Submit an Article
Become a reviewer

Search articles for by keywords:
Arkhangelsk diamond province

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-03
  • Date accepted
    2024-07-11
  • Date published
    2025-04-02

Assessment of ancylite ore dressability by flotation method

Article preview

For more than 50 years, most rare earth elements were extracted from carbonatite deposits, which can contain different rare earth phases, but the main extracted minerals are bastnaesite, monazite and xenotime. Many studies focused on the improvement and development of dressing circuits for ores of these minerals. However, in some carbonatite complexes, rare earth deposits are composed partly or mainly of ancylite ores. This type of rare earth ores was very poorly studied in terms of dressability – previous experiments with ancylite ores are rare and not productive enough. Ancylite is the main concentrator of rare earth elements in most carbonatite complexes of the Devonian Kola Alkaline Province (northwest Russia). Dressability of ancylite ore from the Petyayan-Vara carbonatite field in the Vuorijärvi alkaline-ultramafic complex was assessed using the flotation method. The complex is one of the most potential rare earth deposits associated with carbonatites in the Kola Region. Petrographic and mineralogical studies demonstrated the occurrence of abundant iron and barite oxide inclusions in ancylite, which imposes restrictions on physical separation of these three minerals. The study of petrogeochemical and mineralogical composition of fractions formed during mechanical grinding of ores to a size less than 2.0 mm showed that even at this stage of sample preparation, the finest-grained fractions (less than 0.071 mm) were enriched in ancylite (to 19 vol.% or more with a content of 15 vol.% in ore). Three classes of reagents were considered as collectors in flotation experiments: fatty acids, alkyl hydroxamic acids, and amino acid derivatives. The reagent from the amino acid derivative class was highly efficient. The use of such a collector in combination with sodium hexametaphosphate depressant made it possible to obtain a flotation concentrate in an open circuit with total rare earth oxides content 33.4 wt.% at 64.7 % extraction.

How to cite: Mitrofanova G.V., Kozlov E.N., Fomina E.N., Chernousenko E.V., Chernyavskii A.V., Dorozhanova N.O. Assessment of ancylite ore dressability by flotation method // Journal of Mining Institute. 2025. p. EDN UOHOQP
Geology
  • Date submitted
    2024-03-11
  • Date accepted
    2024-09-24
  • Date published
    2024-12-06

Comparative analysis of nitrogen and carbon isotopic fractionation during diamond formation based on β-factor determination

Article preview

First quantitative estimates are presented for nitrogen isotopic fractionation during diamond crystallization with respect to nitrogen-bearing fluid components using quantum-mechanical (DFT) calculations on the defect (with the substitutional nitrogen) diamond lattice. Provided equilibrium isotopic fractionation, 15N/14N ratio decreases within the sequence of compounds NH4+ > N2 > (diamond, NH3) > CH3N > CN− > NH2. At temperatures of 1,100 to 1,200 °C fractionation among diamond and fluid N-compounds are estimated at –2.23, –0.77, 0.01, 0.44, 1.31 and 2.85 ‰ and substantially (over 1 ‰) exceed the already available estimates based on the modeling diamond C-N bonds by analogy with HCN or CN – molecules. Depending on the dominant nitrogen and carbon substance in the mineral-forming fluid, diamond formation can be accompanied by different isotope compositional trends, as expressed either by zoned patterns within individual diamond grains or by isotopic δ15N vs δ13C covariations during successive crystallization. Provided the dominance of NH3 component (the reduced conditions, high pressures and the cold geotherm) nitrogen isotope fractionation between diamond and fluid does not exceed 0.1-0.2 ‰ and the isotope shifts at temperature ca. 1100 °C Δ15N << Δ13C. In nitrogen depleted reduced mantle fluids possible existence of compounds with low heavy isotope affinity at temperature of diamond formation (especially NH2) implies high isotope fractionation between diamond and the fluid and hence, evolved Δ15N/Δ13C ratios. Oxidized fluids dominated by CO2 or CO3 coupled with N2 component are characterized by close to zero Δ15N/Δ13C ratios as inferred by prevailing carbon isotope fractionation with respect to nitrogen isotopes, the latter change considerably with nitrogen distribution coefficient among diamond and the growth media.

How to cite: Krylov D.P. Comparative analysis of nitrogen and carbon isotopic fractionation during diamond formation based on β-factor determination // Journal of Mining Institute. 2024. p. EDN SUBOCN
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-03
  • Date accepted
    2024-10-14
  • Date published
    2024-11-12

Genetic geological model of diamond-bearing fluid magmatic system

Article preview

The article proposes a genetic geological model of diamond deposit formation associated with kimberlites and lamproites. It is based on the synthesis of published data on diamond-bearing kimberlite systems and an original study of the ontogenetic features of diamond crystals. Deep diamond crystallization, its upward transportation and subsequent concentration in near-surface kimberlite-lamproite bodies and other rocks, including those brought to the surface by high-amplitude uplifts of crystalline basement rocks, are combined in a single system. An assumption is made about the primary sources of the Anabar placer diamonds. The possibility of hydrocarbon generation at mantle levels corresponding to diamond formation areas and their transportation to the upper crustal zones by a mechanism similar to the mantle-crust migration of diamond-bearing fluidized magmas is shown. The high rate of their upward movement allows transportation to the surface without significant loss as a result of dissolution in melts and sorption on the surface of mineral phases. The significant role of fluid dynamics at all stages of this system is noted.

How to cite: Kozlov A.V., Vasilev E.A., Ivanov A.S., Bushuev Y.Y., Kolyadina A.I. Genetic geological model of diamond-bearing fluid magmatic system // Journal of Mining Institute. 2024. Vol. 269. p. 708-720. EDN CFZLAK
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-03
  • Date accepted
    2024-09-05
  • Date published
    2024-11-12

Platinum group elements as geochemical indicators in the study of oil polygenesis

Article preview

This study examines elements of the platinum group (PGE), primarily platinum and palladium, as geochemical indicators in the investigation of oil polygenesis. It has been found that, like other trace elements such as nickel, vanadium, and cobalt, platinum group elements and gold can occur in oil fields at both background levels and in elevated or even anomalously high concentrations. The objective of this research is to analyze PGE and trace elements as geochemical markers to identify the geological factors, including endogenous processes, responsible for these unusually high concentrations in oil. A comprehensive review of the literature on this subject was conducted, along with new data on the presence of precious metals in oils from Russia and globally. The study explores the geological mechanisms behind elevated PGE concentrations in oils, utilizing atomic absorption spectroscopy with atomization in the HGA-500 graphite furnace to measure PGE content. Previously, the tellurium co-deposition method (ISO 10478:1994) was used to isolate noble metals from associated elements. Possible geological origins of abnormally high concentrations of platinum metals in oils have been identified. These include endogenous factors such as the spatial proximity of oil fields to ultrabasic rock massifs, the effects of contact-metasomatic processes, and influences from mantle dynamics. Moreover, data concerning mantle elements can serve as indicators of the depth origins of certain hydrocarbon fluids, thus contributing to the study of oil polygenesis.

How to cite: Talovina I.V., Ilalova R.K., Babenko I.A. Platinum group elements as geochemical indicators in the study of oil polygenesis // Journal of Mining Institute. 2024. Vol. 269. p. 833-847. EDN UYYBSB
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-31
  • Date accepted
    2023-12-27
  • Date published
    2024-11-12

Geochemical studies of rocks of the Siberian igneous province and their role in the formation theory of unique platinum-copper-nickel deposits

Article preview

The Norilsk deposits, unique both in their geological structure and reserves of nickel and platinum, have attracted the attention of researchers for several decades. Several hypotheses have been proposed to explain their formation. Two of them are the most widely accepted: the model of ore formation in an intermediate chamber from picritic melt enriched in sulphides and the formation of sulphides in situ through the assimilation of sulphate-bearing sediments by tholeiitic magma as it rises to the surface. The main questions regarding the genesis of these deposits are: the composition of the parental magmas that formed the ore-bearing massifs; the relationship between intrusions and effusive rocks; and the extent and role of assimilation of host rocks by magmas. These issues are discussed in the article using a large amount of analytical data obtained by the author during the study of the magmatic rocks and geological structures in the Norilsk area. Based on these data, it was concluded that none of the proposed models could fully explain all observed geological features of the deposits as well as the appearance of the unique sulphide ores. In order to solve the problem of the genesis of the Norilsk deposits, it is necessary to analyse the evolution of P3-T1 magmatism over time in the Siberian large igneous province, especially in its eastern part, and to determine its association with ore-forming processes; and its investigating it is a priority task for understanding sulphide ore formation. Solving this task should be based not only on geophysical data but also on studies of the geochemistry of igneous rocks within the province.

How to cite: Krivolutskaya N.А. Geochemical studies of rocks of the Siberian igneous province and their role in the formation theory of unique platinum-copper-nickel deposits // Journal of Mining Institute. 2024. Vol. 269. p. 738-756. EDN ROAVGE
Geology
  • Date submitted
    2023-02-10
  • Date accepted
    2023-09-20
  • Date published
    2024-04-25

Depth distribution of radiation defects in irradiated diamonds by confocal Raman spectroscopy

Article preview

Five colored diamonds were investigated. According to the results of the study by FTIR, UV-Vis-NIR and Photoluminescence spectroscopy, they are natural type Ia diamonds. The depth distribution of the color intensity was carried out by measuring the intensity of the PL peak at 741 nm (GR1 center) upon excitation by a laser with a wavelength of 633 nm of Raman Confocal microscope. To minimise the perturbation due to geometrical effects, defect distribution profiles were normalised with respect to diamond Raman peak intensity (691 nm) point by point. For two diamonds, the intensity of the GR1 peak (741 nm) sharply decreased to a depth of 10 µm, and then became equal to the background level, which is typical for irradiation with alpha particles from natural sources like uranium. In other diamonds, the profiles vary slightly with depth, and the color intensity is close to uniform, which is for irradiation with accelerated electrons or neutrons. The source of radiation has not been determined. However, long duration radioactivity measurements of the diamonds suggested that neutrons were not used for colour centers production in the diamonds studied.

How to cite: Ardalkar R.M., Salunkhe Y.D., Gaonkar M.P., Mane S.N., Ghaisas O.A., Desai S.N., Reddy A.V.R. Depth distribution of radiation defects in irradiated diamonds by confocal Raman spectroscopy // Journal of Mining Institute. 2024. Vol. 266. p. 179-187. EDN XGGRVF
Geology
  • Date submitted
    2023-04-29
  • Date accepted
    2023-10-11
  • Date published
    2023-10-27

Pink-violet diamonds from the Lomonosov mine: morphology, spectroscopy, nature of colour

Article preview

The article presents the results of the first comprehensive study of mineralogical and spectroscopic (IR, PL, EPR) characteristics of diamonds from the Lomonosov mine (Arkhangelskaya pipe) with a unique pink, pink-violet colour. It is shown that all crystals belong to the IaA type, with a total nitrogen content in the range of 500-1500 ppm, with a low degree of aggregation. The colour is heterogeneous, concentrated in narrow twin layers. It is presumably caused by the previously described M2 centres. The colour shade is affected by the content of P1 paramagnetic centres (C-defect). A positive correlation is observed between the colour saturation and the intensity of W7 paramagnetic centres. A convergent model of the formation of pink diamonds is assumed, according to which the determining factors are the ratio and concentration of structural impurities in the diamond, its thermal history, and conditions of plastic deformation, and not the origin of the diamond and the petrochemical properties of its host rocks.

How to cite: Kriulina G.Y., Vyatkin S.V., Vasilev E.A. Pink-violet diamonds from the Lomonosov mine: morphology, spectroscopy, nature of colour // Journal of Mining Institute. 2023. Vol. 263. p. 715-723. EDN NYGZOX
Geology
  • Date submitted
    2021-04-15
  • Date accepted
    2022-09-06
  • Date published
    2023-10-27

Gold-rare metal and associated mineralization in the western part of Bolshevik Island, Severnaya Zemlya archipelago

Article preview

The presented studies are aimed to determine the formation patterns of the gold-rare metal mineralization within one of the most inaccessible Arctic islands of the Russian Federation, Bolshevik Island of the Severnaya Zemlya archipela-go. The relevance of the work is determined by the high probability of discovering a significant in terms of metal reserves deposit, which is proved by many researchers on the example of known large deposits to be a typical feature of sites with gold-rare metal formation. Obviously, only the possibility of discovering and subsequent development of a deposit of a highly liquid type of mineral, gold, can ensure the profitability of mining production on Severnaya Zemlya. It is established that the main geological, mineralogical, and geochemical features of the gold-rare metal mineralization in the Kropotkinsko-Nikitinskaya metallogenic zone of Bolshevik Island correspond to that of similar ore sites in Russia and the world. The occurrences of other formation types revealed in this metallogenic zone suggest a certain zoning in their distribution: mineralization is located in the apical parts of granitoids and in the nearest halo of hornfelses. At a distance, with an exit from the hornfelsed zone, there are occurrences of a cassiterite-sulphide formation with elevated gold and silver content at the top of the ore column, together with an increased amount of polymetallic ores. Occurrences of gold-quartz and gold-sulphide-quartz formations are localized in fault zones, as a rule, farther from granitoids. The total vertical range of gold mineralization exceeds 300 m. The assignment of all types of mineralization in the Kropotkinsko-Nikitinskaya metallogenic zone of Bolshevik Island to a single hydrothermal process is emphasized by the similar isotope composition of lead galena from heterogeneous occurrences, which determines the age of all mineralization at 200-300 Ma.

How to cite: Evdokimov A.N., Fokin V.I., Shanurenko N.K. Gold-rare metal and associated mineralization in the western part of Bolshevik Island, Severnaya Zemlya archipelago // Journal of Mining Institute. 2023. Vol. 263. p. 687-697. DOI: 10.31897/PMI.2022.94
Geology
  • Date submitted
    2022-11-29
  • Date accepted
    2023-03-02
  • Date published
    2023-10-27

New data on the composition of growth medium of fibrous diamonds from the placers of the Western Urals

Article preview

This article presents the results of studying microinclusions of fluids/melts in diamonds from the placers of the Krasnovishersky District (western slope of the Middle/Northern Urals), which make it possible to establish the evolution of diamond-forming media in the subcontinental lithospheric mantle of the eastern margin of the East European craton. Impurity composition of the studied crystals reveals three different types of diamonds, the formation of which was associated with separated metasomatic events. Microinclusions in B-type diamonds containing A and B nitrogen defects reflect an older metasomatic stage characterized by the leading role of silicic and low-Mg carbonatitic fluids/melts. The second stage is associated with the growth of A-type diamonds containing nitrogen exclusively in the form of A-centers. At this stage, the formation of diamonds was related with low-Mg carbonatitic media, more enriched in MgO, CaO, CO2, and Na2O compared to B-type diamonds. The third stage probably preceded the eruption of the transporting mantle melt and led to the formation of C-type diamond containing A and C nitrogen defect centers and microinclusions of silicic to low-Mg carbonatitic composition. The recorded trend in the evolution of diamond-forming fluids/melts is directed towards more carbonatitic compositions. Fluids/melts are probably sourced from eclogitic and pyroxenitic mantle substrates.

How to cite: Gubanov N.V., Zedgenizov D.A., Vasilev E.A., Naumov V.A. New data on the composition of growth medium of fibrous diamonds from the placers of the Western Urals // Journal of Mining Institute. 2023. Vol. 263. p. 645-656. EDN RYMYTJ
Geology
  • Date submitted
    2022-09-26
  • Date accepted
    2023-03-23
  • Date published
    2023-12-25

A new diamond find and primary diamond potential of the Chetlas uplift (Middle Timan)

Article preview

In the previously poorly studied southeastern part of the Chetlas uplift in the Middle Timan, a new occurrence of diamond satellite minerals and a diamond grain were found in the modern channel sediments of the Uvuy River basin. In order to assess the prospects of the area under consideration for identification of diamondiferous objects of practical interest, a characteristic of chromium-bearing pyropes and chromospinelides as the main kimberlite of diamond satellite minerals are given and the diamond grain itself is described. The material for the research was 16 schlich samples, each with a volume of 8 to 15 l. The minerals were studied using optical and scanning electron microscopy, Raman spectroscopy, laser luminescence and X-ray diffraction (Debye – Sherrer method). It is shown that among the pyropes, most of which correspond in composition to minerals of the lherzolite paragenesis, there are varieties belonging to the dunite-harzburgite paragenesis, including those belonging to diamond phase stability regions. Among the studied chromospinelides, chrompicotites and aluminochromites similar in composition to those found in rocks such as lherzolites and harzburgites, as well as in kimberlites, were identified. A diamond grain found in one of the samples has the form of a flattened intergrowth with distinct octahedron faces, complicated by co-growth surfaces with other mineral grains that have not been preserved to date. The discovery of the diamond and the established signs the formation of aureoles of the diamond satellites minerals in the channel sediments of the studied area open up the prospects for discovering their primary sources here.

How to cite: Pystin A.M., Glukhov Y.V., Bushenev A.A. A new diamond find and primary diamond potential of the Chetlas uplift (Middle Timan) // Journal of Mining Institute. 2023. Vol. 264. p. 842-855. EDN GSTWEZ
Geology
  • Date submitted
    2022-12-01
  • Date accepted
    2023-01-19
  • Date published
    2023-12-25

Inclusions of diamond crystals in the tourmaline of the schorl-uvite series: problems of genesis

Article preview

The mineralogical and geochemical features of diamond-bearing tourmaline crystals (schorl-uvite series) from garnet-clinopyroxene rocks of the Kumdy-Kol deposit (Northern Kazakhstan) have been studied in detail. The formation of the main rock-forming minerals (garnet + K-bearing clinopyroxene) occurred in the diamond stability field at 4-6 GPa and 950-1000 °C. Crystallization of K-bearing clinopyroxene at these parameters is possible in the presence of an ultra-potassic fluid or melt formed because of crustal material melting in subduction zones. Tourmaline crystals (up to 1 cm) containing diamond inclusions perform veins crosscutting high-pressure associations. The composition of individual zones varies from schorl to uvite within both a single grain and the sample as a whole. The potassium content in this tourmaline does not exceed 0.1 wt.% K2O, and the isotopic composition of boron δ11B varies from –10 to –15.5 ‰, which significantly differs from the previously established isotopic composition of boron in maruyamaite crystals (δ11B 7.7 ‰ in the core and –1.2 ‰ in the rim) of the same deposit. Analysis of the obtained data on δ11B in the tourmalines from the diamond-grade metamorphic rocks within the Kumdy-Kol deposit suggests the existence of two boron sources that resulted in crystallization of K-bearing tourmaline crystals (maruyamaite-dravite series) and potassium-free tourmalines of the schorl-uvite series.

How to cite: Korsakov A.V., Mikhailenko D.S., Zhang L., Xu Y.-G. Inclusions of diamond crystals in the tourmaline of the schorl-uvite series: problems of genesis // Journal of Mining Institute. 2023. Vol. 264. p. 833-841. EDN UMQOXK
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-08
  • Date accepted
    2023-03-02
  • Date published
    2023-04-25

Geochemical properties and transformation of the microelement composition of soils during the development of primary diamond deposits in Yakutia

Article preview

Extraction of diamonds from primary deposits in Siberia is associated with the development of kimberlite pipes in challenging environmental conditions, accompanied by a complex impact on the environment. The article presents the results of monitoring the soil cover of the Nakyn kimberlite field in the Yakutia diamond province, which is affected by the facilities of the Nyurba Mining and Processing Division. Development of primary diamond deposits has a large-scale impact on the subsoil, topography, and soil cover: creation of the world's largest quarries, formation of dumps more than 100 m high, arrangement of extensive tailings, formation of solid and liquid industrial wastes of various chemical composition. The research is aimed at studying the spatial and temporal patterns of the technogenic impact on the soil cover, identifying the nature and level of transformation of the microelement composition of soils based on the analysis of the intra-profile and lateral distribution of mobile forms of trace elements. The study targets in 2007-2018 were zonal types of permafrost soils of northern taiga landscapes, cryozems, occupying 84 % of the total study area, which are characterized by biogenic accumulation of mobile forms of Ni, Mn, and Cd in the upper AO, A cr horizons, and Cr, Ni, Co, Mn, Cu in the suprapermafrost CR horizon. We found out that the contamination of the soil cover of the industrial site at the Nyurba Mining and Processing Division is of a multielement nature with local highly to very highly contaminated areas. Over a ten-year observation period, areas of stable soil contamination are formed, where the main pollutants are mobile forms of Mn, Zn, Ni. We suggest that against the background of a natural geochemical anomaly associated with trap and kimberlite magmatism, technogenic anomalies are formed in the surface horizons of soils. They are spatially linked to technogenically transformed landscapes. One of the sources of pollutants is the dispersion of the solid phase of dust emissions in the direction of the prevailing winds, which leads to the formation of soils with abnormally high contents of mobile forms of Mn, Zn, Ni.

How to cite: Legostaeva Y.B., Gololobova A.G., Popov V.F., Makarov V.S. Geochemical properties and transformation of the microelement composition of soils during the development of primary diamond deposits in Yakutia // Journal of Mining Institute. 2023. Vol. 260. p. 212-225. DOI: 10.31897/PMI.2023.35
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-11-06
  • Date accepted
    2022-11-29
  • Date published
    2022-12-29

Technological sovereignty of the Russian Federation fuel and energy complex

Article preview

The review to achieve technological sovereignty of the Russian fuel and energy complex (FEC) in the ongoing geopolitical situation is presented in the article. The main scope has been to identify the key technology development priorities, restrictions and internal resources to overcome these utilizing the developed by the author the innovative methodology that consists of novel approaches to calculate level of local content, digitalization, business continuity andinteractions with military-industrial complex. Some organizational changes have been proposed to intensify the development of hi-tech products for the FEC and related industries, including establishment of the state committee for science and technology and the project office of lead engineers for the critical missing technologies. Two successful examples to utilize the described in the paper methodology is presented: the first domestic hydraulic fracturing fleet and polycrystalline diamond compact cutter bit inserts.

How to cite: Zhdaneev O.V. Technological sovereignty of the Russian Federation fuel and energy complex // Journal of Mining Institute. 2022. Vol. 258. p. 1061-1078. DOI: 10.31897/PMI.2022.107
Geology
  • Date submitted
    2022-01-28
  • Date accepted
    2022-04-26
  • Date published
    2022-07-26

On the presence of the postmagmatic stage of diamond formation in kimberlites

Article preview

On nowadays multiphase and the facies heterogeneity of the formations are distinguished at the study of kimberlite pipes. Most researchers associate the formation of diamonds only with the mantle source. To date, satellite minerals with specific compositions associated with kimberlite diamonds have been identified as deep mantle diamond association. They are extracted from the concentrate of the kimberlites heavy fraction and may reflect the diamond grade of the pipe. For some minerals in the diamond association, however, they can not be reliable. Some researchers also revealed shallow diamond associations, related to the formation of serpentine, calcite, apatite, and phlogopite. There is recent data on the formation of diamonds in rocks of the oceanic crust. In the last years microdiamonds were identified in chromites of the oceanic crust in association with antigorite formed at 350-650 °C and 0.1-1.6 GPa. As a result, the authors established a postmagmatic kimberlitic stage of diamond formation associated with secondary mineral associations based on the experimental and mineralogical data for the conditions of the shallow upper mantle and crust. Mineralogical and petrographic studies of Angolan kimberlite pipe show that antigorite is the indicator mineral of this stage.

How to cite: Simakov S.K., Stegnitskiy Y.B. On the presence of the postmagmatic stage of diamond formation in kimberlites // Journal of Mining Institute. 2022. Vol. 255. p. 319-326. DOI: 10.31897/PMI.2022.22
Geology
  • Date submitted
    2022-05-04
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Prospecting models of primary diamond deposits of the north of the East European Platform

Article preview

As a result of a comprehensive study of the geological structure and diamond presense of the northern part of the East European Platform, generalization of the data accumulated by various organizations in the USSR, the Russian Federation, and other states, three main prospecting models of primary diamond deposits have been identified and characterized: Karelian, Finnish, and Arkhangelsk. Geological, structural, mineralogical, and petrographic criteria of local prediction, as well as the features of the response of kimberlite and lamproite bodies in dispersion haloes and geophysical fields, are considered using known examples, including data on the developed M.V.Lomonosov and V.P.Grib mines. It is shown that the most complicated prospecting environments occur in the covered areas of the Russian Plate, where, in some cases, the primary diamond-bearing rocks are similar in their petrophysical properties to the host formations. The buried dispersion haloes of kimberlite minerals in the continental Carboniferous and Quaternary deposits are traced at a short distance from the sources. Differences in the prospecting features of magnesian (Lomonosov mine) and ferromagnesian (Grib mine) kimberlites are also shown. Conclusions about the diamond potential of the model objects of various types are given in this paper.

How to cite: Ustinov V.N., Mikoev I.I., Piven G.F. Prospecting models of primary diamond deposits of the north of the East European Platform // Journal of Mining Institute. 2022. Vol. 255. p. 299-318. DOI: 10.31897/PMI.2022.49
Geology
  • Date submitted
    2022-04-13
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Thermal history of diamond from Arkhangelskaya and Karpinsky-I kimberlite pipes

Article preview

This work studies and compares the main morphological, structural, and mineralogical features of 350 diamond crystals from the Karpinsky-I and 300 crystals of the Arkhangelskaya kimberlite pipes. The share of crystals of octahedral habit together with individual crystals of transitional forms with sheaf-like and splintery striation is higher in the Arkhangelskaya pipe and makes 15 %. The share of cuboids and tetrahexahedroids is higher in the Karpinsky-I pipe and stands at 14 %. The share of dodecahedroids in the Arkhangelskaya and Karpinsky-I pipes are 60 % and 50 %, respectively. The indicator role of the nitrogen-vacancy N3 center active in absorption and luminescence is shown. Crystals with the N3 absorption system have predominantly octahedral habit or dissolution forms derived from the octahedra. Their thermal history is the most complex. Absorption bands of the lowest-temperature hydrogen-containing defects (3050, 3144, 3154, 3188, 3310 cm −1 , 1388, 1407, 1432, 1456, 1465, 1503, 1551, 1563 cm −1 ), are typical for crystals without N3 system, where in the absorption spectra nitrogen is in the form of low-temperature A and C defects. The above mentioned bands are registered in the spectra of 16 % and 42 % of crystals from the Arkhangelskaya and Karpinsky-I pipes, respectively. The diamond of the studied deposits is unique in the minimum temperature (duration) of natural annealing. Based on a set of features, three populations of crystals were distinguished, differing in growth conditions, post-growth, and thermal histories. The established regularities prove the multi-stage formation of diamond deposits in the north of the East European Platform and significant differences from the diamonds of the Western Cisurals. The results suggest the possibility of the existence of primary deposits dominated by diamonds from one of the identified populations.

How to cite: Vasilev E.A., Kriulina G.Y., Garanin V.K. Thermal history of diamond from Arkhangelskaya and Karpinsky-I kimberlite pipes // Journal of Mining Institute. 2022. Vol. 255. p. 327-336. DOI: 10.31897/PMI.2022.57
Geology
  • Date submitted
    2021-06-10
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Defects of diamond crystal structure as an indicator of crystallogenesis

Article preview

Based on the study of a representative collections of diamonds from diamondiferous formations of the Urals and deposits of the Arkhangelsk and Yakutian diamond provinces, we established patterns of zonal and sectoral distribution of crystal structure defects in crystals of different morphological types, identified the specifics of crystals formed at different stages of crystallogenesis and performed a comprehensive analysis of constitutional and population diversity of diamonds in different formations. We identified three stages in the crystallogenesis cycle, which correspond to normal and tangential mechanisms of growth and the stage of changing crystal habit shape. At the stage of changing crystal habit shape, insufficient carbon supersaturation obstructs normal growth mechanism, and the facets develop from existing surfaces. Due to the absent stage of growth layer nucleation, formation of new {111} surfaces occurs much faster compared to tangential growth mechanism. This effect allows to explain the absence of cuboids with highly transformed nitrogen defects at the A-B 1 stage: they have all been refaceted by a regenerative mechanism. Based on the revealed patterns, a model of diamond crystallogenesis was developed, which takes into account the regularities of growth evolution, thermal history and morphological diversity of the crystals. The model implies the possibility of a multiply repetitive crystallization cycle and the existence of an intermediate chamber; it allows to explain the sequence of changes in morphology and defect-impurity composition of crystals, as well as a combination of constitutional and population diversity of diamonds from different geological formations.

How to cite: Vasilev E.A. Defects of diamond crystal structure as an indicator of crystallogenesis // Journal of Mining Institute. 2021. Vol. 250. p. 481-491. DOI: 10.31897/PMI.2021.4.1
Oil and gas
  • Date submitted
    2020-11-11
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Oil and gas content of the understudied part in the northwest of the Timan-Pechora oil and gas province according to the results of basin modeling

Article preview

Comprehensive interpretation of the results for regional seismic operations and reinterpretation of archived seismic data, their correlation with the drilling data of more than 30 deep wells, including Severo-Novoborsk parametric well, made it possible to clarify the structural maps and thickness maps of all seismic facies structures developed in the territory and water area in the junction of the north of Izhma-Pechora depression and Malozemelsko-Kolguevsk monocline of Timan-Pechora oil and gas province. Data obtained were used at basin modeling in TemisFlow software in order to reconstruct the conditions of submersion and transformation of organic substance in potential oil and gas bearing formations. Modeling made it possible to get an idea of ​​the time and conditions for the formation of large zones of possible hydrocarbons accumulation, to establish space-time connections with possible sources of generation, to identify the directions of migration and on the basis of comparison with periods of intense generation, both from directly located within the operation area and outside them (taking into account possible migration), to identify zones of paleoaccumulation of oil and gas. Work performed made it possible to outline promising oil and gas accumulation zones and identify target objects for further exploration within the site with an ambiguous forecast and lack of industrial oil and gas potential.

How to cite: Prishchepa O.M., Borovikov I.S., Grokhotov E.I. Oil and gas content of the understudied part in the northwest of the Timan-Pechora oil and gas province according to the results of basin modeling // Journal of Mining Institute. 2021. Vol. 247. p. 66-81. DOI: 10.31897/PMI.2021.1.8
Oil and gas
  • Date submitted
    2019-06-28
  • Date accepted
    2019-09-03
  • Date published
    2019-12-24

Development of a drilling process control technique based on a comprehensive analysis of the criteria

Article preview

Compliance with drilling operations requirements is achieved by introducing advanced approaches to the management of the drilling process. Main requirement is to reduce the time and material costs for construction of the well. Increase in drilling speed is provided by rational selection of rock cutting tools and modes of its use. Development of a new generation of rock cutting tools is a complex process and requires systematic, integrated approach. In order for high costs of developing and manufacturing the tool to pay off without significantly increasing the cost of drilling, considerable attention should be paid to scientifically justified methods for its running. At well drilling using bottomhole telemetry systems with full computer support for the drilling process, there is a reasonable possibility of using a control technique based on objective results of the drilling process coming directly from the bottomhole of the well in real time. Use of a full factorial experiment is justified for processing data that affect drilling performance. Aim of the research is to develop a drilling process management technique based on a comprehensive analysis of criteria online. Objects of research: rock destruction mechanism during drilling; parameters affecting the process of well drilling; optimization of well drilling processes. The research used the following: experimental drilling with a diamond tool at the bench, method of a full factorial experiment, analytical studies. Article highlights the factors affecting the performance of a diamond rock cutting tool in the process of drilling a well, notes main criteria affecting the efficiency of the drilling process. It also describes mechanism of volumetric destruction, defines the conditions for the destruction of rock at various drilling modes and the dependence of the change in deepening per round on the parameters of the drilling modes. Technique of controlling the parameters of the drilling mode is considered, which allows determining indirectly the mode of rock destruction at the bottomhole of the well and choosing optimal values of the parameters for the drilling mode that correspond to the most favorable conditions.

How to cite: Neskoromnykh V.V., Popova M.S. Development of a drilling process control technique based on a comprehensive analysis of the criteria // Journal of Mining Institute. 2019. Vol. 240. p. 701-710. DOI: 10.31897/PMI.2019.6.701
Geology
  • Date submitted
    2017-11-16
  • Date accepted
    2018-01-16
  • Date published
    2018-04-24

Volume and surface distribution of radiation defect in natural diamonds

Article preview

In the following article, we have studied the variations of natural irradiation of diamond crystals. The natural diamonds in some cases show homogeneous green colour, caused by irradiation of the entire crystals volume. Radiation damage effects, produced by the low-radiation doses, are detected by the luminescence of the GR1 system. The high-radiation doses cause bluish hue, turning into a greenish colour, while the maximum level of volume irradiation produces the black crystals. The crystals with homogeneous volumetric black colour distribution were also studied. The major source of radiation in such cases may represent a local stream containing water rich in 222 Rn and its decay products. There is a review of the geological environment in which diamonds could be irradiated due to the decay of the 222 Rn containing in water.

How to cite: Vasilev E.A., Kozlov A.V., Petrovskii V.A. Volume and surface distribution of radiation defect in natural diamonds // Journal of Mining Institute. 2018. Vol. 230. p. 107-115. DOI: 10.25515/PMI.2018.2.107
Geology
  • Date submitted
    2016-11-11
  • Date accepted
    2017-01-21
  • Date published
    2017-04-14

Conducting lithospheric heterogeneities as a criterion of predictive assessment for promising diamond areas (on the example of Siberian kimberlite province)

Article preview

Results of magnetotelluric tests, carried out in Siberian kimberlite province, are examined from the viewpoint of structural control over location of kimberlite fields and bunches of kimberlite pipes. It is demonstrated that the key factors controlling occurrence of kimberlite magmatism are: deep systems of rift-driven fractures; areas of their intersection within high-ohmic blocks of Earth crust; conducting permeable areas, located at the intersections of deep faults. Various-rank objects of kimberlite magmatism are characterized by a certain combination of geoelectric heterogeneities, differing in resistance, lateral sizes and depth. The province is situated within the boundaries, limited by isolines 180-220 km of current asthenosphere; kimberlite areas – within the contours of high-resistance regional heterogeneities. Fields and bunches of kimberlite pipes are concentrated within boundaries of conducting subvertical zones. These factors can be used as criteria of predictive assessment for promising diamond areas of the ancient platforms.

How to cite: Pospeeva E.V. Conducting lithospheric heterogeneities as a criterion of predictive assessment for promising diamond areas (on the example of Siberian kimberlite province) // Journal of Mining Institute. 2017. Vol. 224. p. 170-177. DOI: 10.18454/PMI.2017.2.170
Geology
  • Date submitted
    2016-08-28
  • Date accepted
    2016-11-04
  • Date published
    2017-02-22

Deposits of gold-quartz formation in the Priamur province

Article preview

A description of gold-quartz formation deposits in the Priamur gold province is presented. Prevalence of gold-quartz deposits defines metallogenic profile of the province and presence of numerous rich placers. Deposits are attributed to frontal, middle and near-bottom parts of the ore pipe. Frontal part of the ore pipe contains a major part of the deposits. They are small and consist of scattered quartz, feldspar-quartz and carbonate-quartz veins. The ore is characterized by erratic percentage of gold, bonanzas can be found. Gold is free, ranging from fine to big grains and small nuggets. It is associated with arsenopyrite, galenite, sometimes with antimonite. Among trace elements can be copper, mercury, antimony and arsenic. Prevalence of frontal deposits in the province points to significant prospects of finding a rich deep mineralization in the middle part of ore pipe. Middle part of the ore pipe contains intermediate and small deposits. Ore bodies are often represented by veined and veinlet-disseminated zones, sometimes zones of metasomatites. For gold-quartz ores, free native gold can commonly be found, usually of fine and very fine grain size. Among ore minerals, apart from arsenopyrite, pyrite and galenite, scheelite is frequently observed.

How to cite: Stepanov V.A., Melnikov A.V. Deposits of gold-quartz formation in the Priamur province // Journal of Mining Institute. 2017. Vol. 223. p. 20-29. DOI: 10.18454/PMI.2017.1.20
Geology
  • Date submitted
    2016-09-08
  • Date accepted
    2016-11-18
  • Date published
    2017-02-22

Plume tectonics – myth or reality?

Article preview

The paper is dedicated to the role of mantle plumes in the formation of large igneous provinces. From different regions of the world facts are mentioned that contradict key points of plume tectonics. Closer attention is paid to classical volcanic provinces on Hawaiian islands and in Iceland, as well as to Siberian and Deccan Traps, oceanic plateau Ontong Java, Central Atlantic magmatic province, Alfa and Mendeleev Ridges in the Arctic Ocean. A conclusion is drawn that plumes are a special case of mantle-lithospheric flows, which according to deep geophysics are often located horizontally which leaves out their plume origin. Heated masses of mantle substance under young volcanic regions or rift zones of mid-ocean ridges do not emerge from the depth in the form of a straight column, but rather have arbitrary shapes, skewing to the sides and having outgrowths, offshoots, spherical bulges. Vertically rising flows of hot magma (plumes) are not a cause, but an effect of a lithospheric split and rise of magmatic substance due to decompression. A conclusion is made that it is unproductive to exaggerate the shapes and sizes of plumes and use them to explain all the diversity of endogenous processes.

How to cite: Daragan-Sushchov Y.I. Plume tectonics – myth or reality? // Journal of Mining Institute. 2017. Vol. 223. p. 3-8. DOI: 10.18454/PMI.2017.1.3
Geology
  • Date submitted
    2015-07-24
  • Date accepted
    2015-09-29
  • Date published
    2016-02-24

Geochemical features and prospects of ore content in black slates in Tajmyr-Severnaya zemlya gold formation

Article preview

Gold content, at least twice higher than the gold percentage abundance in Earth’s crust, has been discovered in a number of black slates formations in Tajmyr-Severnaya Zemlya gold province. The article shows the measurement data on organic carbon and ore elements concentrations in carbonaceous sediments, with pyrite, being their constituent, in the region. The dependence of ore elements availability, including gold, on sulphidisation degree in rocks has been identified in an ore bundle of Golyshevskaja strata. The comparison of gold concentrations in sampled monocrystals and pyrite aggregates has been carried out. It has been empirically supported that the content of gold, lead, molybdenum, cobalt, nickel and copper normally grows with the increase of sulphides quantity. Concentrations of chromium, manganese, tin, vanadium decrease respectively; however, titanium and zinc content remains unchanged.

How to cite: Evdokimov A.N., Fokin V.I., Shanurenko N.K. Geochemical features and prospects of ore content in black slates in Tajmyr-Severnaya zemlya gold formation // Journal of Mining Institute. 2016. Vol. 217. p. 13-23.
Development of oil and gas deposits
  • Date submitted
    2010-07-18
  • Date accepted
    2010-09-20
  • Date published
    2011-03-21

Analyses of technologcal characteristics of diamond drilling of hard rock

Article preview

The classification of different diamond bit types for drilling of jointed rock is offered. It is based on two predominant types of wear: mechanical and thermo physical. The facial and lateral on matrix body as well as cracks along the matrix body, spalling of the matrix sectors and normal wear are attributed to the mechanical type of wear. The proposed classification includes main types of wear at jointed rocks drilling and creates the grounds for the designing of rock-distributing tool more resistant to mechanical and thermo physical wear.

How to cite: Gorelikov V.G., Vu V.D. Analyses of technologcal characteristics of diamond drilling of hard rock // Journal of Mining Institute. 2011. Vol. 189. p. 179-181.