Submit an Article
Become a reviewer
Research article
Geology

Comparative analysis of nitrogen and carbon isotopic fractionation during diamond formation based on β-factor determination

Authors:
Dmitrii P. Krylov
About authors
  • Ph.D., Dr.Sci. Leading Researcher Institute of Precambrian Geology and Geochronology RAS ▪ Orcid
Date submitted:
2024-03-11
Date accepted:
2024-09-24
Online publication date:
2024-12-06

Abstract

First quantitative estimates are presented for nitrogen isotopic fractionation during diamond crystallization with respect to nitrogen-bearing fluid components using quantum-mechanical (DFT) calculations on the defect (with the substitutional nitrogen) diamond lattice. Provided equilibrium isotopic fractionation, 15 N/ 14 N ratio decreases within the sequence of compounds NH 4 + > N 2 > (diamond, NH 3 ) > CH 3 N > CN − > NH 2 . At temperatures of 1,100 to 1,200 °C fractionation among diamond and fluid N-compounds are estimated at –2.23, –0.77, 0.01, 0.44, 1.31 and 2.85 ‰ and substantially (over 1 ‰) exceed the already available estimates based on the modeling diamond C-N bonds by analogy with HCN or CN – molecules. Depending on the dominant nitrogen and carbon substance in the mineral-forming fluid, diamond formation can be accompanied by different isotope compositional trends, as expressed either by zoned patterns within individual diamond grains or by isotopic d 15 N vs d 13 C covariations during successive crystallization. Provided the dominance of NH 3 component (the reduced conditions, high pressures and the cold geotherm) nitrogen isotope fractionation between diamond and fluid does not exceed 0.1-0.2 ‰ and the isotope shifts at temperature ca. 1100 °C Δ 15 N << Δ 13 C. In nitrogen depleted reduced mantle fluids possible existence of compounds with low heavy isotope affinity at temperature of diamond formation (especially NH 2 ) implies high isotope fractionation between diamond and the fluid and hence, evolved Δ 15 N/Δ 13 C ratios. Oxidized fluids dominated by CO 2 or CO 3 coupled with N 2 component are characterized by close to zero Δ 15 N/Δ 13 C ratios as inferred by prevailing carbon isotope fractionation with respect to nitrogen isotopes, the latter change considerably with nitrogen distribution coefficient among diamond and the growth media.

Keywords:
diamond isotope fractionation factors 15N/14N 13C/12C
Online First

References

  1. Vasilev E., Zedgenizov D., Zamyatin D. et al. Cathodoluminescence of Diamond: Features of Visualization // Crystals. 2021. Vol. 11. Iss. 12. № 1522. DOI: 10.3390/cryst11121522
  2. Klepikov I.V., Vasilev E.A., Antonov A.V. Regeneration Growth as One of the Principal Stages of Diamond Crystallogenesis // Minerals. 2022. Vol. 12. Iss. 3. № 327. DOI: 10.3390/min12030327
  3. Губанов Н.В., Зедгенизов Д.А., Васильев Е.А., Наумов В.А. Новые данные о составе среды кристаллизации волокнистых алмазов из россыпей Западного Урала // Записки Горного института. 2023. Т. 263. С. 645-656.
  4. Zedgenizov D., Kagi H., Ohtani E. et al. Retrograde phases of former bridgmanite inclusions in superdeep diamonds // Lithos. 2020. Vol. 370-371. № 105659. DOI: 10.1016/j.lithos.2020.105659
  5. Пучков В.Н., Зедгенизов Д.А. Мантийная конвекция и алмазы // Литосфера. 2023. Т. 23. № 4. С. 476-490. DOI: 10.24930/1681-9004-2023-23-4-476-490
  6. Liu J., Wang W., Yang H. et al. Carbon isotopic signatures of super-deep diamonds mediated by iron redox chemistry // Geochemical Perspectives Letters. 2019. Vol. 10. P. 51-55. DOI: 10.7185/geochemlet.1915
  7. Cartigny P., Palot M., Thomassot E., Harris J.W. Diamond Formation: A Stable Isotope Perspective // Annual Review of Earth and Planetary Sciences. 2014. Vol. 42. P. 699-732. DOI: 10.1146/annurev-earth-042711-105259
  8. Cartigny P., Harris J.W., Javoy M. Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C–N concentrations in diamonds // Earth and Planetary Science Letters. 2001. Vol. 185. Iss. 1-2. P. 85-98. DOI: 10.1016/S0012-821X(00)00357-5
  9. Stachel T., Cartigny P., Chacko T., Pearson D.G. Carbon and Nitrogen in Mantle-Derived Diamonds // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. № 1. P. 809-875. DOI: 10.2138/rmg.2022.88.15
  10. Smit K.V., Timmerman S., Aulbach S. et al. Geochronology of Diamonds // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. № 1. P. 567-636. DOI: 10.2138/rmg.2022.88.11
  11. Cartigny P., Marty B. Nitrogen Isotopes and Mantle Geodynamics: The Emergence of Life and the Atmosphere–Crust–Mantle Connection // Elements. 2013. Vol. 9. № 5. P. 359-366. DOI: 10.2113/gselements.9.5.359
  12. Richet P., Bottinga Y., Javoy M. A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules // Annual Review of Earth and Planetary Sciences. 1977. Vol. 5. P. 65-110. DOI: 10.1146/annurev.ea.05.050177.000433
  13. Polyakov V.B., Kharlashina N.N. The use of heat capacity data to calculate carbon isotope fractionation between graphite, diamond, and carbon dioxide: a new approach // Geochimica et Cosmochimica Acta. 1995. Vol. 59. Iss. 12. P. 2561-2572. DOI: 10.1016/0016-7037(95)00150-6
  14. Horita J. Carbon isotope exchange in the system CO2-CH4 at elevated temperatures // Geochimica et Cosmochimica Acta. 2001. Vol. 65. Iss. 12. P. 1907-1919. DOI: 10.1016/S0016-7037(01)00570-1
  15. Bigeleisen J., Mayer M.G. Calculation of Equilibrium Constants for Isotopic Exchange Reactions // The Journal of Chemical Physics. 1947. Vol. 15. № 5. P. 261-267. DOI: 10.1063/1.1746492
  16. Erba A., Desmarais J.K., Casassa S. et al. CRYSTAL23: A Program for Computational Solid State Physics and Chemistry // Journal of Chemical Theory and Computation. 2023. Vol. 19. Iss. 20. P. 6891-6932. DOI: 10.1021/acs.jctc.2c00958
  17. Yuting Zheng, Chengming Li, Jinlong Liu et al. Diamond with nitrogen: states, control, and applications // Functional Diamond. 2021. Vol. 1. № 1. P. 63-82. DOI: 10.1080/26941112.2021.1877021
  18. Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F. et al. Effect of Nitrogen Impurity on Diamond Crystal Growth Processes // Crystal Growth & Design. 2010. Vol. 10. Iss. 7. P. 3169-3175. DOI: 10.1021/cg100322p
  19. Grimme S., Hansen A., Brandenburg J.G., Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods // Chemical Reviews. 2016. Vol. 116. Iss. 9. P. 5105-5154. DOI: 10.1021/acs.chemrev.5b00533
  20. Schauble E.A., Young E.D. Mass Dependence of Equilibrium Oxygen Isotope Fractionation in Carbonate, Nitrate, Oxide, Perchlorate, Phosphate, Silicate, and Sulfate Minerals // Reviews in Mineralogy and Geochemistry. 2021. Vol. 86. № 1. P. 137-178. DOI: 10.2138/rmg.2021.86.04
  21. Petts D.C., Chacko T., Stachel T. et al. A nitrogen isotope fractionation factor between diamond and its parental fluid derived from detailed SIMS analysis of a gem diamond and theoretical calculations // Chemical Geology. 2015. Vol. 410. P. 188-200. DOI: 10.1016/j.chemgeo.2015.06.020
  22. Polyakov V.B., Kharlashina N.N., Shiryaev A.A. Thermodynamic properties of 13C-diamond // Diamond and Related Materials. 1997. Vol. 6. Iss. 1. P. 172-177. DOI: 10.1016/S0925-9635(96)00587-0
  23. Bottinga Y. Carbon isotope fractionation between graphite, diamond and carbon dioxide // Earth and Planetary Science Letters. 1968. Vol. 5. P. 301-307. DOI: 10.1016/S0012-821X(68)80056-1
  24. Shiryaev A.A., Polyakov V.B., Rols S. et al. Inelastic neutron scattering: a novel approach towards determination of equilibrium isotopic fractionation factors. Size effects on heat capacity and beta-factor of diamond // Physical Chemistry Chemical Physics. 2020. Vol. 22. Iss. 23. P. 13261-13270. DOI: 10.1039/d0cp02032j
  25. Polyakov V.B., Horita J. Equilibrium carbon isotope fractionation factors of hydrocarbons: Semi-empirical force-field method // Chemical Geology. 2021. Vol. 559. № 119948. DOI: 10.1016/j.chemgeo.2020.119948
  26. Kueter N., Schmidt M.W., Lilley M.D., Bernasconi S.M. Experimental determination of equilibrium CH4–CO2–CO carbon isotope fractionation factors (300-1200 °C) // Earth and Planetary Science Letters. 2019. Vol. 506. P. 64-75. DOI: 10.1016/j.epsl.2018.10.021
  27. Horita J., Wesolowski D.J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature // Geochimica et Cosmochimica Acta. 1994. Vol. 58. Iss. 16. P. 3425-3437. DOI: 10.1016/0016-7037(94)90096-5
  28. Поляков В.Б., Харлашина Н.Н. Влияние давления на фракционирование изотопов // Доклады Академии наук СССР. 1989. Т. 306. № 2. С. 390-395.
  29. Kunc K., Loa I., Syassen K. Equation of state and phonon frequency calculations of diamond at high pressures // Physical Review B. 2003. Vol. 68. Iss. 9. № 094107. DOI: 10.1103/PhysRevB.68.094107
  30. Reutsky V.N., Kowalski P.M., Palyanov Y.N. et al. Experimental and Theoretical Evidence for Surface-Induced Carbon and Nitrogen Fractionation during Diamond Crystallization at High Temperatures and High Pressures // Crystals. 2017. Vol. 7. Iss. 7. № 190. DOI: 10.3390/cryst7070190
  31. Watson E.B. A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals // Geochimica et Cosmochimica Acta. 2004. Vol. 68. Iss. 7. P. 1473-1488. DOI: 10.1016/j.gca.2003.10.003
  32. De La Pierre M., Bruno M., Manfredotti C. et al. The (100), (111) and (110) surfaces of diamond: an ab initio B3LYP study // Molecular Physics. 2014. Vol. 112. Iss. 7. P. 1030-1039. DOI: 10.1080/00268976.2013.829250
  33. Smart K.A., Chacko T., Stachel T. et al. Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ13C–N study of eclogite-hosted diamonds from the Jericho kimberlite // Geochimica et Cosmochimica Acta. 2011. Vol. 75. Iss. 20. P. 6027-6047. DOI: 10.1016/j.gca.2011.07.028
  34. Smit K.V., Stachel T., Luth R.W., Stern R.A. Evaluating mechanisms for eclogitic diamond growth: An example from Zimmi Neoproterozoic diamonds (West African craton) // Chemical Geology. 2019. Vol. 520. P. 21-32. DOI: 10.1016/j.chemgeo.2019.04.014
  35. Thomassot E., Cartigny P., Harris J.W., Viljoen K.S. Methane-related diamond crystallization in the Earth’s mantle: Stable isotope evidences from a single diamond-bearing xenolith // Earth and Planetary Science Letters. 2007. Vol. 257. Iss. 3-4. P. 362-371. DOI: 10.1016/j.epsl.2007.02.020
  36. Palot M., Pearson D.G., Stern R.A. et al. Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea) // Geochimica et Cosmochimica Acta. 2014. Vol. 139. P. 26-46. DOI: 10.1016/j.gca.2014.04.027
  37. Curtolo A., Novella D., Logvinova A. et al. Petrology and geochemistry of Canadian diamonds: An up-to-date review // Earth-Science Reviews. 2023. Vol. 246. № 104588. DOI: 10.1016/j.earscirev.2023.104588
  38. Yuan Li, Keppler H. Nitrogen speciation in mantle and crustal fluids // Geochimica et Cosmochimica Acta. 2014. Vol. 129. P. 13-32. DOI: 10.1016/j.gca.2013.12.031
  39. Сокол А.Г., Томиленко А.А., Бульбак Т.А. и др. Состав флюида восстановленной мантии по экспериментальным данным и результатам изучения флюидных включений в алмазах // Геология и геофизика. 2020. Т. 61. № 5-6. С. 810-825. DOI: 10.15372/GiG2020103

Similar articles

Peculiarities of formation, isomorphism and geochemistry of trace elements of sphalerite and wurtzite unusual varieties from the Goniatite occurrence (Pai-Khoi Ridge, Nenets Autonomous District)
2024 Aleksandr B. Makeyev, Ilya V. Vikentyev, Elena V. Kovalchuk, Vera D. Abramova, Vsevolod Yu. Prokofyev
Evaluation of the effectiveness of neutralization and purification of acidic waters from metals with ash when using alternative fuels from municipal waste
2024 Polina A. Kharko, Aleksandr S. Danilov
Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons
2024 Ekaterina V. Kusochkova, Ilya M. Indrupskii, Dmitrii V. Surnachev, Yuliya V. Alekseeva, Aleksandr N. Drozdov
Correction to “Determination of the grid impedance in power consumption modes with harmonics”
2024 Aleksandr N. Skamyin, Vasiliy S. Dobush, Mohd Hatta Jopri
Analysis of the assessment of the prospects for the burial of CO2 in unexplored aquifer complexes on the example of a facility in the Perm Region
2024 Riazi Masoud, Pavel Yu. Ilyushin, Tatyana R. Baldina, Nadezhda S. Sannikova, Anton V. Kozlov, Kirill A. Ravelev
Improving the procedure for group expert assessment in the analysis of professional risks in fuel and energy companies
2024 Ekaterina I. Karchina, Mariya V. Ivanova, Аlla T. Volokhina, Elena V. Glebova, Aleksei E. Vikhrov