating in the gaseous-and-dusty mine is technically feasible and there are designs in which it is explosion safe.

How to cite: Zavyalov V.M., Semykina I.Y., Dubkov E.A., Velilyaev A.- han S. The wireless charging system for mining electric locomotives // Journal of Mining Institute. 2023. Vol. 261. p. 428-442. EDN JSNTAQ
Economic Geology
  • Date submitted
    2022-04-07
  • Date accepted
    2023-04-21
  • Date published
    2023-08-28

Development of a new assessment system for the applicability of digital projects in the oil and gas sector

Article preview

Digital transformation is one of the global trends that has covered most sectors of the economy and industry. For oil and gas companies, the introduction of digital technologies has become not just a trend, but one of the factors for ensuring competitiveness and maintaining a stable position in the market in a rapidly changing macro environment. At the same time, despite the positive effects achieved, digital transformation is a complex process from the point of view of implementation and is associated with high technological, financial, and economic risks. The work aims to develop and test a new system for evaluating the applicability of digital projects in the oil and gas sector. The research methodology includes the application of the Gartner curve, methods of expert assessments, and tools for assessing the economic efficiency of investment projects. The developed assessment system is based on a comprehensive accounting of four components: the level of digital maturity of the company; compliance of the implemented technology with the goals and objectives of the organization; the level of reliability of the implemented technology; the level of innovation of the implemented project. Particular attention is paid to the practical testing of the proposed methodology based on the evaluation of a digital project implemented by a Russian oil and gas company.

How to cite: Cherepovitsyn A.E., Tretyakov N.A. Development of a new assessment system for the applicability of digital projects in the oil and gas sector // Journal of Mining Institute. 2023. Vol. 262. p. 628-642. EDN QYBHMC
Energy industry
  • Date submitted
    2023-04-02
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Integration of renewable energy at coal mining enterprises: problems and prospects

Article preview

This article addresses the issue of developing renewable energy in coal mining enterprises in the Russian Federation. The study presents a methodology for assessing the technical and economic efficiency of introducing renewable energy sources based on simulation modeling. An analysis of the potential of solar and wind energy for coal mining regions in Russia is conducted. The authors use a custom software developed by them to simulate the power supply system for various scenarios of renewable energy integration, including solar generation, wind generation, solar generation with energy storage, wind generation together with solar generation. Based on the example of the Rostov region, a feasibility study of the considered options is presented. Additionally, the research includes a sensitivity analysis of the investment project in the conditions of uncertainty in the development of Russian renewable energy. The research findings indicate that even in market conditions with CO2 emission quotas and prices at the level of the Sakhalin experiment, renewable energy in coal mining enterprises in Russia remains unattractive and requires additional support.

How to cite: Nepsha F.S., Varnavskiy K.A., Voronin V.A., Zaslavskiy I.S., Liven A.S. Integration of renewable energy at coal mining enterprises: problems and prospects // Journal of Mining Institute. 2023. Vol. 261. p. 455-469. EDN LNSCEY
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-08-24
  • Date accepted
    2023-02-15
  • Date published
    2023-08-28

Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems

Article preview

The article is devoted to the analysis of approaches to modeling the stress-strain state of a block rock mass in the vicinity of a single mine workings and in the area of rock cantilever influence during the development of the Khibiny apatite-nepheline deposits. The analysis of the existing in international engineering practice ideas about tectonic disturbances as a geomechanical element and the experience of predicting the stress-strain state of a block rock mass was carried out. On the basis of the analysis, the formulation of the basic modeling tasks is carried out and its main results are presented. Methodological recommendations for solving similar problems were developed.

How to cite: Protosenya A.G., Belyakov N.A., Bouslova M.A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems // Journal of Mining Institute. 2023. Vol. 262. p. 619-627. EDN EGDXKM
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-08-10
  • Date accepted
    2023-02-28
  • Date published
    2024-02-29

Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors

Article preview

The task of sludge removal to the surface during construction of directional and horizontal wells and strongly curved radial channels is relevant. For stable operation of technical system “Perfobore”, it is proposed to use a circulating sub that ensures efficient cleaning of channel wellbore from the drilled rock. Two schemes of technical system “Perfobore” are considered, consisting of two seven-meter coiled tubing, a positive displacement motor, a bit and one circulating sub in the first scheme and two subs in the second scheme. For each of the schemes CFD modeling was implemented to determine values of pressure and speed. It was found out that the use of two circulating subs in the assembly is more efficient. In order to confirm the numerical experiment, bench tests were carried out. It was determined that the designed circulating sub can eject up to 25 % of pumped drilling fluid. The bench tests of full-size technical system “Perfobore” for drilling 14-meter channels with two circulating subs showed that the axial load on positive displacement motor produced by hydraulic loader was 3000 N and pressure drop depending on flow rate was 1.5-2.0 MPa. This allows the motor to operate at maximum power.

How to cite: Lyagov I.А., Lyagov A.V., Isangulov D.R., Lyagova А.А. Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors // Journal of Mining Institute. 2024. Vol. 265. p. 78-86. EDN ZBPWKU
Energy industry
  • Date submitted
    2022-08-05
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Feasibility study of using cogeneration plants at Kuzbass coal mines

Article preview

The paper considers the problem of reducing greenhouse gas emissions in the process of coal mining during the coal mine methane utilization in power supply systems. An algorithm to form recommendations for the implementation of CMM generation is presented. A simulation model for one of the Kuzbass coal mines was developed in the PowerFactory software application. The simulation model considers the uneven nature of the power consumption of mining equipment. As a result of modeling, daily power consumption profiles and voltage levels in the coal mine power supply system were determined before and after the implementation of the proposed measures. Based on the results, the technical and economic effects was estimated, which consisted in reducing the direct and indirect carbon footprint, electricity and capacity fees. It has been established that the cost of carbon dioxide emission quotas significantly affects the investment attractiveness of cogeneration projects. Based on the results, recommendations are given to stimulate the development of small generation in coal mines.

How to cite: Nepsha F.S., Voronin V.A., Liven A.S., Korneev A.S. Feasibility study of using cogeneration plants at Kuzbass coal mines // Journal of Mining Institute. 2023. Vol. 259. p. 141-150. DOI: 10.31897/PMI.2023.2