Comparative analysis of nitrogen and carbon isotopic fractionation during diamond formation based on β-factor determination
- Ph.D., Dr.Sci. Leading Researcher Institute of Precambrian Geology and Geochronology RAS ▪ Orcid
Abstract
First quantitative estimates are presented for nitrogen isotopic fractionation during diamond crystallization with respect to nitrogen-bearing fluid components using quantum-mechanical (DFT) calculations on the defect (with the substitutional nitrogen) diamond lattice. Provided equilibrium isotopic fractionation, 15 N/ 14 N ratio decreases within the sequence of compounds NH 4 + > N 2 > (diamond, NH 3 ) > CH 3 N > CN − > NH 2 . At temperatures of 1,100 to 1,200 °C fractionation among diamond and fluid N-compounds are estimated at –2.23, –0.77, 0.01, 0.44, 1.31 and 2.85 ‰ and substantially (over 1 ‰) exceed the already available estimates based on the modeling diamond C-N bonds by analogy with HCN or CN – molecules. Depending on the dominant nitrogen and carbon substance in the mineral-forming fluid, diamond formation can be accompanied by different isotope compositional trends, as expressed either by zoned patterns within individual diamond grains or by isotopic d 15 N vs d 13 C covariations during successive crystallization. Provided the dominance of NH 3 component (the reduced conditions, high pressures and the cold geotherm) nitrogen isotope fractionation between diamond and fluid does not exceed 0.1-0.2 ‰ and the isotope shifts at temperature ca. 1100 °C Δ 15 N << Δ 13 C. In nitrogen depleted reduced mantle fluids possible existence of compounds with low heavy isotope affinity at temperature of diamond formation (especially NH 2 ) implies high isotope fractionation between diamond and the fluid and hence, evolved Δ 15 N/Δ 13 C ratios. Oxidized fluids dominated by CO 2 or CO 3 coupled with N 2 component are characterized by close to zero Δ 15 N/Δ 13 C ratios as inferred by prevailing carbon isotope fractionation with respect to nitrogen isotopes, the latter change considerably with nitrogen distribution coefficient among diamond and the growth media.
References
- Vasilev E., Zedgenizov D., Zamyatin D. et al. Cathodoluminescence of Diamond: Features of Visualization // Crystals. 2021. Vol. 11. Iss. 12. № 1522. DOI: 10.3390/cryst11121522
- Klepikov I.V., Vasilev E.A., Antonov A.V. Regeneration Growth as One of the Principal Stages of Diamond Crystallogenesis // Minerals. 2022. Vol. 12. Iss. 3. № 327. DOI: 10.3390/min12030327
- Губанов Н.В., Зедгенизов Д.А., Васильев Е.А., Наумов В.А. Новые данные о составе среды кристаллизации волокнистых алмазов из россыпей Западного Урала // Записки Горного института. 2023. Т. 263. С. 645-656.
- Zedgenizov D., Kagi H., Ohtani E. et al. Retrograde phases of former bridgmanite inclusions in superdeep diamonds // Lithos. 2020. Vol. 370-371. № 105659. DOI: 10.1016/j.lithos.2020.105659
- Пучков В.Н., Зедгенизов Д.А. Мантийная конвекция и алмазы // Литосфера. 2023. Т. 23. № 4. С. 476-490. DOI: 10.24930/1681-9004-2023-23-4-476-490
- Liu J., Wang W., Yang H. et al. Carbon isotopic signatures of super-deep diamonds mediated by iron redox chemistry // Geochemical Perspectives Letters. 2019. Vol. 10. P. 51-55. DOI: 10.7185/geochemlet.1915
- Cartigny P., Palot M., Thomassot E., Harris J.W. Diamond Formation: A Stable Isotope Perspective // Annual Review of Earth and Planetary Sciences. 2014. Vol. 42. P. 699-732. DOI: 10.1146/annurev-earth-042711-105259
- Cartigny P., Harris J.W., Javoy M. Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C–N concentrations in diamonds // Earth and Planetary Science Letters. 2001. Vol. 185. Iss. 1-2. P. 85-98. DOI: 10.1016/S0012-821X(00)00357-5
- Stachel T., Cartigny P., Chacko T., Pearson D.G. Carbon and Nitrogen in Mantle-Derived Diamonds // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. № 1. P. 809-875. DOI: 10.2138/rmg.2022.88.15
- Smit K.V., Timmerman S., Aulbach S. et al. Geochronology of Diamonds // Reviews in Mineralogy and Geochemistry. 2022. Vol. 88. № 1. P. 567-636. DOI: 10.2138/rmg.2022.88.11
- Cartigny P., Marty B. Nitrogen Isotopes and Mantle Geodynamics: The Emergence of Life and the Atmosphere–Crust–Mantle Connection // Elements. 2013. Vol. 9. № 5. P. 359-366. DOI: 10.2113/gselements.9.5.359
- Richet P., Bottinga Y., Javoy M. A Review of Hydrogen, Carbon, Nitrogen, Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous Molecules // Annual Review of Earth and Planetary Sciences. 1977. Vol. 5. P. 65-110. DOI: 10.1146/annurev.ea.05.050177.000433
- Polyakov V.B., Kharlashina N.N. The use of heat capacity data to calculate carbon isotope fractionation between graphite, diamond, and carbon dioxide: a new approach // Geochimica et Cosmochimica Acta. 1995. Vol. 59. Iss. 12. P. 2561-2572. DOI: 10.1016/0016-7037(95)00150-6
- Horita J. Carbon isotope exchange in the system CO2-CH4 at elevated temperatures // Geochimica et Cosmochimica Acta. 2001. Vol. 65. Iss. 12. P. 1907-1919. DOI: 10.1016/S0016-7037(01)00570-1
- Bigeleisen J., Mayer M.G. Calculation of Equilibrium Constants for Isotopic Exchange Reactions // The Journal of Chemical Physics. 1947. Vol. 15. № 5. P. 261-267. DOI: 10.1063/1.1746492
- Erba A., Desmarais J.K., Casassa S. et al. CRYSTAL23: A Program for Computational Solid State Physics and Chemistry // Journal of Chemical Theory and Computation. 2023. Vol. 19. Iss. 20. P. 6891-6932. DOI: 10.1021/acs.jctc.2c00958
- Yuting Zheng, Chengming Li, Jinlong Liu et al. Diamond with nitrogen: states, control, and applications // Functional Diamond. 2021. Vol. 1. № 1. P. 63-82. DOI: 10.1080/26941112.2021.1877021
- Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F. et al. Effect of Nitrogen Impurity on Diamond Crystal Growth Processes // Crystal Growth & Design. 2010. Vol. 10. Iss. 7. P. 3169-3175. DOI: 10.1021/cg100322p
- Grimme S., Hansen A., Brandenburg J.G., Bannwarth C. Dispersion-Corrected Mean-Field Electronic Structure Methods // Chemical Reviews. 2016. Vol. 116. Iss. 9. P. 5105-5154. DOI: 10.1021/acs.chemrev.5b00533
- Schauble E.A., Young E.D. Mass Dependence of Equilibrium Oxygen Isotope Fractionation in Carbonate, Nitrate, Oxide, Perchlorate, Phosphate, Silicate, and Sulfate Minerals // Reviews in Mineralogy and Geochemistry. 2021. Vol. 86. № 1. P. 137-178. DOI: 10.2138/rmg.2021.86.04
- Petts D.C., Chacko T., Stachel T. et al. A nitrogen isotope fractionation factor between diamond and its parental fluid derived from detailed SIMS analysis of a gem diamond and theoretical calculations // Chemical Geology. 2015. Vol. 410. P. 188-200. DOI: 10.1016/j.chemgeo.2015.06.020
- Polyakov V.B., Kharlashina N.N., Shiryaev A.A. Thermodynamic properties of 13C-diamond // Diamond and Related Materials. 1997. Vol. 6. Iss. 1. P. 172-177. DOI: 10.1016/S0925-9635(96)00587-0
- Bottinga Y. Carbon isotope fractionation between graphite, diamond and carbon dioxide // Earth and Planetary Science Letters. 1968. Vol. 5. P. 301-307. DOI: 10.1016/S0012-821X(68)80056-1
- Shiryaev A.A., Polyakov V.B., Rols S. et al. Inelastic neutron scattering: a novel approach towards determination of equilibrium isotopic fractionation factors. Size effects on heat capacity and beta-factor of diamond // Physical Chemistry Chemical Physics. 2020. Vol. 22. Iss. 23. P. 13261-13270. DOI: 10.1039/d0cp02032j
- Polyakov V.B., Horita J. Equilibrium carbon isotope fractionation factors of hydrocarbons: Semi-empirical force-field method // Chemical Geology. 2021. Vol. 559. № 119948. DOI: 10.1016/j.chemgeo.2020.119948
- Kueter N., Schmidt M.W., Lilley M.D., Bernasconi S.M. Experimental determination of equilibrium CH4–CO2–CO carbon isotope fractionation factors (300-1200 °C) // Earth and Planetary Science Letters. 2019. Vol. 506. P. 64-75. DOI: 10.1016/j.epsl.2018.10.021
- Horita J., Wesolowski D.J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature // Geochimica et Cosmochimica Acta. 1994. Vol. 58. Iss. 16. P. 3425-3437. DOI: 10.1016/0016-7037(94)90096-5
- Поляков В.Б., Харлашина Н.Н. Влияние давления на фракционирование изотопов // Доклады Академии наук СССР. 1989. Т. 306. № 2. С. 390-395.
- Kunc K., Loa I., Syassen K. Equation of state and phonon frequency calculations of diamond at high pressures // Physical Review B. 2003. Vol. 68. Iss. 9. № 094107. DOI: 10.1103/PhysRevB.68.094107
- Reutsky V.N., Kowalski P.M., Palyanov Y.N. et al. Experimental and Theoretical Evidence for Surface-Induced Carbon and Nitrogen Fractionation during Diamond Crystallization at High Temperatures and High Pressures // Crystals. 2017. Vol. 7. Iss. 7. № 190. DOI: 10.3390/cryst7070190
- Watson E.B. A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals // Geochimica et Cosmochimica Acta. 2004. Vol. 68. Iss. 7. P. 1473-1488. DOI: 10.1016/j.gca.2003.10.003
- De La Pierre M., Bruno M., Manfredotti C. et al. The (100), (111) and (110) surfaces of diamond: an ab initio B3LYP study // Molecular Physics. 2014. Vol. 112. Iss. 7. P. 1030-1039. DOI: 10.1080/00268976.2013.829250
- Smart K.A., Chacko T., Stachel T. et al. Diamond growth from oxidized carbon sources beneath the Northern Slave Craton, Canada: A δ13C–N study of eclogite-hosted diamonds from the Jericho kimberlite // Geochimica et Cosmochimica Acta. 2011. Vol. 75. Iss. 20. P. 6027-6047. DOI: 10.1016/j.gca.2011.07.028
- Smit K.V., Stachel T., Luth R.W., Stern R.A. Evaluating mechanisms for eclogitic diamond growth: An example from Zimmi Neoproterozoic diamonds (West African craton) // Chemical Geology. 2019. Vol. 520. P. 21-32. DOI: 10.1016/j.chemgeo.2019.04.014
- Thomassot E., Cartigny P., Harris J.W., Viljoen K.S. Methane-related diamond crystallization in the Earth’s mantle: Stable isotope evidences from a single diamond-bearing xenolith // Earth and Planetary Science Letters. 2007. Vol. 257. Iss. 3-4. P. 362-371. DOI: 10.1016/j.epsl.2007.02.020
- Palot M., Pearson D.G., Stern R.A. et al. Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: Carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea) // Geochimica et Cosmochimica Acta. 2014. Vol. 139. P. 26-46. DOI: 10.1016/j.gca.2014.04.027
- Curtolo A., Novella D., Logvinova A. et al. Petrology and geochemistry of Canadian diamonds: An up-to-date review // Earth-Science Reviews. 2023. Vol. 246. № 104588. DOI: 10.1016/j.earscirev.2023.104588
- Yuan Li, Keppler H. Nitrogen speciation in mantle and crustal fluids // Geochimica et Cosmochimica Acta. 2014. Vol. 129. P. 13-32. DOI: 10.1016/j.gca.2013.12.031
- Сокол А.Г., Томиленко А.А., Бульбак Т.А. и др. Состав флюида восстановленной мантии по экспериментальным данным и результатам изучения флюидных включений в алмазах // Геология и геофизика. 2020. Т. 61. № 5-6. С. 810-825. DOI: 10.15372/GiG2020103