Submit an Article
Become a reviewer
Vadim E. Andreev
Vadim E. Andreev
professor, Ph.D., Dr.Sci.
Ufa State Oil Technical University
professor, Ph.D., Dr.Sci.
Ufa State Oil Technical University
358
Total cited
13
Hirsch index

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-27
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Application of resonance functions in estimating the parameters of interwell zones

Article preview

It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.

How to cite: Batalov S.А., Andreev V.Е., Mukhametshin V.V., Lobankov V.М., Kuleshova L.S. Application of resonance functions in estimating the parameters of interwell zones // Journal of Mining Institute. 2022. Vol. 257. p. 755-763. DOI: 10.31897/PMI.2022.85
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-07-07
  • Date accepted
    2021-10-18
  • Date published
    2021-10-29

Influence of hydraulic compression on porosity and permeability properties of reservoirs

Article preview

Active development of hard-to-recover oil reserves causes the need for an innovative approach to methods of oil recovery and intensification of its production, based on taking into account the specifics of filtration processes in low-productive reservoirs and complex geological and physical conditions. Pilot works for studying the mechanism of changes in porosity and permeability properties of reservoirs during swabbing of wells are presented. Based on the hydrodynamic investigations performed, the results of the work are analyzed. The method of oil production intensification using hydraulic compression of formation has been developed. It has been shown that when using hydraulic compression technology in the pore space of the formation, the effect of capillary and gravitational forces is strongly reduced. The influence of these forces decreases when significant pressure gradients with changing direction are formed during well swabbing for depression impact on the bottomhole zone of the formation. Hydraulic compression induced an increase in well productivity and flow rate; insights into how how permeability and porosity properties change during well swabbing were clarified. The range of compressive durability (minimum and maximum values) was determined for the Verean deposits of the Melekeskaya Depression and the South Tatar arch. The impact of formation hydraulic compression caused changes in permeability and porosity properties of the reservoir in the bottomhole zone on a qualitative level. Piezo- and hydraulic conductivity increased by 20 %. Experimental work in well 1545 of Keremetyevskoe field showed an increase of piezo- and hydraulic conductivity coefficients, effective formation thickness, change of filtration flows character.

How to cite: Khuzin R.R., Andreev V.E., Mukhametshin V.V., Kuleshova L.S., Dubinskiy G.S., Safiullina А.R. Influence of hydraulic compression on porosity and permeability properties of reservoirs // Journal of Mining Institute. 2021. Vol. 251. p. 688-697. DOI: 10.31897/PMI.2021.5.8