Submit an Article
Become a reviewer

Search articles for by keywords:
технология открытой разработки

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-07
  • Date accepted
    2023-09-20
  • Date published
    2024-02-29

Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching

Article preview

One of the techniques used in extracting gold in small-scale gold mining is mercury amalgamation. However, the use of mercury presents significant health and environmental hazards, as well as suboptimal efficiency in gold extraction. This study explores the possibility of the use of rice husk as a prototype adsorbent for mercury removal from its leaching in mining environments. To support the analysis, the rice husk adsorbent was characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, atomic absorption spectrophotometers and Brunauer − Emmett − Teller analysis. To investigate the removal of Hg from aqueous solutions, batch adsorption experiments were conducted, and the efficiency was optimized under various parameters such as contact time, rice husk dosage, and initial concentration of mercury. Kinetic and isotherm investigations were also carried out to gain a better understanding of the adsorption properties. The kinetic adsorption was analyzed using the pseudo-first-order and pseudo-second-order. Furthermore, the isotherm adsorption was analyzed using ten adsorption isotherm models (i.e., Langmuir, Freundlich, Temkin, Dubinin – Radushkevich, Flory – Huggins, Fowler – Guggenheim, Hill – de Boer, Jovanovic, Harkin – Jura, and Halsey). The amount of mercury absorption increased with increasing contact time, adsorbent mass, and initial concentration of mercury. The pseudo-second-order kinetic model is the best model that can be applied to describe the adsorption process. Analysis of the adsorption results obtained shows that the adsorption pattern is explained through the formation of a monolayer without any lateral interaction between the adsorbate and adsorbent. In addition, the formation of multilayers due to inhomogeneous pore distribution also occurs which causes a pore filling mechanism. We found that the isotherm phenomena are near the Jovanovic models with the maximum adsorption capacity) of rice husk found to be 107.299 mg/g. As a result, rice husk could be a promising option for wastewater treatment due to its fast and efficient removal capacity, as well as its affordability and eco-friendliness. The predicted thermodynamic studies using the Flory – Huggins isotherm model show that the adsorption process is endothermic, spontaneous, and physisorption. The impact shows that the utilization of rice husk can be used and fit for the current issues in the sustainable development goals (SDGs).

How to cite: Nandiyanto A.B.D., Nugraha W.C., Yustia I., Ragadhita R., Fiandini M., Meirinawati H., Wulan D.R. Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching // Journal of Mining Institute. 2024. Vol. 265 . p. 104-120. EDN BZVWDO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-17
  • Date accepted
    2023-02-13
  • Date published
    2023-04-25

Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste

Article preview

Due to the constantly deteriorating environmental situation in the regions with mining enterprises, the article considers the topical issue of disposing the maximum possible volume of waste from the mining and processing of low-grade ferrous ores through the creation of an effective underground environmental geotechnology. Traditional procedure with descending mining of reserves with a caving system does not allow waste to be disposed of in a gob. The idea is to use geotechnology based on the ascending order of mining the ore body, room excavation, leaving truncated pillars, and staggered arrangement of adjacent rooms in height, which makes it possible to form containers for waste disposal in the form of a cementless backfill. The main characteristics of the proposed procedure are investigated and compared with the traditional procedure of low-grade iron ores mining. It was established that from the point of view of the complete extraction of reserves and the unit costs for the preparatory-development operations, the processes are comparable, while in terms of the mining quality, the proposed option is much more efficient. Evaluation of environmental geotechnology by the criterion of waste disposal, performed according to the proposed methodology, showed that the combination of these technical solutions ensures the placement in the formed gob from 80 to 140% of all waste generated during the mining and beneficiation of low-grade iron ores.

How to cite: Sokolov I.V., Antipin Y.G., Rozhkov A.A., Solomein Y.M. Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste // Journal of Mining Institute. 2023. Vol. 260 . p. 289-296. DOI: 10.31897/PMI.2023.21
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-09-15
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production

Article preview

The oil and gas industry has been an integral and fundamental sector of the Russian economy for the past few years. The main problems of this industry have traditionally been the deteriorating structure of oil reserves; depreciation of main assets; slowdown and decline in oil production. Recently these have been complicated by a number of new negative trends related to underinvestment, limited financial resources, deteriorating access to new equipment and technologies. The task of the research is to make a comprehensive assessment of hydraulic fracturing technology during well construction and to increase the recovery and intensification of hydrocarbons production. In this research, modeling techniques were used to assess the productivity of each fracture. Geophysical methods (seismic survey) were used to determine the geomechanical properties of the formation. Comprehensive assessment of hydraulic fracturing technology during well construction was carried out, which allowed to increase vertical permeability and unite disparate parts of the reservoir in practice, and to determine the development efficiency of the hydrocarbon field.

How to cite: Bosikov I.I., Klyuev R.V., Мayer А.V. Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production // Journal of Mining Institute. 2022. Vol. 258 . p. 1018-1025. DOI: 10.31897/PMI.2022.98
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-31
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field

Article preview

Issues related to the influence of reservoir properties uncertainty on oil field development modelling are considered. To increase the reliability of geological-hydrodynamic mathematical model in the course of multivariate matching, the influence of reservoir properties uncertainty on the design technological parameters of development was estimated, and their mutual influence was determined. The optimal conditions for the development of the deposit were determined, and multivariate forecasts were made. The described approach of history matching and calculation of the forecast of technological development indicators allows to obtain a more reliable and a less subjective history match as well as to increase the reliability of long-term and short-term forecasts.

How to cite: Kochnev A.A., Kozyrev N.D., Krivoshchekov S.N. Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field // Journal of Mining Institute. 2022. Vol. 258 . p. 1026-1037. DOI: 10.31897/PMI.2022.102
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-04-12
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)

Article preview

Modern field operation conditions are characterized by a decline in gas production due to the depletion of its reserves, a decrease in reservoir pressure, an increase in water cut, as well as due to the depreciation of the operating well stock. These problems are especially specific at the late stage of development of the Cenomanian deposits of Western Siberia fields, where the anomaly factor below 0.2 prevails, while gas-bearing formations are represented mainly by complex reservoirs with high-permeability areas. When killing such wells, the classical reduction of overbalance by reducing the density of the process fluid does not provide the necessary efficiency, which requires the search for new technical and technological solutions. In order to prevent the destruction of the reservoir and preserve its reservoir properties during repair work in wells with abnormally low reservoir pressure, AO “SevKavNIPIgaz” developed compositions of special process fluids. A quantitative description of the process of blocking the bottomhole formation zone is proposed by means of mathematical modeling of injection of a gel-forming solution into a productive horizon. The well killing technology includes three main stages of work: leveling the injectivity profile of the productive strata using three-phase foam, pumping the blocking composition and its displacement with the creation of a calculated repression. Solutions obtained on the basis of a mathematical model allow optimizing technological parameters to minimize negative consequences in the well killing process.

How to cite: Gasumov R.А., Minchenko Y.S., Gasumov E.R. Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits) // Journal of Mining Institute. 2022. Vol. 258 . p. 895-905. DOI: 10.31897/PMI.2022.99
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-05
  • Date accepted
    2022-07-21
  • Date published
    2022-11-10

Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines)

Article preview

It is shown that the creation of the variants of resource-saving systems for the development of long-column mining is one of the main directions for improving the technological schemes for mining operations in the mines of the Kuang Nin coal basin. They provide a reduction in coal losses in the inter-column pillars and the cost of maintaining preliminary workings fixed with anchorage. The implementation of these directions is difficult (and in some cases practically impossible) when tight rocks are lying over the coal seam, prone to significant hovering in the developed space. In the Quang Ninh basin, 9-10 % of the workings are anchored, the operational losses of coal reach 30 % or more; up to 50 % of the workings are re-anchored annually. It is concluded that the real conditions for reducing coal losses and the effective use of anchor support as the main support of reusable preliminary workings are created when implementing the idea put forward at the St. Petersburg Mining University: leaving the coal pillar of increased width between the reused mine working and the developed space and its subsequent development on the same line with the stoping face simultaneously with the reclamation of the reused mine working.

How to cite: Zubov V.P., Phuc L.Q. Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines) // Journal of Mining Institute. 2022. Vol. 257 . p. 795-806. DOI: 10.31897/PMI.2022.72
Metallurgy and concentration
  • Date submitted
    2022-06-27
  • Date accepted
    2022-09-09
  • Date published
    2022-11-03

Study of the composition and properties of the beneficiation tailings of currently produced loparite ores

Article preview

The increase in demand for rare earth metals and the depletion of natural resources inevitably causes the need to search for alternative unconventional sources of rare metal raw materials. The article presents the results of a study of the composition and properties of the beneficiation tailings of currently produced loparite ores. Sieve, mineralogical, chemical, and radionuclide analyses were carried out. The average content of loparite in tailings was determined. Using scanning electron microscopy, minerals-concentrators of rare earth elements in the loparite ore beneficiation tailings were diagnosed. The distribution of valuable components and thorium in the tailings was determined depending on the particle size class. The radium-thorium nature of radioactivity was established, the values of the effective specific activity of the samples were calculated. We concluded that it is necessary to develop an integrated technology for processing the beneficiation tailings of loparite ore, due to the complex and heterogeneous mineral and chemical composition of the tailings material.

How to cite: Maksimova V.V., Krasavtseva E.A., Savchenko Y.E., Ikkonen P.V., Elizarova I.R., Masloboev V.A., Makarov D.V. Study of the composition and properties of the beneficiation tailings of currently produced loparite ores // Journal of Mining Institute. 2022. Vol. 256 . p. 642-650. DOI: 10.31897/PMI.2022.88
Metallurgy and concentration
  • Date submitted
    2022-04-20
  • Date accepted
    2022-07-21
  • Date published
    2022-11-03

Iron ore beneficiation technologies in Russia and ways to improve their efficiency

Article preview

Increasing the efficiency of crushing circuits is associated with a decrease in the particle size of finely crushed ore and the use of dry magnetic separation of crushed ore. Reducing grinding costs is achieved by using drum mills jointly with mills of other designs. The use of automation systems, slurry demagnetization, technologies with staged concentrate separation, and beneficiation and fine screening in a closed grinding cycle lead to a reduction in grinding costs. The main industrial technology for improving the quality of concentrate is its additional beneficiation using regrinding, fine screening, flotation, and magnetic-gravity separators. Increasing the integrated use of iron ore raw materials is associated with an increase in the yield of iron concentrate and the production of hematite concentrate during the beneficiation of hematite-magnetite ores and ilmenite concentrate during the beneficiation of titanomagnetite ores. Incremented concentrate yield is possible by using magnetic separators with an increased magnetic induction up to 0.25-0.5 T in the first stages of beneficiation. To obtain hematite and ilmenite concentrates, combined technologies can be used, including fine screening, high-gradient magnetic, gravity, flotation, and electrical separation.

How to cite: Pelevin A.E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency // Journal of Mining Institute. 2022. Vol. 256 . p. 579-592. DOI: 10.31897/PMI.2022.61
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-27
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing

Article preview

The technogenic impact of mining on the environment is analyzed and the transition to geotechnology with stowing to reduce the impact of mining operations is proposed. The results of the research work devoted to the justification of parameters of the development of salt deposits with stowing and the definition of the influence of stowing on the dynamics of deformation of the underworked rock massif are presented. The relevance of research aimed at creating a safe and efficient technology for the transition from systems with natural maintenance of stoping space to systems with stowing has been substantiated. The results of studies on qualitative and quantitative assessment of the state of the rock massif (by the finite element method using FLAC3D software), worked out by combines, are given and the dynamics of the impact of mining operations on the rock mass and the change in the maximum stresses during the hardening of the stowing in the chambers are revealed. The numerical modeling method is used to analyze the conditions of change in the state of the underworked rock mass, to establish the mechanisms of its deformation at various stages of development. It is recommended to use this approach for geotechnical assessment of the rock mass state in conditions of using development systems of different classes.

How to cite: Rybak J., Khayrutdinov M.M., Kuziev D.A., Kongar-Syuryun C.B., Babyr N.V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing // Journal of Mining Institute. 2022. Vol. 253 . p. 61-70. DOI: 10.31897/PMI.2022.2
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-24
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

A probabilistic approach to the dynamic cut-off grade assessment

Article preview

Cut-off grade is an important conditioning parameter that determines the quantity and quality of recoverable reserves and development efficiency. Today, Russian mining companies operate with certified quality requirements. By setting permanent quality requirements, the government seeks to prevent depletion of reserves, reduced production during periods of falling prices, and decreased budget revenues, expressing the interests of all members of society. But to what extent do the permanent quality requirements protect the interests of the state? The answer to this question is ambiguous and does not lie on the surface. The State Commission for Reserves and domestic researchers are working to find a rational solution to the problem of quality requirements. One solution is dynamic quality requirements. The effectiveness of their application has been proven for individual mining companies, but it is incorrect to transfer these conclusions to the entire mineral resource base of the country. This article presents a new approach to determining the dynamic cut-off grade, which varies depending on the price of minerals. The dynamic cut-off grade is proposed to be determined based on the indicators of constant requirements to the quality of exploration work, using the maximum allowable costs in the region. The approach allows to calculate the effect of the introduction of dynamic cut-off grade in the practice of subsurface use for the state (in the form of the amount of taxes received) and for subsoil users (in the form of the amount of income). For a group of gold-bearing deposits with open-pit mining method, it was established that the development of reserves using dynamic values of the cut-off grade in periods of price changes ensures compliance with the interests of the state and subsoil users.

How to cite: Bragin V.I., Kharitonova M.Y., Matsko N.A. A probabilistic approach to the dynamic cut-off grade assessment // Journal of Mining Institute. 2021. Vol. 251 . p. 617-625. DOI: 10.31897/PMI.2021.5.1
Mining
  • Date submitted
    2021-06-15
  • Date accepted
    2021-08-27
  • Date published
    2021-10-21

Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion

Article preview

Spontaneous combustion of coal remains an important problem for coal mines, which can lead to an explosion of methane and coal dust. Accidents associated with spontaneous combustion of coal can cause significant economic losses to coal mining companies, as well as entail social damage – injuries and loss of life. Accidents are known at the Kuzbass mines, which occurred as a result of negligent attitude to the danger of spontaneous combustion of coal, the victims of which were dozens of people. The analysis of emergency situations associated with spontaneous combustion of coal shows that the existing wide range of means of preventing endogenous fires does not provide complete safety when working out coal seams prone to spontaneous combustion, therefore, spontaneous combustion places continue to occur in mines. The consequences that may arise as a result of a methane explosion initiated by a self-ignition place indicate the need to improve the used technologies. The purpose of the work is to determine the impact of modern technological solutions used in functioning mines during underground mining of flat-lying coal seams prone to spontaneous combustion, and to develop new solutions that reduce endogenous fire hazard. Conclusions on the influence of leaving coal pillars in the developed space, isolated air removal from the stoping face through the developed space, the length of the stoping face and the excavation pillar, and other factors on the danger of the formation of spontaneous combustion places are presented. Conclusions about the possibility of using modern technological solutions in future are also drawn.

How to cite: Zubov V.P., Golubev D.D. Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion // Journal of Mining Institute. 2021. Vol. 250 . p. 534-541. DOI: 10.31897/PMI.2021.4.6
Metallurgy and concentration
  • Date submitted
    2020-07-29
  • Date accepted
    2021-03-30
  • Date published
    2021-06-24

Model of baddeleyite recovery from dump products of an apatite-baddeleyite processing plant using a CVD6 concentrator

Article preview

The paper is devoted to developing a model of baddeleyite recovery from dump products of an apatite-baddeleyite processing plant using centrifugal concentrators. The relevance of the work arises from the acquisition of new knowledge on the optimization of technological parameters of centrifugal concentrators using Knelson CVD (continuous variable discharge) technology – in particular, setting the frequency of valve opening and the duration of valves remaining open. The purpose of the research was to assess the applicability of CVD technology in the treatment of various dump products of the processing plant and to build a model of dependencies between the concentrate and tailings yields and the adjustable parameters, which will allow to perform preliminary calculations of the efficiency of implementing this technology at processing plants. The research objects are middling and main separation tailings of the coarse-grained stream and combined product of main and recleaner separation tailings of the fine-grained stream. The study uses general methods of mathematical statistics: methods of regression analysis, aimed at building statistically significant models, describing dependence of a particular variable on a set of regressors; group method of data handling, the main idea of which is to build a set of models of a given class and choose the optimal one among them. Authors proposed an algorithm for processing experiment results based on classical regression analysis and formulated an original criterion for model selection. Models of dependencies between the concentrate and tailings yields and the adjustable parameters were built, which allowed to establish a relationship between the concentrate yield and the valve opening time, as well as a relationship between the tailings yield and the G-force of the installation.

How to cite: Pelikh V.V., Salov V.M., Burdonov A.E., Lukyanov N.D. Model of baddeleyite recovery from dump products of an apatite-baddeleyite processing plant using a CVD6 concentrator // Journal of Mining Institute. 2021. Vol. 248 . p. 281-289. DOI: 10.31897/PMI.2021.2.12
Oil and gas
  • Date submitted
    2020-05-13
  • Date accepted
    2020-11-12
  • Date published
    2020-12-29

Improving the efficiency of terrigenous oil-saturated reservoir development by the system of oriented selective slotted channels

Article preview

A comparative assessment of variation in the flow rate of oil production wells was performed taking into account increasing of perforated area of the productive part of the rocks, as well as recover of reservoir rocks permeability due to their unloading by creating slotted channels with the method of oriented slotted hydro-sandblast perforation. Different orientation directions and slotting intervals were analyzed, taking into account water encroachment of individual interlayers and azimuth direction of the majority of remaining reserves in separate blocks of the examined formation. In order to estimate development efficiency of terrigenous oil-saturated porous-type reservoirs by means of oriented slotted hydro-sandblast perforation, calculations were performed on a full-scale geological and hydrodynamic model of an oil field in the Perm Region. The object of modeling was a Visean terrigenous productive forma tion. The modeling of implementing oriented slotted hydro-sandblast perforation was carried out on a 3D filtration model for fourteen marginal wells, located in the zone with excessive density of remaining recoverable reserves and he terogeneous reserve recovery along the section. An optimal layout of slotted channels along the depth of the productive part of the well section was developed. Selective formation of 24 slotted channels was carried out con sidering the intervals of increased oil saturation. Comparative analysis of estimated flow rate of the wells was per formed for cumulative perforation of the examined productive formation and the developed method of slotted perforation. As a result of modeling, an increase in the oil average flow rate of 2.25 t/day was obtained. With oriented slotted hydro-sandblast perforation, incremental cumulative production for two years of prediction calculations per one well reached 0.5 thousand t.

How to cite: CHERNYSHOV S.E., Repina V.A., Krysin N.I., Macdonald D.I.M. Improving the efficiency of terrigenous oil-saturated reservoir development by the system of oriented selective slotted channels // Journal of Mining Institute. 2020. Vol. 246 . p. 660-666. DOI: 10.31897/PMI.2020.6.8
Mining
  • Date submitted
    2020-05-12
  • Date accepted
    2020-09-22
  • Date published
    2020-11-24

Design features of coal mines ventilation using a room-and-pillar development system

Article preview

The safety of mining operations in coal mines for aerological factors depends on the quality of accepted and implemented ventilation design solutions. The current “Design Manual of coal mine ventilation” do not take into account the features of room-and-pillar development systems used in Russia. This increases the risk of explosions, fires, and gassing. The detailed study of foreign experience in designing ventilation for the considered development systems e of coal deposits allowed to formulate recommendations on the ventilation scheme organization for coal mines using a room-and-pillar development system and the procedure for ventilation during multi-entry gateroad development. Observations have shown that the use of the existing Russian procedure for airing mining sites with a room-and-pillar development system complicates the emergency rescue operations conduct. Low speeds and multidirectional air movement, difficult heat outflow, and the abandonment of coal pillars increase the risk of occurrence and late detection of endogenous fire. The results of numerical modeling have shown that the installation (parallel to the drifts) of ventilation structures in inter-chamber pillars will increase the reliability of ventilation by transferring the ventilation scheme from a complex diagonal to a complex parallel. It will also reduce the amount of air required for the mine site and the total aerodynamic drag. The research made it possible to formulate requirements for the design procedure for coal mines ventilation using a room-and-pillar development system, which consist in the order of working out blocks in the panel, and also the additional use of ventilation structures (light brattice clothes or blowing line brattice).

How to cite: Kobylkin S.S., Kharisov A.R. Design features of coal mines ventilation using a room-and-pillar development system // Journal of Mining Institute. 2020. Vol. 245 . p. 531-538. DOI: 10.31897/PMI.2020.5.4
Mining
  • Date submitted
    2020-05-24
  • Date accepted
    2020-07-23
  • Date published
    2020-11-24

Estimation of ore contour movements after the blast using the BMM system

Article preview

Measurement of ore movements by blast is one of the key components of the quality control system at any mining enterprise, which allows to obtain the accuracy necessary for determining the location of ore contours. About 15 years ago, a monitoring system was developed in Australia that allows mine personnel to make three-dimensional measurements of ore blocks movement at each blast. Studies have shown that ore blocks movement is extremely variable, and it characterized by a complete absence of a deterministic component. The consequence is that modeling ore contour movements during the blast will be inaccurate, and the best results for the mining enterprise can only be achieved by directly measuring the movement. The technology of measuring ore contours movements considered in the article is based on three-dimensional movement vectors obtained in different parts of the blasted block, characterized by different movements. It is obvious that the accuracy of determining the ore contours position after the blast is proportional to the number of measurements made on the block. Currently, the movement control technology based on the BMM system is actively used by global mining companies, its use reduces losses and dilution of ore. In 2017, the pilot implementation of the BMM system was started at the Olympiadinsky GOK, and the system is being implemented in several Russian mining companies.

How to cite: Rakhmanov R.A., Loeb J., Kosukhin N.I. Estimation of ore contour movements after the blast using the BMM system // Journal of Mining Institute. 2020. Vol. 245 . p. 547-553. DOI: 10.31897/PMI.2020.5.6
Metallurgy and concentration
  • Date submitted
    2020-04-15
  • Date accepted
    2020-05-13
  • Date published
    2020-10-08

Processing of platinum group metal ores in Russia and South Africa: current state and prospects

Article preview

The presented study is devoted to a comparative review of the mineral raw material base of platinum group metals (PGMs) and technologies of their processing in South Africa and Russia, the largest PGM producers. Mineralogical and geochemical classification and industrial value of iron-platinum and platinum-bearing deposits are presented in this work. The paper also reviews types of PGM ore body occurrences, ore processing methods (with a special focus on flotation processes), as well as difficulties encountered by enterprises at the processing stage, as they increase recovery of the valuable components. Data on mineralogical features of PGM deposits, including the distribution of elements in the ores, are provided. The main lines of research on mineralogical features and processing of raw materials of various genesis are identified and validated. Sulfide deposits are found to be of the highest industrial value in both countries. Such unconventional PGM sources, as black shale, dunites, chromite, low-sulfide, chromium and titanomagnetite ores, anthropogenic raw materials, etc. are considered. The main lines of research that would bring into processing non-conventional metal sources are substantiated. Analysis of new processing and metallurgical methods of PGM recovery from non-conventional and industrial raw materials is conducted; the review of existing processing technologies for platinum-bearing raw materials is carried out. Technologies that utilize modern equipment for ultrafine grinding are considered, as well as existing reagents for flotation recovery; evaluation of their selectivity in relation to platinum minerals is presented. Basing on the analysis of main technological processes of PGM ore treatment, the most efficient schemes are identified, i.e.,gravity and flotation treatment with subsequent metallurgical processing.

How to cite: Aleksandrova T.N., О’Connor C. Processing of platinum group metal ores in Russia and South Africa: current state and prospects // Journal of Mining Institute. 2020. Vol. 244 . p. 462-473. DOI: 10.31897/PMI.2020.4.9
Oil and gas
  • Date submitted
    2020-05-24
  • Date accepted
    2020-05-29
  • Date published
    2020-06-30

Features of permeability anisotropy accounting in the hydrodynamic model

Article preview

Important step in the construction of a geological and hydrodynamic model is to set the correct properties of the formations and further adapt the model to the historical development data. Main source of information on the geological properties of reservoirs is well logging data. Paper describes the application of the method for post-interpretation processing of logging data, with the help of which the lateral anisotropy value of the field site is found. Brief discussion on the algorithm for adapting the hydrodynamic model to the parameters of the formation using one reference well is given. Feature of the logging data application to study the phenomenon of permeability anisotropy is that this type of research is widespread, has sufficient information content, and the geophysical system itself does not require the inclusion of specialized instruments. Based on geophysical study, a volumetric model of the properties for oil and gas bearing formation is constructed, from which the permeability distribution is used, whose gradient allows establishing the directions of improved and deteriorated filtration properties. As a result, during adaption of the model, it was possible to achieve a difference in reserves between the geological and hydrodynamic models of 2.4 %, which is an acceptable deviation for further calculations. It was found that the direction of improved filtration properties has a northeastern direction at an angle of 35°, and the value of lateral anisotropy is 2.2. Obtained results of lateral anisotropy, taking into account the data on values of vertical anisotropy, are included in the field model, where it is planned to further study the effect of permeability anisotropy on formation productivity.

How to cite: Yermekov R.I., Merkulov V.P., Chernova O.S., Korovin M.O. Features of permeability anisotropy accounting in the hydrodynamic model // Journal of Mining Institute. 2020. Vol. 243 . p. 299-304. DOI: 10.31897/PMI.2020.0.299
Oil and gas
  • Date submitted
    2019-07-09
  • Date accepted
    2019-09-26
  • Date published
    2020-04-24

Development of mathematical models to control the technological properties of cement slurries

Article preview

Oil and gas producing enterprises are making increasingly high demands on well casing quality, including the actual process of injection and displacement of cement slurry, taking into account requirements for the annular cement level, eliminating possible hydraulic fracturing, with developing a hydraulic cementing program. It is necessary to prevent deep invasion of cement slurry filtrate into the formation to exclude bridging of productive layers. It is impossible to fulfill all these requirements at the same time without application of modifying additives; complex cement compositions are being developed and applied more often. Furthermore, need to adjust cement slurries recipes appears for almost every particular well. In order to select and justify cement slurries recipes and their prompt adjustment, taking into account requirements of well construction project, as well as geological and technical conditions for cementing casing strings, mathematical models of the main technological properties of cement slurries for cementing production casing strings in the Perm Region were developed. Analysis of the effect of polycarboxylic plasticizer (Pl) and a filtration reducer (fluid loss additive) based on hydroxyethyl cellulose (FR) on plastic viscosity (V), spreadability (S) and filtration (F) of cement slurries is conducted. Development of mathematical models is performed according to more than 90 measurements.

How to cite: Chernyshov S.E., Galkin V.I., Ulyanova Z.V., Macdonald D.I. Development of mathematical models to control the technological properties of cement slurries // Journal of Mining Institute. 2020. Vol. 242 . p. 179-190. DOI: 10.31897/PMI.2020.2.179
Mining
  • Date submitted
    2019-05-30
  • Date accepted
    2019-09-04
  • Date published
    2020-02-25

Prospects for industrial methane production in the mine n.a. V.M.Bazhanov using vertical surface wells

Article preview

The estimated methane resources in the coal stratum of Donbass are 798.5 billion m 3 , including 119.5 billion m 3 in the Donetsk-Makeevsky area. Such significant potential implies that methane can be used not only for industrial production and energy purposes but also as a commodity for the chemical industry. However, in practice, commercial production of methane from coal seams, as is done in the fields of the USA, Canada, India, and China, is not carried out, and methane, obtained as a by-product, is utilized for ensuring the safety of the main technological processes for coal mining. The main reasons for this are the difficult mining and geological conditions of bedding, low thickness and permeability, which does not allow to separate methane production into an independent type of activity due to its low profitability, especially with the use of new technologies based on hydraulic fracturing of coal seams. The assessment of the possibility of industrial methane production in the mine n.a. V.M.Bazhanov in the Donetsk-Makeevsky area of Donbass, which reserves equal to 23.7 billion m 3 , showed that a significant part of the methane reserves is concentrated in coal seams and interlayers with a gas content of 18.5-20.7 m 3 /m 3 . Moreover, in the host rocks, methane is practically in a liberated state. This circumstance makes possible the commercial production of methane for its utilization from the unloaded rock mass by wells drilled from the surface, without the use of hydraulic fracturing technology. The paper discusses the technology of methane extraction by a degassing well drilled from the surface into a coal-bearing stratum unloaded from rock pressure in a mining field of the 4th eastern face of the m 3 seam of the mine n.a. V.M.Bazhanov and its subsequent use as the fuel of an electric generator. It is shown that over the entire period of operation of the pilot well, the volume of actually produced methane exceeded the design value by 23 %, and the cost of the gas produced amounted to 1535 rubles per 1000 m 3 , which is more than 3 times lower than the market price for natural gas for consumers in the Russian Federation. This made it possible to make a conclusion about the possibility of industrial extraction of mine methane using vertical surface wells for its subsequent utilization in power plants, which does not imply the usage of hydraulic fracturing technology.

How to cite: Alabev V.R., Ashihmin V.D., Plaksienko O.V., Tishin R.A. Prospects for industrial methane production in the mine n.a. V.M.Bazhanov using vertical surface wells // Journal of Mining Institute. 2020. Vol. 241 . p. 3-9. DOI: 10.31897/PMI.2020.1.3
Oil and gas
  • Date submitted
    2017-12-29
  • Date accepted
    2018-03-26
  • Date published
    2018-06-22

Methods to enhance oil recovery in the process of complex field development of the Yarega oil and titanium deposit

Article preview

Yarega oil and titanium deposit is a unique facility due to a combination of two mineral resources – oil and titanium ore – in one geologic structure. The paper describes mining and geologic conditions of the field, as well as engineering solutions to enhance oil recovery and the efficiency of heat transfer. The author focuses on the issues of deposit opening and preparation for development, and provides recommendations regarding the exploitation procedure of the oil and titanium parts of the field, which take into account field data on the extraction rates of high viscosity oil and titanium ore from the start of deposit development. The paper contains analysis of existing technological schemes of high viscosity oil extraction and steam heating of the oil bed, as well as assessment of their feasibility. Issues of field preparation for development are reviewed from the position of accumulated practical experience, and recommendations on the feasibility of combined underground and open-pit mining are supported with evidence. The main advantages of the proposed system are explained; key technical and economic indicators are calculated.

How to cite: Dolgii I.E. Methods to enhance oil recovery in the process of complex field development of the Yarega oil and titanium deposit // Journal of Mining Institute. 2018. Vol. 231 . p. 263-267. DOI: 10.25515/PMI.2018.3.263
Mining
  • Date submitted
    2017-12-28
  • Date accepted
    2018-03-03
  • Date published
    2018-06-22

Special features of a structure of technical operations for peat excavation with stage dewatering

Article preview

A method of development of a technology of peat extraction for intensifying of dewatering which involves drying of peat raw materials in thick layers with a layer-by-layer harvesting into large-sized roll with further delivery to the field storage unit of the enlarged sizes is presented in the paper. Throughout the year storage raw materials may be transported to the customer or to the shopfloor for further processing. Considering dimension and mass characteristics, a crumbed peat of various moisture capacity is a major type of products to be of high demand. On the basis of the results of scientific studies regarding gravity dewatering of peat and its drying in field environment, the ways of intensifying of field dewatering of peat for extraction at shallow-peat lands and fine-limit fields are proposed. The presented results of the experimental performance of a technology of peat drying in thick layers with a layer-by-layer harvesting indicate an increase of seasonal harvesting and a decrease of the influence of unfavorable meteorological factors on the stability of the extraction process. Performed investigations allowed to develop a structure of technical operations for peat excavation with the stage dewatering in spreading and intermediate storage units providing rational state of the extraction process regarding a complex of technical factors. A suggested scheme of a process area for a primary and secondary period of deposit exploitation by a technology of peat excavation is considered.

How to cite: Kremcheev E.A. Special features of a structure of technical operations for peat excavation with stage dewatering // Journal of Mining Institute. 2018. Vol. 231 . p. 225-234. DOI: 10.25515/PMI.2018.3.225
Electromechanics and mechanical engineering
  • Date submitted
    2017-10-25
  • Date accepted
    2018-01-17
  • Date published
    2018-04-24

Innovative technology of large-size products manufacture

Article preview

Advantages and prospects for the use of mobile robotic machine-tools in the manufacture of large parts in the mining, cement and nuclear industries are considered, as well as the importance of using welded structures to reduce production costs. Schemes for finishing mechanical machining of welded large-sized parts such as bodies of revolution with the use of mobile robotic machine-tools equipped with a belt-grinding tool, an enlarged description of the technological process for manufacturing a large-sized shell of a welded structure are presented. The conclusion is made that it is necessary to take into consideration the use in the industry of frameless production technology, especially for the machining of large-sized parts, and the use of small mobile robotic machine-tools is a productive approach and has a prospective character. The technological approaches proposed in the article make it possible to remove the restriction on the overall size and mass of the parts being manufactured, which are proposed to be manufactured directly at the site of future operation. The effectiveness of this technology is confirmed both by theoretical research and by practical data of the authors. It was noted that the production by the domestic machine-tool industry of mobile universal and special robotic machine-tools will allow the country's engineering industry to be brought to a new, high-quality world level.

How to cite: Sanin S.N., Pelipenko N.A. Innovative technology of large-size products manufacture // Journal of Mining Institute. 2018. Vol. 230 . p. 185-189. DOI: 10.25515/PMI.2018.2.185
Mining
  • Date submitted
    2017-09-20
  • Date accepted
    2017-10-29
  • Date published
    2018-02-22

Substantiation of strength of the filling mass by taking a blast effect into account for the room-and-pillar methods

Article preview

The development of the uranium ore bodies at the ore mines of PJSC «Priargunsky Industrial Mining and Chemical Union» (PJSC «PIMCU») by room-and-pillar method as high as a pillar between the levels (60 m) without fill, as a rule, leads to the fall of the adjoining rock, to the strong contamination of the ore and to the high yield of the oversize pieces of the barren rock. A longstanding industrial and theoretical research shows that the sizes of the self-sustaining rock escarpments at the ore mines of PJSC «PIMCU» in the solid mass of trachydacites, conglomerates, sandstones, felsites are equal to 20-40 m. Moreover, the sizes of the self-sustaining rock escarpments depend to a great extent on the intensity of fracturing of the adjoining rocks. The stable size of the escarpment does not exceed 5-10 m for the rocks with the size of a jointing up to 0.05 m. Consequently, timely performance of the filling operations of the worked-out space of the chamber is important. However, the question then arises: which characteristic strength should the filling mass have? The calculations of the characteristics of the filling mass in compliance with the reference guide «Shaft filling operations» show underestimated values of the characteristic compressive strength of the fill (1.4 MPa) for the room-and-pillar method, which leads to the increase of the ore contamination by the fill and provokes the additional costs for refilling of the volumes of the rock fall. On the basis of the Russian experience of using of the consolidated fill for the development of the ore bodies of 15 m thickness by chamber method the strength of the fill is taken as 3-5 MPa under the resultant value of the static stresses without taking into account the character of the dynamic loading stresses induced by the sequence blasthole ring initiating in a chamber. Overestimating the characteristic strength of the filling mass results in the high consumption of the cementing materials. On the basis of the theoretical research the authors suggested the theoretical dependence of calculation of the characteristic strength of the filling material with respect to compressive stresses of the fill induced by the blasting operations. The process of designing of the filling mass with the zones of diverse strength for the room-and-pillar extraction with the consolidated rock fill is proven to be economically reasonable. The bottom zone of the solid mass should have high strength (3-4 MPa), and the strength of the upper zone should be up to 2-2.5 MPa.

How to cite: Voronov E.T., Tyupin V.N. Substantiation of strength of the filling mass by taking a blast effect into account for the room-and-pillar methods // Journal of Mining Institute. 2018. Vol. 229 . p. 22-26. DOI: 10.25515/PMI.2018.1.22
Metallurgy and concentration
  • Date submitted
    2016-10-27
  • Date accepted
    2017-01-02
  • Date published
    2017-04-14

Chemistry as a basis for solving environmental issues

Article preview

The article summarizes over 40 years of authors’ experience in the field of physical chemistry and chemical technology of glassy state of materials. It is shown that environmental issues are caused not by Chemistry as a science but by actions of ecologically illiterate humans using its advances. It is noted that without chemistry humankind cannot live comfortably and solve existing environmental problems. In support these facts we describe several developments made by authors of this article in energy industry, high temperature machinery, glass production technology, glassy phosphate fertilizers, production of non-waste systems and complex research of physical-chemical principles of glassy oil sorbents production of organic and non-organic nature.

How to cite: Kogan V.E., Shakhparonova T.S. Chemistry as a basis for solving environmental issues // Journal of Mining Institute. 2017. Vol. 224 . p. 223-228. DOI: 10.18454/PMI.2017.2.223
Geoecology and occupational health and safety
  • Date submitted
    2016-09-02
  • Date accepted
    2016-11-08
  • Date published
    2017-02-22

Mathematical models of gas-dynamic and thermophysical processes in underground coal mining at different stages of mine development

Article preview

New trends have been traced and the existing ones refined regarding filtration and diffusive motion of gases in coal beds and surrounding rock, spontaneous heating of coal and transport of gas traces by ventilation currents in operating coal mines. Mathematical models of gas-dynamic and thermophysical processes inside underworked territories after mine abandonment have been justified. Mathematical models are given for feasible air feeding of production and development areas, as well as for the development of geotechnical solutions to ensure gas-dynamic safety at every stage of coal mine operation. It is demonstrated that the use of high-performance equipment in the production and development areas requires more precise filtration equations used when assessing coal mine methane hazard. A mathematical model of pressure field of non-associated methane in the edge area of the coal seam has been justified. The model is based on one-dimensional hyperbolic equation and takes into consideration final rate of pressure distribution in the seam. Trends in gas exchange between mined-out spaces of high methane- and CO 2 -concentration mines with the earth surface have been refined in order to ensure environmental safety of underworked territories.

How to cite: Gryazev M.V., Kachurin N.M., Vorobev S.A. Mathematical models of gas-dynamic and thermophysical processes in underground coal mining at different stages of mine development // Journal of Mining Institute. 2017. Vol. 223 . p. 99-108. DOI: 10.18454/PMI.2017.1.99