Submit an Article
Become a reviewer

Search articles for by keywords:
safety pillar

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-20
  • Date accepted
    2024-11-07
  • Date published
    2025-02-27

Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation

Article preview

The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values ​​of pressure drawdown and changes in stress-strain properties depending on the area of ​​mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.

How to cite: Popov S.N., Chernyshov S.E., Wang X. Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation // Journal of Mining Institute. 2025. p. EDN VOBTXU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-04
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

Localization and involvement in development of residual recoverable reserves of a multilayer oil field

Article preview

During waterflooding of a multilayer oil field there is a constant deterioration of the structure and composition of residual reserves due to geological and technological reasons. The largest share of residual reserves is localized in pillars, which arise from uneven development of the production facility and are undrained or poorly drained zones. The results of a quantitative assessment of the distribution of residual oil reserves in the Middle and Upper Devonian deposits of the Romashkinskoe oil field of the Republic of Tatarstan are presented. A retrospective method is proposed to identify reserves by analyzing and summarizing historical exploration data and the long history of reservoir development, and a calculation algorithm is proposed to quantify them. It has been established that residual oil reserves are localized in rows of dividing and injection wells, as well as in the central rows of producing wells in a three-line drive, in abandoned and piezometric wells, in the areas adjacent to the zones of reservoir confluence, pinch-out, oil-bearing contours, distribution of reservoirs with deteriorated porosity and permeability properties. Depending on geological conditions, algorithms for selecting geological and technical measures to include localized reserves in development and forecasting production profiles were proposed. According to the proposed method, residual recoverable reserves were identified and a number of wells were recommended for experimental works on their additional recovery: in well 16 (hereinafter in the text, conventional well numbers are used) after isolation of overlying high-water-cut formations, the additional perforation was carried out and oil flow was obtained. Additional perforation in well 6 resulted in oil recovery during development as well. Thus, the developed approaches to identifying residual recoverable reserves and patterns of their spatial distribution can be recommended in other multilayer oil fields with a long history of development.

How to cite: Burkhanov R.N., Lutfullin A.A., Raupov I.R., Maksyutin A.V., Valiullin I.V., Farrakhov I.M., Shvydenko M.V. Localization and involvement in development of residual recoverable reserves of a multilayer oil field // Journal of Mining Institute. 2024. Vol. 268 . p. 599-612. EDN DKXZSP
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-29
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Potential use of water treatment sludge for the reclamation of small-capacity sludge collectors

Article preview

In small settlements, collectors for the sludge produced during water treatment processes are small-sized and located in the vicinity of drinking water storage reservoirs or in coastal areas. Sludge removal is not economical. Besides, the relief depressions formed after sludge disposal are required to be reclaimed. In ore mining regions, where the main settlements of the Urals are located, sludge produced in water treatment has high contents of heavy metals typical of ore mining provinces. Consequently, places of sludge accumulation are potential sources of water pollution. The article discusses the possibility to mix sludge with slaked lime and local overburden with the help of special equipment. So far water treatment sludge in the region has been used to reclaim the surface of solid waste landfills by creating anaerobic conditions for waste decomposition. When placed inside the embankment dams as an independent object, sludge needs to be improved for the increase of its bearing capacity and the ability to bind heavy metals. The article aims at the substantiation of the composition and properties of the reclamation material made of the water treatment sludge mixed with local overburden and slaked lime (technosoil). For this reason the paper describes the composition of the sludge in a sludge collector, the composition and properties of the overburden rocks as a component of the mixtures with water treatment sludge, the composition and properties of the mixtures of water treatment sludge with overburden rocks and Ca(OH)2 as a component dewatering sludge and neutralizing toxicants. Furthermore, the research work provides the technology created for the optimal processing of the water treatment sludge in the process of the reclamation of a sludge collector. The research results and the experience obtained in reclamation of disturbed lands in the region have confirmed the possible use of technosoil for the reclamation of small-capacity sludge collectors. The analysis of the chemical composition and physical and mechanical properties of the mixtures under study has shown that the most economical and environmentally sound reclamation material is a mixture of water treatment sludge, loose overburden dump soils and Ca(OH)2 in a ratio of 60 : 30 : 10 %.

How to cite: Guman O.M., Antonova I.A. Potential use of water treatment sludge for the reclamation of small-capacity sludge collectors // Journal of Mining Institute. 2024. Vol. 267 . p. 466-476. EDN MSIDNU
Geology
  • Date submitted
    2022-10-29
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site)

Article preview

The study presents the results of the research on geodynamic and geological conditions of the Enisei site (Krasnoyarsk Krai), chosen for the construction of an underground research laboratory. The laboratory is being built at a depth of 500 m to assess the suitability of the rock mass for burying high-level radioactive waste. The rocks consist of weakly fractured gneisses, granites, and dikes of metadolerites. Field observations were conducted on bedrock outcrops. They included the determination of rock mass quality indicators, measurement of rock fracturing, and a rating classification of stability using N.Barton's method. GNSS observations were also made to monitor surface deformations. These data were used to develop a three-dimensional structural model, including lithology, fault disruptions, intrusive bodies, elastic-strength properties of rocks, and the sizes of zones influenced by faulting. It will serve as a basis for boundary conditions and the construction of three-dimensional variational models of stress-strain states, identifying zones of concentration of hazardous stresses, and planning in situ geomechanical experiments in underground mines of the laboratory. The obtained values of the modified QR index for the main types of rocks allowed their classification as stable and moderately stable, corresponding to strong and very strong rocks on Barton's scale and the massif rating according to geomechanical classification.

How to cite: Akmatov D.Z., Manevich A.I., Tatarinov V.N., Shevchuk R.V., Zabrodin S.M. Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site) // Journal of Mining Institute. 2024. Vol. 266 . p. 167-178. EDN ECCWUV
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

The wireless charging system for mining electric locomotives

Article preview

The electric vehicles development has a high potential for energy saving: an energy-saving traffic control can reduce energy resource consumption, and integration with the power grid provides the ability of daily load pattern adjustment. These features are also relevant for underground mining. The critical element of vehicle-to-grid integration is the charging infrastructure, where wireless charging is promising to develop. The implementation of such systems in underground mining is associated with energy efficiency issues and explosion safety. The article discusses the development and research of a wireless charging system for mining electric locomotive A-5.5-600-U5. The analytic hierarchy process is used for justification of the circuitry and design solution by a comparison of different technical solutions based on energy efficiency and safety criteria. A complex computer model of the wireless charging system has been developed that gives the transients in the electrical circuit of a wireless charging system and the high-frequency field density distribution near the transmitting and receiving coils in a 3D setting. An approach to ignition risk evaluation based on the analysis of high-frequency field density in the charging area between the coils of the wireless charging system is proposed. The approach using a complex computer model is applied to the developed system. The study showed that the wireless charging system for mining electric locomotives operating in the gaseous-and-dusty mine is technically feasible and there are designs in which it is explosion safe.

How to cite: Zavyalov V.M., Semykina I.Y., Dubkov E.A., Velilyaev A.- han S. The wireless charging system for mining electric locomotives // Journal of Mining Institute. 2023. Vol. 261 . p. 428-442. EDN JSNTAQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-31
  • Date accepted
    2023-03-02
  • Date published
    2023-12-25

Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps

Article preview

On the example of the Alardinskaya mine, the problem of underground mining of seams prone to spontaneous combustion and rock bumps in the conditions of the Kondomsky geological and economic region of the Kuznetsk coal basin is considered. The contradictions in the requirements of regulatory documents for the width of the inter-panel coal pillars in the mining of seams with longwalls in conditions of endogenous fire hazard and in the mining of seams that are dangerous due to geodynamical phenomena are discussed. These contradictions impede the safe mining of seams using traditionally used layouts with the danger of spontaneous combustion of coal and rock bumps. A mining-geomechanical model is presented, which is used for numerical three-dimensional simulation of the stress-strain state of a rock mass with various layouts for longwall panels using the finite element method. The results of the numerical analysis of the stress state of the rock mass immediately before the rock bump are presented, and the main factors that contributed to its occurrence during the mining of the seam are established. A dangerous degree of stress concentration in the coal seam near the leading diagonal entries is shown, especially in conditions of application of abutment pressure from the edge of panels’ gob. The analysis of the features of stress distribution in the inter-panel pillar at different widths is carried out. Recommendations for improving the layout for the development and mining of coal seams that are prone to spontaneous combustion and dangerous in terms of rock bumps in the conditions of Alardiskaya mine have been developed. The need for further studies of the influence of pillars for various purposes, formed during the mining of adjacent seams, on the stress-strain state of previously overmined and undermined seams is shown.

How to cite: Sidorenko A.A., Dmitriev P.N., Alekseev V.Y., Sidorenko S.A. Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps // Journal of Mining Institute. 2023. Vol. 264 . p. 949-961. EDN SCAFOE
Editorial
  • Date submitted
    2023-04-25
  • Date accepted
    2023-04-25
  • Date published
    2023-04-25

Ecological security and sustainability

Article preview

In 2015, UN Member States adopted the 2030 Agenda for Sustainable Development, aimed at balancing initiatives by the world community and individual countries in the environmental, social, and economic spheres. The global sustainable development goals are to promote the well-being of the world population, preserve the planet’s resources, and maintain ecological security, which is vital in the age of the rapid industrial growth and ever-increasing anthropogenic pressure on the environment. For the successful achievement of sustainability goals in the manufacturing sector, integrated measures should be undertaken for monitoring and assessing the technogenic impact of industrial facilities. Additionally, it is necessary to develop environmentally-friendly technologies in the fields of gas and water treatment, land reclamation, and waste disposal. Therefore, fundamental and applied research in these related spheres is of particular importance. Currently, environmental monitoring of all components of the environment, along with anthropogenic objects and processes, receives considerable attention, which is determined by the vector of development in science and technology. In this regard, the latest innovations in green technology in this area are becoming increasingly significant.

How to cite: Pashkevich M.A., Danilov A.S. Ecological security and sustainability // Journal of Mining Institute. 2023. Vol. 260 . p. 153-154.
Economic Geology
  • Date submitted
    2022-07-15
  • Date accepted
    2022-12-13
  • Date published
    2023-02-27

Assessment of the efficiency of occupational safety culture management in fuel and energy companies

Article preview

The results of development, testing and implementation of the process of occupational safety culture management in a fuel and energy company including the assessment of current state, assessment of deviation, formation of control action and its implementation are presented. Using the methods of mathematical analysis, the components of occupational safety culture and criteria for their evaluation were developed. As a control action, a procedure for conducting behavioural safety audit was elaborated and implemented. Proceeding from the results of analysing average ratings of safety culture components among the employees prior to and after the introduction of behavioural safety audit, it was concluded that there was a statistically significant increase in the average values of 12 out of 16 ratings of safety culture components. Analysis of the results of 1,011 audits showed the absence of an “alarm area” at the enterprise. Introduction of the developed process management model promotes an increase in the efficiency of attaining a high level of occupational safety culture in fuel and energy companies.

How to cite: Glebova E.V., Volokhina A.T., Vikhrov A.E. Assessment of the efficiency of occupational safety culture management in fuel and energy companies // Journal of Mining Institute. 2023. Vol. 259 . p. 68-78. DOI: 10.31897/PMI.2023.12
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-09-30
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies

Article preview

The national strategic goal of the Russian Federation is to ensure the safety of critical technologies and sectors, which are important for the development of the country's oil and gas industry. The article deals with development of national technology for intelligent monitoring of the condition of industrial facilities for transport and storage of oil and gas. The concept of modern monitoring and safety control system is developed focusing on a comprehensive engineering control using integrated automated control systems to ensure the intelligent methodological support for import-substituting technologies. A set of approved algorithms for monitoring and control of the processes and condition of engineering systems is proposed using modular control robotic complexes. Original intelligent models were developed for safety monitoring and classification of technogenic events and conditions. As an example, algorithms for monitoring the intelligent safety criterion for the facilities and processes of pipeline transport of hydrocarbons are presented. The research considers the requirements of federal laws and the needs of the industry.

How to cite: Zemenkova M.Y., Chizhevskaya E.L., Zemenkov Y.D. Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies // Journal of Mining Institute. 2022. Vol. 258 . p. 933-944. DOI: 10.31897/PMI.2022.105
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-05
  • Date accepted
    2022-07-21
  • Date published
    2022-11-10

Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines)

Article preview

It is shown that the creation of the variants of resource-saving systems for the development of long-column mining is one of the main directions for improving the technological schemes for mining operations in the mines of the Kuang Nin coal basin. They provide a reduction in coal losses in the inter-column pillars and the cost of maintaining preliminary workings fixed with anchorage. The implementation of these directions is difficult (and in some cases practically impossible) when tight rocks are lying over the coal seam, prone to significant hovering in the developed space. In the Quang Ninh basin, 9-10 % of the workings are anchored, the operational losses of coal reach 30 % or more; up to 50 % of the workings are re-anchored annually. It is concluded that the real conditions for reducing coal losses and the effective use of anchor support as the main support of reusable preliminary workings are created when implementing the idea put forward at the St. Petersburg Mining University: leaving the coal pillar of increased width between the reused mine working and the developed space and its subsequent development on the same line with the stoping face simultaneously with the reclamation of the reused mine working.

How to cite: Zubov V.P., Phuc L.Q. Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines) // Journal of Mining Institute. 2022. Vol. 257 . p. 795-806. DOI: 10.31897/PMI.2022.72
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-07-05
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings

Article preview

On the basis of analysis of mining plans and field studies at mines of JSC SUEK-Kuzbass, it is shown that in conditions of increasing the size of excavation columns during the development of flat-lying coal seams the stress-strain state of the rock mass along the workings length changes significantly. The necessity of predicting the stress-strain state at the design stage of the workings timbering standards, as well as subsequent monitoring of the workings roof state and its changes in the mining operations using video endoscopes, is noted. The results of numerical studies of the stress-strain state of the rock mass during the development of excavation sites by three workings for various combinations of width of the pillars between the workings for mining-geological and mining-technical conditions of the “Taldinskaya-Zapadnaya-2” mine are provided. The stresses in the vicinity of the three workings are compared with the values obtained during the development of the excavation sites by double drift. A set of recommendations on the choice of the location of the workings, the width of pillars, timbering standards that ensure the stable condition of the workings throughout the entire service life at the minimal losses of coal in the pillars is presented.

How to cite: Kazanin O.I., Ilinets A.A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings // Journal of Mining Institute. 2022. Vol. 253 . p. 41-48. DOI: 10.31897/PMI.2022.1
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-04-23
  • Date accepted
    2021-09-07
  • Date published
    2021-12-16

Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces

Article preview

Currently, the determination of the emission rate of suspended solids from a unit of the surface area of a man-made mass at various parameters of the wind flow is not sufficiently described. The analysis of the world experience of researchers shows that existing laboratory installations have various design features that do not allow to correctly determine the mass of the dust being flapped and wind-blown. Based on the analysis results, the concept of an innovative laboratory installation for the study of dust-forming surfaces has been developed. It takes into account the influence of wind shadows, the deturbulization of an artificially created air flow, the possibility of regulating not only the flow velocity mode, but also the creation of a vacuum or disturbance in the area of sample placement, as well as the formation of a certain angle of wind flow attack relative to the surface. The concept provides for the possibility of determining the volume of dust emissions by the values of the lost dust masses in the sample and by the values of dust concentrations in the outgoing stream. The calculation of the main basic elements of the installation using the ANSYS FLUENT software package was carried out. The model and configuration of the wind tunnel have been developed and calculated, the main geometric parameters and functional elements for the possibility of use in scientific work have been determined. For practical use of the empirical roughness value of the underlying surface, its values are recommended in a wide range – from zero for the water surface to 0.44 for large cities with tall buildings and skyscrapers.

How to cite: Ivanov A.V., Smirnov Y.D., Chupin S.A. Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces // Journal of Mining Institute. 2021. Vol. 251 . p. 757-766. DOI: 10.31897/PMI.2021.5.15
Mining
  • Date submitted
    2021-06-01
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Indicator assessment of the reliability of mine ventilation and degassing systems functioning

Article preview

The gas emission control in the mines is operated by ventilation and degassing systems that ensure the aerological safety of the mines or minimize the aerological risks. The ventilation system of the mine and its individual sites includes a significant number of technical devices and equipment, and the air tubes are mainly mining workings, the condition of which determines the quality of the ventilation network (its capacity) and depends on a number of mining factors. Similarly, one of the most important elements of the degassing system, which includes its own chain of technological equipment, are wells, and in some cases, mining workings. Thus, mine ventilation and degassing systems cannot be attributed to purely technical systems, since they include mining elements characterized by high variability of the determining parameters. To assess their reliability, it is necessary to use various combined methods that include additional characteristics in relation to the mining component. At the same time, the reliability of technical devices that ensure the functioning of mine ventilation and degassing systems largely determines the efficiency (stability and reliability) of these systems and, consequently, affects the level of aerological risks. The described approach to assessing the reliability of ventilation and degassing systems of coal mines when analyzing aerological risks is based on the developed system of risk indicators for the methane factor and will allow determining the risk dynamics in automatic mode based on monitoring the parameters of the ventilation and degassing system state.

How to cite: Kaledina N.O., Malashkina V.A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning // Journal of Mining Institute. 2021. Vol. 250 . p. 553-561. DOI: 10.31897/PMI.2021.4.8
Mining
  • Date submitted
    2021-06-15
  • Date accepted
    2021-08-27
  • Date published
    2021-10-21

Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion

Article preview

Spontaneous combustion of coal remains an important problem for coal mines, which can lead to an explosion of methane and coal dust. Accidents associated with spontaneous combustion of coal can cause significant economic losses to coal mining companies, as well as entail social damage – injuries and loss of life. Accidents are known at the Kuzbass mines, which occurred as a result of negligent attitude to the danger of spontaneous combustion of coal, the victims of which were dozens of people. The analysis of emergency situations associated with spontaneous combustion of coal shows that the existing wide range of means of preventing endogenous fires does not provide complete safety when working out coal seams prone to spontaneous combustion, therefore, spontaneous combustion places continue to occur in mines. The consequences that may arise as a result of a methane explosion initiated by a self-ignition place indicate the need to improve the used technologies. The purpose of the work is to determine the impact of modern technological solutions used in functioning mines during underground mining of flat-lying coal seams prone to spontaneous combustion, and to develop new solutions that reduce endogenous fire hazard. Conclusions on the influence of leaving coal pillars in the developed space, isolated air removal from the stoping face through the developed space, the length of the stoping face and the excavation pillar, and other factors on the danger of the formation of spontaneous combustion places are presented. Conclusions about the possibility of using modern technological solutions in future are also drawn.

How to cite: Zubov V.P., Golubev D.D. Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion // Journal of Mining Institute. 2021. Vol. 250 . p. 534-541. DOI: 10.31897/PMI.2021.4.6
Mining
  • Date submitted
    2021-01-21
  • Date accepted
    2021-02-24
  • Date published
    2021-04-26

Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district)

Article preview

The underground space of the Kupol deposit is analyzed as a multicomponent system – rocks, underground water, microbiota, gases (including the mine atmosphere) and supporting structures – metal support and shotcrete (as an additional type of barring) and also stowing materials. The complex of host rocks is highly disintegrated due to active tectonic and volcanic activity in the Cretaceous period. The thickness of sub-permafrost reaches 250-300 m. In 2014, they were found to contain cryopegs with abnormal mineralization and pH, which led to the destruction of metal supports and the caving formation. The underground waters of the sub-permafrost aquifer are chemically chloride-sulfate sodium-calcium with a mineralization of 3-5 g/dm 3 . According to microbiological analysis, they contain anaerobic and aerobic forms of microorganisms, including micromycetes, bacteria and actinomycetes. The activity of microorganisms is accompanied by the generation of hydrogen sulfide and carbon dioxide. The main types of corrosion – chemical (sulfate and carbon dioxide), electrochemical and biocorrosion are considered. The most hazardous is the biocorrosion associated with the active functioning of the microbiota. Forecasting and systematization of mining and geological processes are carried out taking into account the presence of two zones in depth – sub-permafrost and below the bottom of the sub-permafrost, where mining operations are currently underdone. The importance of assessing the underground space as a multicomponent environment in predicting mining and geological processes is shown, which can serve as the basis for creating and developing specialized monitoring complex in difficult engineering and geological conditions of the deposit under consideration.

How to cite: Dashko R.E., Romanov I.S. Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district) // Journal of Mining Institute. 2021. Vol. 247 . p. 20-32. DOI: 10.31897/PMI.2021.1.3
Oil and gas
  • Date submitted
    2020-05-05
  • Date accepted
    2020-10-05
  • Date published
    2020-11-24

Assessment of the Influence of Water Saturation and Capillary Pressure Gradients on Size Formation of Two-Phase Filtration Zone in Compressed Low-Permeable Reservoir

Article preview

The paper examines the influence of capillary pressure and water saturation ratio gradients on the size of the two-phase filtration zone during flooding of a low-permeable reservoir. Variations of water saturation ratio s in the zone of two-phase filtration are associated with the pressure variation of water injected into the reservoir; moreover the law of variation of water saturation ratio s ( r , t ) must correspond to the variation of injection pressure, i.e. it must be described by the same functions, as the functions of water pressure variation, but be subject to its own boundary conditions. The paper considers five options of s ( r , t ) dependency on time and coordinates. In order to estimate the influence of formation and fluid compressibility, the authors examine Rapoport – Lis model for incompressible media with a violated lower limit for Darcy’s law application and a time-dependent radius of oil displacement by water. When the lower limit for Darcy’s law application is violated, the radius of the displacement front depends on the value of capillary pressure gradient and the assignment of s function. It is shown that displacement front radii contain coefficients that carry information about physical properties of the reservoir and the displacement fluid. A comparison of two-phase filtration radii for incompressible and compressible reservoirs is performed. The influence of capillary pressure gradient and functional dependencies of water saturation ratio on oil displacement in low-permeable reservoirs is assessed. It is identified that capillary pressure gradient has practically no effect on the size of the two-phase filtration zone and the share of water in the arbitrary point of the formation, whereas the variation of water saturation ratio and reservoir compressibility exert a significant influence thereupon.

How to cite: Korotenko V.A., Grachev S.I., kushakova N.P., Mulyavin S.F. Assessment of the Influence of Water Saturation and Capillary Pressure Gradients on Size Formation of Two-Phase Filtration Zone in Compressed Low-Permeable Reservoir // Journal of Mining Institute. 2020. Vol. 245 . p. 569-581. DOI: 10.31897/PMI.2020.5.9
Mining
  • Date submitted
    2020-05-12
  • Date accepted
    2020-09-22
  • Date published
    2020-11-24

Design features of coal mines ventilation using a room-and-pillar development system

Article preview

The safety of mining operations in coal mines for aerological factors depends on the quality of accepted and implemented ventilation design solutions. The current “Design Manual of coal mine ventilation” do not take into account the features of room-and-pillar development systems used in Russia. This increases the risk of explosions, fires, and gassing. The detailed study of foreign experience in designing ventilation for the considered development systems e of coal deposits allowed to formulate recommendations on the ventilation scheme organization for coal mines using a room-and-pillar development system and the procedure for ventilation during multi-entry gateroad development. Observations have shown that the use of the existing Russian procedure for airing mining sites with a room-and-pillar development system complicates the emergency rescue operations conduct. Low speeds and multidirectional air movement, difficult heat outflow, and the abandonment of coal pillars increase the risk of occurrence and late detection of endogenous fire. The results of numerical modeling have shown that the installation (parallel to the drifts) of ventilation structures in inter-chamber pillars will increase the reliability of ventilation by transferring the ventilation scheme from a complex diagonal to a complex parallel. It will also reduce the amount of air required for the mine site and the total aerodynamic drag. The research made it possible to formulate requirements for the design procedure for coal mines ventilation using a room-and-pillar development system, which consist in the order of working out blocks in the panel, and also the additional use of ventilation structures (light brattice clothes or blowing line brattice).

How to cite: Kobylkin S.S., Kharisov A.R. Design features of coal mines ventilation using a room-and-pillar development system // Journal of Mining Institute. 2020. Vol. 245 . p. 531-538. DOI: 10.31897/PMI.2020.5.4
Mining
  • Date submitted
    2020-02-19
  • Date accepted
    2020-04-17
  • Date published
    2020-10-08

Decrease in coal losses during mining of contiguous seams in the near-bottom part at Vorkuta deposit

Article preview

The problem of formation of extended zones with high rock pressure (HRP) from safety pillars at the boundaries of extraction pillars formed due to the mine layout of complex geometry is considered at the example of JSC Vorkutaugol mines. A detailed analysis of the remaining reserves of the near-bottom part of the deposit was carried out to estimate losses and the impact of HRP zones from the Chetvertyi protective seam to mining operations on the Troinoi upper seam along with the possibilities for the reduction of sizes of HRP zones at the account of expanding the underworked space. Due to research on the near-bottom part of the Vorkuta deposit, within the framework of the accepted layout, a zone at the Komsomolskaya mine and two zones at the Zapolyarnaya-2 mine were singled out, at which losses at the boundaries of the extraction pillars amount up to 13-22 % of the total resources of the mine field. The high volume of losses in these pillars indicates the relevance of research on the priority extraction impact of protective seams on the efficiency and safety of mining operations in the working area of underworked and HRP zones. Based on the analysis of foreign and Russian experience in the pillar cleaning-up at the boundaries of working areas and the methodical guidelines and instructions, a technological scheme was developed that allows increasing the coal mining recovery factor in the near-bottom part of the Vorkuta deposit from 0.75 to 0.9 without fundamental changing of the ventilation and transport networks and also without purchasing any additional mining equipment. The conducted economic calculations confirmed the effectiveness of implementing the new technological scheme for cleaning-up reserves at the boundaries of extraction districts. The economic effect is from 0.079 to1.381 billion rubles of additional profit from coaxial extraction pillars, depending on the mining and geological conditions and the size of the pillars.

How to cite: Kazanin O.I., Yaroshenko V.V. Decrease in coal losses during mining of contiguous seams in the near-bottom part at Vorkuta deposit // Journal of Mining Institute. 2020. Vol. 244 . p. 395-401. DOI: 10.31897/PMI.2020.4.1
Geoeconomics and Management
  • Date submitted
    2019-06-22
  • Date accepted
    2019-09-11
  • Date published
    2020-04-24

Effective capacity building by empowerment teaching in the field of occupational safety and health management in mining

Article preview

The paper is dealing with a developed concept named Empowerment Teaching, which is based on practical teaching experience gained in various mining universities. It is demonstrated that this concept can be used to increase the effectiveness of knowledge transfer to mining countries in the world, as well as to overcome cultural barriers between lecturers and their students. The two models of participatory training, which are proposed to be named “physical” and “emotional” models, are portrayed. The authors are convinced that participatory training methods can be an ideal answer to a challenge associated with workers’ competencies in mining, namely – the potential of highly motivated and well-educated young academics is often diminished by a lack of ability to apply their knowledge. A special emphasis is made on the possible application of empowerment teaching for educational and training activities in the field of occupational safety and health (OSH), which is a matter of utmost importance for the mining industry. Several benchmarking initiatives in the field of OSH (“safety culture”, zero-accident vision) are underlined to be encouraged and promoted by means of new teaching methods. The examples of successful international cooperation among universities are given, as well.

How to cite: Kretschmann J., Plien M., Nguyen T.H.N., Rudakov M.L. Effective capacity building by empowerment teaching in the field of occupational safety and health management in mining // Journal of Mining Institute. 2020. Vol. 242 . p. 248-256. DOI: 10.31897/PMI.2020.2.248
Geoecology and occupational health and safety
  • Date submitted
    2019-02-01
  • Date accepted
    2019-09-16
  • Date published
    2020-02-25

Priority parameters of physical processes in a rock mass when determining the safety of radioactive waste disposal

Article preview

Consideration of geodynamic, hydrogeochemical, erosion and other quantitative characteristics describing evolutionary processes in a rock mass is carried out when choosing a geological formation for the disposal of radioactive waste. However, the role of various process parameters is not equal for safety ensuring and additional percentages of measurement accuracy are far from always being of fundamental importance. This makes it necessary to identify various types of indicators of the geological environment that determine the safety of radioactive waste disposal for their detailed study in the conditions of the burial site. An approach is proposed to determine the priority indicators of physical processes in the rock mass that determine the safety of disposal of various types of radio active waste and require increased attention (accuracy, frequency of measurements) when determining in - situ conditions. To identify such factors, we used the sensitivity analysis method that is a system change in the limits of variable values during securty modeling in order to assess their impact on the final result and determine the role of various physical processes in ensuring safety.

How to cite: Gupalo V.S. Priority parameters of physical processes in a rock mass when determining the safety of radioactive waste disposal // Journal of Mining Institute. 2020. Vol. 241 . p. 118-124. DOI: 10.31897/PMI.2020.1.118
Mining
  • Date submitted
    2019-06-30
  • Date accepted
    2019-09-10
  • Date published
    2019-12-24

Industrial safety principles in coal mining

Article preview

The article provides a description of injuries in coal mining enterprises in Russia. The high injury rate causes the need of developing new effective ways and means of improving safety at mining enterprises. Recently in Russia there has been a tendency for a slight decrease in fatal injuries, which indicates some progress in prevention of industrial accidents. At the same time, the problem of improving the working conditions of coal miners, reducing the level of injuries and occupational diseases in this industry remains a very urgent task. Ensuring safe operation and industrial health and safety is not only reasonable economic policy but one of the constitutional human rights. At Russian coal mining enterprises, they take measures to reduce injuries, the supervisory authorities and employees of the enterprises carry out certain work to comply with safety requirements. However, significant success has not yet been achieved. Despite the fatal injuries and accidents, the issue of industrial mining safety is not becoming a top priority. Occupational safety measures are often financed on a «left-over» principle, and therefore remain not implemented. Many managers do not pay enough attention to safety issues and have little control over the planned activities in this area. The article analyzes the causes of injuries and proposes the key directions for creating normal working conditions in coal mining enterprises.

How to cite: Chemezov E.N. Industrial safety principles in coal mining // Journal of Mining Institute. 2019. Vol. 240 . p. 649-653. DOI: 10.31897/PMI.2019.6.649
Mining
  • Date submitted
    2018-07-18
  • Date accepted
    2018-09-22
  • Date published
    2018-12-21

Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit

Article preview

The subject of the research is the stress-strain and rock burst hazardous state of the ore massif of the Nikolaevskoe polymetallic deposit, formed under the influence of complex mining-geological and mining-technical factors. The purpose of the research is to establish the peculiarities of the formation of technogenic stress fields at the deposit, which is characterized by a block structure, a complex tectonic system and the presence of a large volume of developed spaces. Volumetric geodynamic modeling of the stress-strain state of the massif at different stages of the development of the deep horizons of the deposit was carried out by collecting information on the structure, properties and geodynamic state of the rock mass. The assessment of stress changes taking into account the effect of hypsometry, the configuration of the selvages, the physical-mechanical properties of the ore deposit and host rocks, the presence of tectonic disturbances was made using the developed numerical algorithms, the automation equipment of the initial data and the PRESS 3D URAL software. The simulation made it possible to establish that tectonic faults in the massif lead to a qualitative change in the stress-strain state in certain parts of the ore massif and in the pillars, namely, the reduction of stresses along the tectonic faults and their growth in nearby pillars. The identified features of the distribution of stresses in the tectonically disturbed rock massif of the Nikolaevskoe deposit will allow to identify in advance potentially hazardous areas both at the planning stage of mining operations and during development, as well as to work out effective rock burst measures to increase the safety of mining. The results of research can be used in enterprises with similar mining-geological and mining-technical conditions.

How to cite: Sidorov D.V., Potapchuk M.I., Sidlyar A.V. Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit // Journal of Mining Institute. 2018. Vol. 234 . p. 604-611. DOI: 10.31897/PMI.2018.6.604
Mining
  • Date submitted
    2018-01-04
  • Date accepted
    2018-03-08
  • Date published
    2018-06-22

Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores

Article preview

The paper presents the results of borehole stability research and considers possible causes of emergencies. The features of the blast hole drilling process are analyzed taking into account the properties of the rock. Based on the distribution of speed of drill fines removal from the well, an algorithm for selecting drilling modes is proposed. The nature of change in the size of the holess over time has been analyzed. This paper investigates the influence of rock fracturing and its water content on borehole stability. Possible options for eliminating the man-made impact on the massif near holes and options for fixing the hole walls with soft shells are suggested. The experimental data on the installation of shells for the conditions of open mining of apatite-nepheline ores are given. The operability and effectiveness of the technology is proved.

How to cite: Overchenko M.N., Tolstunov S.A., Mozer S.P. Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores // Journal of Mining Institute. 2018. Vol. 231 . p. 239-244. DOI: 10.25515/PMI.2018.3.239
Mining
  • Date submitted
    2017-09-20
  • Date accepted
    2017-10-29
  • Date published
    2018-02-22

Substantiation of strength of the filling mass by taking a blast effect into account for the room-and-pillar methods

Article preview

The development of the uranium ore bodies at the ore mines of PJSC «Priargunsky Industrial Mining and Chemical Union» (PJSC «PIMCU») by room-and-pillar method as high as a pillar between the levels (60 m) without fill, as a rule, leads to the fall of the adjoining rock, to the strong contamination of the ore and to the high yield of the oversize pieces of the barren rock. A longstanding industrial and theoretical research shows that the sizes of the self-sustaining rock escarpments at the ore mines of PJSC «PIMCU» in the solid mass of trachydacites, conglomerates, sandstones, felsites are equal to 20-40 m. Moreover, the sizes of the self-sustaining rock escarpments depend to a great extent on the intensity of fracturing of the adjoining rocks. The stable size of the escarpment does not exceed 5-10 m for the rocks with the size of a jointing up to 0.05 m. Consequently, timely performance of the filling operations of the worked-out space of the chamber is important. However, the question then arises: which characteristic strength should the filling mass have? The calculations of the characteristics of the filling mass in compliance with the reference guide «Shaft filling operations» show underestimated values of the characteristic compressive strength of the fill (1.4 MPa) for the room-and-pillar method, which leads to the increase of the ore contamination by the fill and provokes the additional costs for refilling of the volumes of the rock fall. On the basis of the Russian experience of using of the consolidated fill for the development of the ore bodies of 15 m thickness by chamber method the strength of the fill is taken as 3-5 MPa under the resultant value of the static stresses without taking into account the character of the dynamic loading stresses induced by the sequence blasthole ring initiating in a chamber. Overestimating the characteristic strength of the filling mass results in the high consumption of the cementing materials. On the basis of the theoretical research the authors suggested the theoretical dependence of calculation of the characteristic strength of the filling material with respect to compressive stresses of the fill induced by the blasting operations. The process of designing of the filling mass with the zones of diverse strength for the room-and-pillar extraction with the consolidated rock fill is proven to be economically reasonable. The bottom zone of the solid mass should have high strength (3-4 MPa), and the strength of the upper zone should be up to 2-2.5 MPa.

How to cite: Voronov E.T., Tyupin V.N. Substantiation of strength of the filling mass by taking a blast effect into account for the room-and-pillar methods // Journal of Mining Institute. 2018. Vol. 229 . p. 22-26. DOI: 10.25515/PMI.2018.1.22
Mining
  • Date submitted
    2016-11-16
  • Date accepted
    2017-01-01
  • Date published
    2017-04-14

Complex use of heat-exchange tunnels

Article preview

The paper presents separate results of complex research (experimental and theoretical) on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

How to cite: Galkin A.F. Complex use of heat-exchange tunnels // Journal of Mining Institute. 2017. Vol. 224 . p. 209-214. DOI: 10.18454/PMI.2017.2.209