-
Date submitted2024-03-22
-
Date accepted2024-09-24
-
Date published2025-02-25
Behaviour of cerium (III) phosphate in a carbonate-alkaline medium
- Authors:
- Tatyana E. Litvinova
- Stepan A. Gerasev
The article investigates the behaviour of rare earth metals in carbonate-alkaline systems. The results of experimental studies on rare earth element extraction from phosphogypsum, a large-tonnage industrial waste forming in production of phosphoric acid are presented. Using the liquid phase leaching method, it was possible to extract more than 53 % of rare earth elements from old phosphogypsum and more than 69 % from fresh phosphogypsum due to solid phase treatment with a 4 mol/l potassium carbonate solution at temperature 90 °C. The behaviour of model cerium (III) phosphate in a carbonate-alkaline medium is characterized: a solubility isotherm is obtained as well as the dependences of the degree of cerium extraction into solution on temperature, carbonate ion concentration, interphase ratio, stirring intensity, and pH. The ability of soluble rare earth element complexes to precipitate over time was established, which was confirmed using cerium and neodymium as an example. Within 240 h after the end of the experiment, approximately 25 % of cerium and 17 % of neodymium were precipitated from the liquid phase. A similar property was recorded in representatives of the light group and was not noted in elements of the heavy group. The ability to self-precipitate in future can serve as a basis for developing an alternative approach to separating rare earth metals into groups after extraction in a carbonate ion medium. Also, based on the analysis of experimental data, the mechanism of cerium (III) phosphate dissolution in a carbonate-alkaline medium was characterized. An assumption was made that rare earth metal phosphates dissolve sequentially passing into an insoluble carbonate and then into a soluble carbonate complex.
-
Date submitted2023-06-25
-
Date accepted2024-11-07
-
Date published2025-02-25
Study of wormhole channel formation resulting from hydrochloric acid treatment in complex-type reservoirs using filtration and X-ray computed tomography methods
- Authors:
- Andrei A. Аbrosimov
The primary function of hydrochloric acid treatment (HAT) is to create the maximum number of high-conductivity channels in the near-wellbore zone of the reservoir to restore its permeability and enhance hydraulic connectivity between the undisturbed part of the formation and the well. The objective of this study is to physically model HAT on core samples from the Orenburg oil and gas condensate field and to research the impact of such treatment on the structure of the pore space of rocks related to complex-type reservoirs. The complexity of the rock's pore space and the low permeability of the formations are distinguishing features of the study object. For this reason, HAT is a widely applied method for production intensification, necessitating the verification of acid injection rates, where the success criterion is the formation of high-conductivity filtration channels (wormholes) in the near-wellbore zone. These channels significantly expand the drainage area of wells, thereby bringing additional reservoir sections into development. The study examined the characteristics of filtration channel development resulting from acid treatment. Their structure was characterized and analyzed using X-ray computed tomography. The complex study confirmed the accuracy of the selected injection rate and provided practical recommendations for enhancing the efficiency of HAT.
-
Date submitted2024-05-02
-
Date accepted2024-06-03
-
Date published2024-07-04
Iron ore tailings as a raw material for Fe-Al coagulant production
The paper presents the results of experimental research into the recovery of Fe-Al coagulant from iron ore tailings (IOTs). The variables investigated in the laboratory tests included sulphuric acid concentration, temperature, leaching time, solid/liquid phase ratio (S:L) and the presence of stirring. The experiment determined the composition of the coagulant and the solid residue after leaching. The maximum iron content in the solution after leaching was obtained using 40 % H2SO4 at a temperature of 100 °C (or with stirring at 75 °C) and a contact time of 60 minutes. In this case, the iron yield was at the level of 25 % of the total content in the iron ore tailings. Chemical analysis of the solution obtained after leaching showed Fe and Al sulphate contents of 11 and 2 % respectively. In the next step, the efficiency of the coagulant was evaluated on model solutions of colour. The experimental results showed that the coagulant obtained from the iron ore tailings can be used for wastewater treatment in a wide pH range from 4 to 12 pH units. The solid residue after leaching is a fine-grained powder rich in silica, which can potentially be used as an artificial raw material in the construction industry. The research carried out in this thesis has shown that the extraction of coagulants from iron ore tailings can be considered as a way to extend the production chain of iron ore mining and to minimise the amount of tailings to be stored in tailing ponds. The technical solution presented in this work allows to comprehensively solve the problem of environmental protection by creating new target products for wastewater treatment from IOTs.
-
Date submitted2023-07-07
-
Date accepted2023-09-20
-
Date published2024-02-29
Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching
One of the techniques used in extracting gold in small-scale gold mining is mercury amalgamation. However, the use of mercury presents significant health and environmental hazards, as well as suboptimal efficiency in gold extraction. This study explores the possibility of the use of rice husk as a prototype adsorbent for mercury removal from its leaching in mining environments. To support the analysis, the rice husk adsorbent was characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, atomic absorption spectrophotometers and Brunauer − Emmett − Teller analysis. To investigate the removal of Hg from aqueous solutions, batch adsorption experiments were conducted, and the efficiency was optimized under various parameters such as contact time, rice husk dosage, and initial concentration of mercury. Kinetic and isotherm investigations were also carried out to gain a better understanding of the adsorption properties. The kinetic adsorption was analyzed using the pseudo-first-order and pseudo-second-order. Furthermore, the isotherm adsorption was analyzed using ten adsorption isotherm models (i.e., Langmuir, Freundlich, Temkin, Dubinin – Radushkevich, Flory – Huggins, Fowler – Guggenheim, Hill – de Boer, Jovanovic, Harkin – Jura, and Halsey). The amount of mercury absorption increased with increasing contact time, adsorbent mass, and initial concentration of mercury. The pseudo-second-order kinetic model is the best model that can be applied to describe the adsorption process. Analysis of the adsorption results obtained shows that the adsorption pattern is explained through the formation of a monolayer without any lateral interaction between the adsorbate and adsorbent. In addition, the formation of multilayers due to inhomogeneous pore distribution also occurs which causes a pore filling mechanism. We found that the isotherm phenomena are near the Jovanovic models with the maximum adsorption capacity) of rice husk found to be 107.299 mg/g. As a result, rice husk could be a promising option for wastewater treatment due to its fast and efficient removal capacity, as well as its affordability and eco-friendliness. The predicted thermodynamic studies using the Flory – Huggins isotherm model show that the adsorption process is endothermic, spontaneous, and physisorption. The impact shows that the utilization of rice husk can be used and fit for the current issues in the sustainable development goals (SDGs).
-
Date submitted2023-02-07
-
Date accepted2023-06-20
-
Date published2024-02-29
Origin of carbonate-silicate rocks of the Porya Guba (the Lapland-Kolvitsa Granulite Belt) revealed by stable isotope analysis (δ18O, δ13C)
- Authors:
- Dmitrii P. Krylov
- Ekaterina V. Klimova
Carbonate-silicate rocks of unclear origin have been observed in granulites of the Porya Guba of the Lapland-Kolvitsa Belt within the Fennoscandinavian Shield. The present work aims to reconstruct possible protoliths and conditions of metamorphic transformation of these rocks based on oxygen and carbon isotopic ratios combined with phase equilibria modeling. Isotope analysis and lithochemical reconstructions suggest that carbonate-silicate rocks of the Porya Guba represent metamorphosed sediments (possibly marls) with the isotopic composition corresponding to the Precambrian diagenetically transformed carbonates (δ18O ≈ 17.9 ‰, SMOW and δ13C ≈ –3.4 ‰, PDB). The chemical composition varies depending on the balance among the carbonate, clay, and clastic components. Significant changes of the isotopic composition during metamorphism are caused by decomposition reactions of primary carbonates (dolomite, siderite, and ankerite) producing CO2 followed by degassing. These reactions are accompanied by δ18O and δ13C decrease of calcite in isotopic equilibrium with CO2 down to 15 ‰ (SMOW) and –6 ‰ (PDB), respectively. The isotopic composition is buffered by local reactions within individual rock varieties, thus excluding any pronounced influence of magmatic and/or metasomatic processes.
-
Date submitted2022-12-01
-
Date accepted2023-01-19
-
Date published2023-12-25
Inclusions of diamond crystals in the tourmaline of the schorl-uvite series: problems of genesis
The mineralogical and geochemical features of diamond-bearing tourmaline crystals (schorl-uvite series) from garnet-clinopyroxene rocks of the Kumdy-Kol deposit (Northern Kazakhstan) have been studied in detail. The formation of the main rock-forming minerals (garnet + K-bearing clinopyroxene) occurred in the diamond stability field at 4-6 GPa and 950-1000 °C. Crystallization of K-bearing clinopyroxene at these parameters is possible in the presence of an ultra-potassic fluid or melt formed because of crustal material melting in subduction zones. Tourmaline crystals (up to 1 cm) containing diamond inclusions perform veins crosscutting high-pressure associations. The composition of individual zones varies from schorl to uvite within both a single grain and the sample as a whole. The potassium content in this tourmaline does not exceed 0.1 wt.% K2O, and the isotopic composition of boron δ11B varies from –10 to –15.5 ‰, which significantly differs from the previously established isotopic composition of boron in maruyamaite crystals (δ11B 7.7 ‰ in the core and –1.2 ‰ in the rim) of the same deposit. Analysis of the obtained data on δ11B in the tourmalines from the diamond-grade metamorphic rocks within the Kumdy-Kol deposit suggests the existence of two boron sources that resulted in crystallization of K-bearing tourmaline crystals (maruyamaite-dravite series) and potassium-free tourmalines of the schorl-uvite series.
-
Date submitted2022-06-20
-
Date accepted2023-01-10
-
Date published2023-08-28
Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir
Results are discussed for evaluation of effectiveness of the cyclic geomechanical treatment (CGT) on a Tournaisian carbonate reservoir. Analysis of laboratory experiments performed according to a special program to assess permeability changes for Tournaisian samples under cyclic changes in pore pressure is presented. The main conclusion is the positive selectivity of the CGT: an increase in permeability is observed for samples saturated with hydrocarbons (kerosene) with connate water, and maximal effect is related to the tightest samples. For water-saturated samples, the permeability decreases after the CGT. Thus, the CGT improves the drainage conditions for tight oil-saturated intervals. It is also confirmed that the CGT reduces the fracturing pressure in carbonate reservoirs. Using flow simulations on detailed sector models taking into account the results of laboratory experiments, a possible increase in well productivity index after CGT with different amplitudes of pressure variation was estimated. Results of a pilot CGT study on a well operating a Tournaisian carbonate reservoir are presented, including the interpretation of production logging and well testing. The increase in the well productivity index is estimated at 44-49 % for liquid and at 21-26 % for oil, with a more uniform inflow profile after the treatment. The results of the field experiment confirm the conclusions about the mechanisms and features of the CGT obtained from laboratory studies and flow simulations.
-
Date submitted2022-08-01
-
Date accepted2022-11-17
-
Date published2023-02-27
Use of machine learning technology to model the distribution of lithotypes in the Permo-Carboniferous oil deposit of the Usinskoye field
- Authors:
- Denis V. Potekhin
- Sergei V. Galkin
Permo-Carboniferous oil deposit of the Usinskoye field is characterized by an extremely complex type of the void space with intense cross-sectional distribution of cavernous and fractured rock. In this study, for this production site, the process of 3D geological modeling has been implemented. At the first stage, it provided for automated identification of reservoir volumes by comparing the data of core and well logging surveys; at the second stage, identification of rock lithotypes according to Dunham classification is performed on the basis of comparison of thin sections examination and well logging data. A large array of factual information enables the use of machine learning technology on the basis of Levenberg – Marquardt neural network apparatus toward achievement of our research goals. The prediction algorithms of reservoir and rock lithotype identification using well logging methods obtained on the basis of the training samples are applied to the wells without core sampling. The implemented approach enabled complementing the 3D geological model with information about rock permeability and porosity, taking into account the structural features of the identified lithotypes. For the Permo-Carboniferous oil deposit of the Usinskoye field, the volumetric zoning of the distribution of different rock lithotypes has been established. Taking into account the lithotypes identified based on machine learning algorithms, density and openness of fractures were determined, and fracture permeability in the deposit volume was calculated. In general, during the implementation, the machine learning errors remained within 3-5 %, which suggests reliability of the obtained predictive solutions. The results of the research are incorporated in the existing 3D digital geological and process model of the deposit under study.
-
Date submitted2022-05-06
-
Date accepted2022-11-17
-
Date published2023-02-27
Comprehensive study of filtration properties of pelletized sandy clay ores and filtration modes in the heap leaching stack
There are the results of a study of the factors determining the formation and changes in the filtration properties of a heap leaching stack formed from pelletized poor sandy-clay ores. An analysis of methods of investigation of filtration properties of ore material for different stages of heap leaching plots functioning is carried out. Influence of segregation process during stack dumping on formation of zones with very different permeability parameters of ore has been established by experimental and filtration works. The construction and application of a numerical model of filtration processes in pelletized ores based on laboratory experiments is shown. By means of solution percolation simulation at different irrigation intensities the justification of optimal stack parameters is provided in terms of the geomechanical stability and prevention of solution level rise above the drainage layer.
-
Date submitted2022-04-15
-
Date accepted2022-11-17
-
Date published2023-04-25
Uranium in man-made carbonates on the territory of Ufa
The paper presents the results of analyzing uranium content in man-made carbonates (scale crusts) on the territory of Ufa based on examination of 42 samples. The median uranium content in the investigated samples stands at 1.44 mg/kg, which is significantly lower than the background values (scales from the Lake Baikal water, a clarke of sedimentary carbonate rocks) and data on other settlements of the Republic of Bashkortostan. Low values of uranium content are probably associated with the effects of the three leading factors, i.e. specific subsurface geology of the territory (gypsum, limestone); types of water supply; water treatment processes for the centralized type of water supply. Spatial distribution of uranium in man-made carbonates is characterized with uniformity, which is disturbed in two cases, i.e. a change of the water supply type (from centralized to individual); and material of the vessels used for boiling the water. No significant differences were detected when comparing samples of man-made carbonates associated with different sources of water supply (the bucket and infiltration types of water intake) and the types of household filters.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-11-03
In-situ leaching of molybdenum and uranium by percarbonate and chloride-hypochlorite solutions
In-situ leaching of molybdenum and uranium is becoming an increasingly common process. The features of the material composition of ores, leading to a decrease in their filtration properties, were considered. Activation leaching with leaching solutions that have undergone electrophotochemical activation before contact with the ore mass were studied. Activation preparation of leaching solutions promotes the synthesis of clustered water molecules with collectivized protons and hydroxyl ions, as well as active forms of oxygen and hydrogen. Cell leaching of molybdenum from mature tailings of the Shakhtaminsk deposit was studied experimentally. After pre-oxidation with an active carbonate solution, a model borehole leaching was carried out with a chloride-hypochlorite solution. Molybdenum extraction on resin a was 85 % in 30 days. Experiments on the percolation leaching of uranium from the ores of the Uchkuduk and Sugraly deposits confirmed the potential possibility of a significant increase in the extraction of uranium by electrophotoactivated percarbonate solutions relative to aqueous solutions of sodium and ammonium carbonate. When leaching with carbonate solutions without an additional oxidizing agent, the extraction of uranium from the Sugraly deposit ore sample was 52 and 59 % (sodium carbonate and ammonium carbonate). The use of hydrogen peroxide as an oxidizing agent made it possible to achieve 87-88 % extraction into pregnant solutions in 21 days without pre-oxidation. The performed studies confirm the processing capability of extracting uranium and molybdenum by percolation leaching in columns and borehole leaching.
-
Date submitted2022-02-22
-
Date accepted2022-05-11
-
Date published2022-11-03
Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate
- Authors:
- Valentin A. Chanturiya
Based on a package of modern analysis methods, the influence of various acids and energy effects on the morphology, elemental composition, structural and chemical transformations of the mineral surface, and the efficiency of eudialyte concentrate leaching was studied. The mechanism and the optimal conditions and specific features of the destruction of eudialyte and rock minerals and the extraction of zirconium and REE under the influence of various acids, powerful nanosecond pulses, dielectric barrier discharge, electrochemical processing, mechanochemical activation and ultrasound were revealed. The mechanism of formation and the optimal conditions for the dispersion of silica gel, depending on the methods and parameters of energy effects, was theoretically and experimentally substantiated. A combined three-stage circuit of nitric acid leaching of eudialyte concentrate with ultrasonic treatment of the suspension, providing 97.1 % extraction of zirconium and 94.5 % REE, were scientifically substantiated and tested. The conditions for the selective deposition of zirconium and REE were theoretically and experimentally substantiated.
-
Date submitted2021-05-28
-
Date accepted2021-11-30
-
Date published2021-12-27
Features of grouping low-producing oil deposits in carbonate reservoirs for the rational use of resources within the Ural-Volga region
A methodology has been developed and a procedure for selecting homogeneous groups has been implemented using a set of parameters characterizing the properties of formation fluids, layering conditions, geological and physical properties of formations at different levels of the hierarchy. An algorithm for identifying deposits for monitoring and justifying measures to improve the efficiency of development management is proposed. A justification for the selection of associative groups of long-term developed objects using the parameters of geological heterogeneity according to different tectonic-stratigraphic elements is presented. To reduce the degree of uncertainty in the evaluation of objects by the degree and nature of geological heterogeneity, the parameters reflecting the degree of uncertainty of the system using complex characteristics are proposed. For different deposit associations, a different influence of the features of the object structure on the degree of their division has been established. In the process of deposit drilling, as additional information about development objects is obtained, it is necessary to specify the nature of the distinguished groups of objects first of all based on the use of characteristics of geological heterogeneity. Comparison of various grouping options shows the need to take into account the geological heterogeneity of objects during their drilling. The identification of groups of objects using a limited number of parameters is approximate, but at the stage of drafting the first design documents, it is possible to solve certain tasks aimed at determining the strategy for the development of deposits
-
Date submitted2021-08-10
-
Date accepted2021-12-10
-
Date published2021-12-27
Possibilities of accounting the fracturing of Kashiro-Vereyskian carbonate objects in planning of proppant hydraulic fracturing
One of the effective methods of oil production intensification for heterogeneous Kashiro-Vereyskian clay-carbonate sediments of the Volga-Ural oil and gas bearing province is proppant hydraulic fracturing. Prospects of realization for this technology are considered in the article on the example of the Vereyskian development object of Moskud’inskoye field. Based on the analysis of rocks samples investigations of Vereyiskian sediments, lithological types of carbonate rocks differing in their structural features are distinguished. Tomographic investigations of rock samples were carried out, as a result of which the rock fracturing for some lithotypes was determined and studieds. Under natural geological conditions, depending on the degree of fracturing progression and technological conditions of development, these intervals may or may not be involved in well operation. When hydraulic fracturing is performed, potentially fractured areas that are not in operation can be successfully added to oil production. Based on analysis of hydrodynamic well investigations, the fracturing of the Vereyskian object of the Moskud’inskoye field was studied on the basis of the Warren-Ruth model. With the help of geological and technological indicators of development, prediction fracturing was obtained, which was used for the construction of the natural fracturing scheme. Areas of both pore and fractured reservoirs development were identified on the deposit area. As a result of statistical analysis, the influence of fracturing on efficiency of proppant hydraulic fracturing was determined. Based on the linear discriminant analysis, a statistical model for predicting the efficiency of proppant fracturing was developed. It was shown that in addition to natural fracturing, the results are most strongly influenced by specific proppant yield, formation pressure, permeability of the remote bottomhole zone and skin effect. Based on the developed model, prospective production wells of the Moskud’inskoye field are identified for proppant hydraulic fracturing.
-
Date submitted2021-07-07
-
Date accepted2021-10-18
-
Date published2021-12-16
Influence of hydraulic compression on porosity and permeability properties of reservoirs
Active development of hard-to-recover oil reserves causes the need for an innovative approach to methods of oil recovery and intensification of its production, based on taking into account the specifics of filtration processes in low-productive reservoirs and complex geological and physical conditions. Pilot works for studying the mechanism of changes in porosity and permeability properties of reservoirs during swabbing of wells are presented. Based on the hydrodynamic investigations performed, the results of the work are analyzed. The method of oil production intensification using hydraulic compression of formation has been developed. It has been shown that when using hydraulic compression technology in the pore space of the formation, the effect of capillary and gravitational forces is strongly reduced. The influence of these forces decreases when significant pressure gradients with changing direction are formed during well swabbing for depression impact on the bottomhole zone of the formation. Hydraulic compression induced an increase in well productivity and flow rate; insights into how how permeability and porosity properties change during well swabbing were clarified. The range of compressive durability (minimum and maximum values) was determined for the Verean deposits of the Melekeskaya Depression and the South Tatar arch. The impact of formation hydraulic compression caused changes in permeability and porosity properties of the reservoir in the bottomhole zone on a qualitative level. Piezo- and hydraulic conductivity increased by 20 %. Experimental work in well 1545 of Keremetyevskoe field showed an increase of piezo- and hydraulic conductivity coefficients, effective formation thickness, change of filtration flows character.
-
Date submitted2021-06-17
-
Date accepted2021-10-18
-
Date published2021-12-16
Dissolution kinetics of rare earth metal phosphates in carbonate solutions of alkali metals
- Authors:
- Tatyana E. Litvinova
- Ivan L. Oleynik
Treatment of apatite raw materials is associated with the formation of large-tonnage waste – phosphogypsum. The content of rare earth metals in such waste reaches 1 %, which makes it possible to consider it a technogenic source for obtaining rare earth metals and their compounds. Up to the present moment, there are neither processing plants, nor an efficient process flow to handle phosphogypsum dumps. It is rational to use a way that involves extraction of valuable components and overall reduction of phosphogypsum dumps. Such process flow is available with carbonate conversion of phosphogypsum to alkali metal or ammonium sulfate and calcium carbonate upon the condition of associated extraction of rare earth metal (REM) compounds. Associated extraction of REM compounds becomes possible since they form strong and stable complexes with hard bases according to Pearson, which among other things include carbonate, phosphate and sulfate anions. Formation of lanthanide complexes with inorganic oxygen-containing anions is facilitated by the formation of high-energy Ln-O bonds. The study focuses on the dissolution of lanthanide phosphates in carbonate media. It was established that formation of REM carbonate complexes from their phosphates is a spontaneous endothermic process and that formation of lanthanide carbonates and hydroxides serves as thermodynamic limitation of dissolution. A shift in equilibrium towards the formation of carbonate complexes is achieved by increasing the temperature to 90-100 °C and providing an excess of carbonate. The limiting stage of REM phosphate dissolution in carbonate media is external diffusion. This is indicated by increasing rate of the process with an intensification of stirring, first order of the reaction and the value of activation energy for phosphate dissolution from 27 to 60 kJ/mol. A combination of physical and chemical parameters of the process allowed to develop an engineering solution for associated REM extraction during carbonate conversion of phosphogypsum, which included a 4-5 h conversion of phosphogypsum at temperature of 90-110 °C by an alkali metal or ammonium carbonate solution with a concentration of 2-3 mol/l. As a result, a solution with alkali metal (ammonium) sulfate is obtained, which contains REMs in the form of carbonate complexes and calcium carbonate. The rate of REM extraction into the solution reaches no less than 93 %. Rare earth metals are separated from the mother liquor by precipitation or sorption on anion exchange resins, while the excess of alkali metal or ammonium carbonate is returned to the start of the process.
-
Date submitted2020-06-10
-
Date accepted2020-11-19
-
Date published2021-04-26
Influence of jarosite precipitation on iron balance in heap bioleaching at Monywa copper mine
Ferric iron is an important oxidant in sulfide ore bioleaching. However, recirculating leach liquors leads to excess iron accumulation, which interferes with leaching kinetics and downstream metal recovery. We developed a method for controlling iron precipitation as jarosite to reduce excess iron in heap bioleaching at Monywa copper mine. Jarosite precipitation was first simulated and then confirmed using batch column tests. From the simulations, the minimum pH values for precipitation of potassium jarosite, hydronium jarosite, and natrojarosite at 25 °C are 1.4, 1.6, and 2.7, respectively; the minimum concentrations of potassium, sulfate, ferric, and sodium ions are 1 mM, 0.54, 1.1, and 3.2 M, respectively, at 25 °C and pH 1.23. Column tests indicate that potassium jarosite precipitation is preferential over natrojarosite. Moreover, decreased acidity (from 12 to 8 g/L), increased temperature (from 30 to 60 °C), and increased potassium ion concentration (from 0 to 5 g/L) increase jarosite precipitation efficiency by 10, 5, and 6 times, respectively. Jarosite precipitation is optimized by increasing the irrigating solution pH to 1.6. This approach is expected to reduce the operating cost of heap bioleaching by minimizing the chemicals needed for neutralization, avoiding the need for tailing pond construction, and increasing copper recovery.
-
Date submitted2020-06-16
-
Date accepted2020-11-09
-
Date published2020-12-29
Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology
To solve the problems accompanying the development of forecasting methods, a probabilistic method of data analysis is proposed. Using a carbonate object as an example, the application of a probabilistic technique for predicting the effectiveness of proppant hydraulic fracturing (HF) technology is considered. Forecast of the increase in the oil production of wells was made using probabilistic analysis of geological and technological data in different periods of HF implementation. With the help of this method, the dimensional indicators were transferred into a single probabilistic space, which allowed performing a comparison and construct individual probabilistic models. An assessment of the influence degree for each indicator on the HF efficiency was carried out. Probabilistic analysis of indicators in different periods of HF implementation allowed identifying universal statistically significant dependencies. These dependencies do not change their parameters and can be used for forecasting in different periods of time. Criteria for the application of HF technology on a carbonate object have been determined. Using individual probabilistic models, integrated indicators were calculated, on the basis of which regression equations were constructed. Equations were used to predict the HF efficiency on forecast samples of wells. For each of the samples, correlation coefficients were calculated. Forecast results correlate well with the actual increase (values of the correlation coefficient r = 0.58-0.67 for the examined samples). Probabilistic method, unlike others, is simple and transparent. With its use and with careful selection of wells for the application of HF technology, the probability of obtaining high efficiency increases significantly.
-
Date submitted2020-06-11
-
Date accepted2020-06-11
-
Date published2020-06-30
Improving the geological and hydrodynamic model of a carbonate oil object by taking into account the permeability anisotropy parameter
- Authors:
- Dmitry A. Martyushev
Significant share of the developed oil assets related to carbonate complex-built objects has formidably increased in Russia, including the Perm Region. Reliable knowledge of the parameters for the cavern-pore type of the reservoir allows clarifying the existing geological and hydrodynamic models (GHM), selecting a rational development system, regulating the development processes and providing optimal geological and technical measures for this formation. In the construction and adaptation of GHM for oil fields, especially those related to complex-built carbonate reservoirs, knowledge of both horizontal and vertical permeability (anisotropy parameter) is important. When creating GHM of carbonate objects in Perm Region deposits, vertical permeability is often taken to be zero, although this is far from being the case. Determining the vertical permeability (anisotropy parameter), its dynamics when changing the formation and bottomhole pressures and using it in GHM is an urgent task that will improve the quality and reliability of using digital models to calculate and predict the oil production process. Article describes the methodology for determining permeability anisotropy according to the interpretation of hydrodynamic investigations of wells. Proposed methodology for determining the anisotropy parameter processed the results of more than 200 studies conducted on production and injection wells of the Famennian deposit at the Gagarinskoye field. For each lithological-facies zone, dependence of the permeability anisotropy index on the bottomhole pressure is constructed. To predict and evaluate the effectiveness of the applied geological and technical measures and technological development indicators, author modified the geological and hydrodynamic model taking into account the obtained dependencies on the change in the anisotropy parameter. Using a modified hydrodynamic model, it was possible to significantly improve the adaptation of both production and injection wells. Thus, the quality and reliability of the digital model of the Famennian deposit at the Gagarinskoye field for calculating and predicting the oil production process has improved.
-
Date submitted2018-09-12
-
Date accepted2019-01-05
-
Date published2020-04-24
Flotation extraction of elemental sulfur from gold-bearing cakes
- Authors:
- Svetlana A. Ivanik
- Dmitrii A. Ilyukhin
Currently, in the development of the raw materials base of the gold mining industry, there is a tendency to reduce the quality of the initial mineral raw materials due to the depletion of reserves of rich gold-bearing ores. The article discusses the technology of extraction of refractory gold-bearing concentrates based on low-temperature leaching of pyrite concentrate. A decrease in the parameters of the autoclave oxidation of sulfide minerals, such as pyrite and arsenopyrite, leads to the incomplete extraction of gold into the solution and, consequently, its losses during subsequent cyanidation. As a possible option for a more complete extraction of gold using low-temperature oxidation technology, a method of flotation separation of elemental sulfur from leaching cakes is proposed. According to the basic process flow chart, the flotation process designed for gold extraction is carried out after autoclave oxidation, but before cyanidation. A series of experiments were carried out with varying reagent conditions and the dependence of gold losses on the extraction of elemental sulfur in the flotation tailings was established. As determining factors, pH and solid content in the initial pulp were considered. The paper justifies the separation of elemental sulfur from autoclave cake to enriched sulfur concentrate. The cake flotation modes after autoclave oxidative leaching of pyrite concentrate are investigated. The distribution of elemental sulfur and gold by flotation products makes it possible to conduct the tailings cyanidation process with acceptable indicators.
-
Date submitted2019-01-31
-
Date accepted2022-12-02
-
Date published2020-02-25
The relationship of fracture toughness coefficients and geophysical characteristics of rocks of hydrocarbon deposits
This paper contains the results of laboratory tests to determine the fracture toughness coefficient K IC of rocks for terrigenous and carbonate objects by three methods. The tests were carried out by different methods due to the lack of a standard method for determining the fracture toughness characteristics of rocks in Russia. We used the following methods for determining the K IC coefficient: the extension of core specimens with an annular fracture, the action of a concentrated load on a beam specimen with a fracture and the method of bending semi-circular samples with a fracture according to ISRM recommendations. The paper presents the relationship of the fracture toughness coefficients with the P-wave velocity and porosity. The obtained dependencies characterize the general trend of changing for the studied parameter and can be used in the design of hydraulic fracturing in the fields for which tests were conducted.
-
Date submitted2019-05-07
-
Date accepted2019-07-25
-
Date published2019-10-23
Intensification of Bacterial-Chemical Leaching of Nickel, Copper and Cobalt from Sulfide Ores Using Microwave Radiation
- Authors:
- A. V. Kioresku
Currently, Russia and other countries display a steady tendency to decrease the amount of high grade and free- milling ore reserves. In this regard, the attention is being paid to the technology of bacterial-chemical leaching (BCL), which, unlike traditional pyrometallurgical enrichment methods, is well applicable for processing low-grade mineral raw materials. However, this technology has a significant drawback, which is the inability of microorganisms to create sufficiently aggressive conditions for the effective destruction of mineral complexes, which negatively affects the duration of the processes. The article presents the results of an experiment, the purpose of which was to study the multiple short-term effects of microwave radiation on the efficiency of extraction of nickel, copper, and cobalt in the process of bacterial-chemical leaching of sulfide ore. A microwave oven with a power of 900 W and a radiation frequency of 2.45 GHz was used as a source of microwave radiation. Irradiation was carried out every day throughout the experiment. The exposure time was 5 and 10 s; the flux density was 0.7 W/cm 2 . It was found that for all the studied microwave irradiation modes, a significant increase in the efficiency of biomass accumulation and the oxidizing ability of the medium was observed in comparison with the control that was not exposed to microwave radiation. Irradiation for 5 s twice a day increased the reduction of nickel by 16 %, cobalt by 15 % and copper by 6 %. The results of the study allow us to assess the prospects for the application of new biotechnology methods in the industrial practice of ore processing with an improvement in qualityindicators.
-
Date submitted2019-04-28
-
Date accepted2019-06-28
-
Date published2019-10-23
Determination of Optimal Fluorine Leaching Parameters from the Coal Part of the Waste Lining of Dismantled Electrolytic Cells for Aluminum Production
- Authors:
- N. V. Nemchinova
- A. A. Tyutrin
- V. V. Somov
When aluminum is obtained by electrolysis of cryolite-alumina melts when the baths are sent for capital repairs, a solid technogenic product is formed – waste lining of electrolytic cells (WLEC). The volume of formation of WLEC is 30-50 kg per 1 ton of aluminum. Currently, it is mainly stored at landfills near industrial enterprises, causing harm to the environment. However, this technogenic raw material contains valuable components (fluorine, aluminum, sodium) that can be extracted to produce fluoride salts, which are in demand during the electrolytic production of aluminum. The objects of research were samples of the coal part of the waste lining of dismantled S-8BM (E) type electrolytic cells of «RUSAL Krasnoyarsk» JSC (Krasnoyarsk) of RUSAL company. According to the X-ray experiment diffraction analysis (using a Bruker D8 ADVANCE diffractometer) of the phase composition of the samples, it was found that the main fluorine-containing compounds are cryolite, chiolite, sodium and calcium fluorides. The total fluorine content in the studied samples averaged 13.1 %. We conducted studies on the leaching of fluorine from WLEC with a solution of caustic alkali (NaOH concentration – 17.5 g/dm 3 ). The process was carried out in a mechanically agitated reactor using a BIOSAN MM-1000 top drive laboratory stirrer with a two-blade nozzle. By the method of mathematical planning of a three-factor experiment, the mutual influence of three leaching conditions on the optimization parameter was established – the extraction of fluorine in solution (in percent). The maximum recovery of fluorine from WLEC to the leach solution averaged 86.4 % and was achieved with the following indicators:processtemperature–95 ° C, the ratio ofliquidtosolidphase–9:1,duration– 210 min.
-
Date submitted2019-03-11
-
Date accepted2019-05-11
-
Date published2019-08-23
Estimate of Radial Drilling Technology Efficiency for the Bashkir Operational Oilfields Objects of Perm Krai
- Authors:
- S. V. Galkin
- A. A. Kochnev
- V. I. Zotikov
The radial drilling technology efficiency for carbonate bashkir deposits of Perm Krai is considered. The geological structure of a productive part of bashkir layer is characterized by high degree of heterogeneity that promotes while drilling radial channels involvement in development additional interlayers that earlier was not drained. During the analysis the main geological process parameters affecting drilling technology efficiency were revealed. According to the dynamics of average daily oil production growth, palettes were built to forecast additional oil production as a result of radial drilling activities. Using the pallets, it is possible to predict the total additional oil production, well operating time with the effect of radial drilling and average daily oil production growth for each year. It was found that hydrochloric acid treatments performed on wells prior to radial drilling significantly reduce the effectiveness of radial drilling technology. For such wells, the value of the correction is statistically substantiated, which reduces the predictive estimate of the increase in oil production. A model was built to assess the increase in oil production in the first year after the event and an algorithm for calculating the total additional oil production was developed using linear discriminant analysis. For the resulting model, errors are calculated that are compared with the forecast efficiency of standard methods for oil-producing enterprises. This model shows a much more accurate correspondence of forecast results to actual technology application results. The probability of the event high efficiency increases significantly with a more detailed approach to the selection of wells for radial drilling. According to the forecast methodology, the technology’s efficiency was calculated and recommendations for its implementation for the wells of the Bashkir production objects were made in the interests of an oil-producing enterprise.
-
Date submitted2018-09-02
-
Date accepted2018-10-28
-
Date published2019-02-22
Factors affecting bacterial and chemical processes of sulphide ores processing
- Authors:
- T. S. Khainasova
Extraction of valuable components from sulphide ores using microorganisms is a recognized biotechnological method, combining several advantages over traditional methods of mineral processing. This paper presents the main factors affecting the bacterial-chemical leaching and methods of leaching with the participation of microorganisms. Some physical-chemical (temperature, pH, oxygen, carbon dioxide, nutrients, metals and other chemical elements) and microbial (cell count and microflora activity) properties are given, either directly or indirectly (suppressing or contributing to the growth and oxidative capacity of microorganisms) affecting the kinetics of the process. The paper discusses the characteristics of the mineral substrate, including galvanic interaction of sulfide minerals and the formation of passivating layers on the surface of the ore during oxidation, emphasizing the importance of the electrochemical interaction of the components of the leaching system. Bioleaching is a complex process, which is a combination of mainly chemical reactions mediated by the microbial component, therefore, to improve the kinetics, it is necessary to consider, monitor and regulate the listed range of factors.