Submit an Article
Become a reviewer

Search articles for by keywords:
residual oil content

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-31
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses

Article preview

Remediation is an important area of oil-contaminated soil restoration in Russia, since oil refining industry is the major one for Russia and neighbouring countries, and the issues of environmentally effective and economically profitable remediation of oil contamination have not yet been solved. Soils under various economic uses have different surface areas and degrees of soil particles envelopment with oil due to the presence or absence of cultivation, the amount of precipitation and plant litter. The introduction of various substances for remediation into oil-contaminated soils of steppes (arable land), forests, and semi-deserts, considering their differences, gives different results. Biochar is coal obtained by pyrolysis at high temperatures and in the absence of oxygen. The uniqueness of this coal lies in the combination of biostimulating and adsorbing properties. The purpose of the study is to conduct an environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses. The article compares the environmental assessments of biochar application in oil-contaminated soils with different particle size fraction. The following indicators of soil bioactivity were determined: enzymes, indicators of initial growth and development intensity of radish, microbiological indicators. We found that the most informative bioindicator correlating with residual oil content is the total bacteria count, and the most sensitive ones are the roots length (ordinary chernozem and brown forest soil) and the shoots length (brown semi-desert soil). The use of biochar on arable land and in forest soil (ordinary chernozem and brown forest soil) is less environmentally efficient than in semi-desert soil (brown semi-desert soil). The study results can serve to develop measures and managerial and technical solutions for remediation of oil-contaminated soils under various economic uses.

How to cite: Minnikova T.V., Kolesnikov S.I. Environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses // Journal of Mining Institute. 2025. Vol. 271. p. 84-94. EDN UOQKTG
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-10-28
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Radiation characteristics of coals at different stages of metamorphism

Article preview

The formation of deposits and subsequent metamorphic processes that affect concentrations of radioactive elements in coal can indicate ongoing geological activities, therefore, analyzing trends in the radiation characteristics of coal throughout the metamorphic series is highly relevant. The aim of this work is to experimentally evaluate the radiation characteristics of different coal ranks (metamorphic stages) using thermoluminescent (TL) dosimetry and beta activity measurements, and to identify correlations between these radiation characteristics and data obtained from technical, elemental, and thermogravimetric analyses, as well as mass spectrometric and electron paramagnetic resonance spectroscopy (EPR) measurements. For dosimetric measurements that indirectly characterize the content of radionuclides in coal, a modified dosimetric complex and original soil-equivalent thermoluminescent detectors based on SiO2 were used. The analysis of the obtained results supports the use of TL studies to determine the ash content of coals at low and medium stages of metamorphism (coal rank B→G), while indicating that this method is not feasible for coals at higher stages of metamorphism. The correlation dependencies in the metamorphism series suggest abrupt change in the conditions of coal formation during the time range corresponding to transformation from high to low volatile bituminous coals (coal rank G→Zh→K). These abrupt changes in regional metamorphism conditions (time, temperature, pressure, oxidation-reduction conditions) are confined to the boundary of the Permian and Triassic periods (~250 million years ago), during which both the transformation of existing coal deposits and the formation of new deposits occurred.

How to cite: Aluker N.L., Aduev B.P., Nurmukhametov D.R. Radiation characteristics of coals at different stages of metamorphism // Journal of Mining Institute. 2025. Vol. 271. p. 131-140. EDN GYZHWV
Economic Geology
  • Date submitted
    2024-03-18
  • Date accepted
    2024-11-07
  • Date published
    2025-01-14

Public-private partnership in the mineral resources sector of Russia: how to implement the classical model?

Article preview

A comparative financial and economic analysis is conducted of different public-private partnership (PPP) models for industrial infrastructure construction projects in an underdeveloped resource-rich region. The Stackelberg game theory-based model is used to build a parametrized family of bilevel mathematical programming models that describe an entire spectrum of partnership schemes. This approach enables a comparison of different strategies for the distribution of infrastructure investments between the government and the subsoil user and hence a scenario of transformation of Russia’s current PPP scheme into the classical partnership model, which is practiced in developed economies. To this end, a database is created on fifty polymetallic deposits in Transbaikalia, and a comparative analysis is conducted of Stackelberg-equilibrium development programs that implement different PPP models. The numerical experiment results show the classical PPP model to be most effective in the case of a budget deficit. The analysis helps assess the economic consequences of a gradual transformation of the partnership institution in industrial infrastructure construction from investor support in the Russian model to government support in the classical scheme. Intermediate partnership models, which act as a transitional institution, help reduce the budget burden. These models can be implemented by clustering the deposits, developing subsoil user consortia, and practicing shared construction of necessary transport and energy infrastructure. The intensification of horizontal connections between subsoil users creates favorable conditions for additional effects from the consolidation of resources and can serve as a foundation for a practical partnership scheme within the framework of the classical model.

How to cite: Lavlinskii S.M., Panin A.A., Plyasunov A.V. Public-private partnership in the mineral resources sector of Russia: how to implement the classical model? // Journal of Mining Institute. 2025. p. EDN VQCWOF
Economic Geology
  • Date submitted
    2024-07-28
  • Date accepted
    2024-11-26
  • Date published
    2024-12-12

From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry

Article preview

Achieving technological sovereignty implies accelerating innovation and reducing import dependence. An effective tool for addressing these challenges is local content policy (LCP). The purpose of this study is to assess the impact of LCP on innovation activity in oil and gas companies and to provide recommendations for enhancing the effectiveness of this policy in Russia. The paper analyzes the influence of LCP on innovation levels in the oil and gas sector, drawing on examples from 10 countries. A positive short-term impact of LCP on innovation was identified in Brazil, Malaysia, and Saudi Arabia, with long-term effects observed in China and South Africa. Recommendations for improving the effectiveness of LCP in Russia are supplemented with a methodology for calculating the level of technological sovereignty. A refinement of the method for solving the «responsiveness» problem, incorporating the level of localization, has been proposed.

How to cite: Zhdaneev O.V., Ovsyannikov I.R. From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry // Journal of Mining Institute. 2024. p. EDN KMCTLU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-10
  • Date accepted
    2024-10-14
  • Date published
    2024-11-12

The influence of ocean anoxia on conditions for the Domanik deposits formation

Article preview

The article considers one of conditions for the Domanik facies formation on the example of Tatarstan and Bashkortostan. The main emphasis is on the influence of anoxic paleobasin conditions on the high-carbon strata formation. A detailed study of the hydrocarbon composition of Domanik deposits made it possible to find characteristic biomarkers in their composition. They are based on the composition and structure of diagenetic products of biological compounds composing the sulphur bacteria living in anoxic/euxinic paleobasin conditions. Such compounds include C40 diaryl isoprenoids – isorenieratane and paleorenieratane. C10 tetramethylbenzenes also occupy a special place in the Domanik deposits study. Their appearance in the composition of organic matter of these deposits results from the transformation of sulphur bacteria compounds. Diaryl isoprenoids and tetramethylbenzenes are a reliable indicator of anoxic conditions of the Domanik deposits formation. The thermodynamic state of the hydrocarbon environment can be determined from the ratio of tetramethylbenzene isomers.

How to cite: Plotnikova I.N., Ostroukhov S.B., Pronin N.V. The influence of ocean anoxia on conditions for the Domanik deposits formation // Journal of Mining Institute. 2024. Vol. 269. p. 803-814. EDN YORQKB
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-16
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources

Article preview

The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.

How to cite: Kontorovich A.E., Burshtein L.M., Gubin I.A., Parfenova T.M., Safronov P.I. Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources // Journal of Mining Institute. 2024. Vol. 269. p. 721-737. EDN WDBEOS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-24
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

Study and justification of the combination of beneficiation processes for obtaining flake graphite from technogenic carbon-containing dusts

Article preview

The most important task of modern production development is to provide the mineral and raw materials sector of the economy with resources included in the list of strategic raw materials, including flake graphite. In addition to natural raw materials, the source of its obtaining can be metallurgical production wastes not involved in processing. Development of metallurgical dust beneficiation technology will solve the problem of obtaining high-purity flake graphite with a crystal structure close to ideal and in demand in the production of high-tech materials. It will allow creating a renewable raw material base of graphite and utilising metallurgical production wastes. The research included the study of dust beneficiation by coarseness, magnetic and flotation methods, the influence of dust disintegration processes on beneficiation indicators. Based on the established technological properties of the components of dusts, magnetic, flotation and gravity beneficiation methods can be applied for their separation in different sequence. It is shown that dusts from different sites have different enrichability by these methods, and it should be taken into account when developing a complex technology of their processing. The degree of beneficiation increases in a row of dusts from the blast furnace shop (BF) – electric steel smelting shop (ESS) – oxygen-converter shop (OCS). The method of grinding has a significant influence on the separation indicators – at dry grinding in a centrifugal-impact mill with subsequent pneumatic classification the quality of graphite concentrates increases by 22.7 % of carbon for BF dust and by 13.48 % of carbon for ESS dust. OCS dust beneficiation indicators are high at coarse grinding with steel medium – mass fraction of carbon 96.1 %.

How to cite: Orekhova N.N., Fadeeva N.V., Musatkina E.N. Study and justification of the combination of beneficiation processes for obtaining flake graphite from technogenic carbon-containing dusts // Journal of Mining Institute. 2024. Vol. 269. p. 777-788. EDN UNUYXS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-25
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

Specific features of kinetics of thermal transformation of organic matter in Bazhenov and Domanik source rocks based on results of pyrolysis gas chromatography

Article preview

Pyrolysis of organic matter with subsequent analysis of hydrocarbon composition of the resulting products allows obtaining multicomponent distribution spectra of the generation potential by the activation energies of reactions of kerogen transformation into hydrocarbons. Configuration of the spectra depends on the structure of kerogen and is individual for each type of organic matter. Studies of kerogen kinetics showed that the distribution of activation energies is unique for each oil source rocks. The kinetic model of thermal decomposition of kerogen of the same type, for example, marine planktonic (type II), can differ significantly in different sedimentary basins due to the multivariate relationship of chemical bonds and their reaction energy threshold. The developed method for calculating multicomponent kinetic spectra (four-component models are used) based on results of pyrolysis gas chromatography allows obtaining one of the most important elements of modelling the history of oil and gas generation in geological basins. Kinetic parameters of organic matter of oil and gas source rocks influence the onset time of generation and directly reflect differences in the composition and structure of different types of kerogens. The results of determining the kinetic parameters of two high-carbon source rocks occurring across the territory of three oil and gas basins are shown. Generation and updating of the data of kinetic models of certain oil and gas source rocks will increase the reliability of forecasting oil and gas potential using the basin modelling method.

How to cite: Mozhegova S.V., Gerasimov R.S., Paizanskaya I.L., Alferova A.A., Kravchenko E.M. Specific features of kinetics of thermal transformation of organic matter in Bazhenov and Domanik source rocks based on results of pyrolysis gas chromatography // Journal of Mining Institute. 2024. Vol. 269. p. 765-776. EDN FIMBWV
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-03
  • Date accepted
    2024-09-05
  • Date published
    2024-11-12

Platinum group elements as geochemical indicators in the study of oil polygenesis

Article preview

This study examines elements of the platinum group (PGE), primarily platinum and palladium, as geochemical indicators in the investigation of oil polygenesis. It has been found that, like other trace elements such as nickel, vanadium, and cobalt, platinum group elements and gold can occur in oil fields at both background levels and in elevated or even anomalously high concentrations. The objective of this research is to analyze PGE and trace elements as geochemical markers to identify the geological factors, including endogenous processes, responsible for these unusually high concentrations in oil. A comprehensive review of the literature on this subject was conducted, along with new data on the presence of precious metals in oils from Russia and globally. The study explores the geological mechanisms behind elevated PGE concentrations in oils, utilizing atomic absorption spectroscopy with atomization in the HGA-500 graphite furnace to measure PGE content. Previously, the tellurium co-deposition method (ISO 10478:1994) was used to isolate noble metals from associated elements. Possible geological origins of abnormally high concentrations of platinum metals in oils have been identified. These include endogenous factors such as the spatial proximity of oil fields to ultrabasic rock massifs, the effects of contact-metasomatic processes, and influences from mantle dynamics. Moreover, data concerning mantle elements can serve as indicators of the depth origins of certain hydrocarbon fluids, thus contributing to the study of oil polygenesis.

How to cite: Talovina I.V., Ilalova R.K., Babenko I.A. Platinum group elements as geochemical indicators in the study of oil polygenesis // Journal of Mining Institute. 2024. Vol. 269. p. 833-847. EDN UYYBSB
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-30
  • Date accepted
    2024-10-14
  • Date published
    2024-11-12

Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths

Article preview

The possibility of discovering oil and gas occurrences at great (more than 5 km) and super-great (more than 6 km) depths is considered in two aspects. The first one is the preservation conditions of large hydrocarbon accumulations forming at depths to 4 km and caused by different geological and tectonic processes occurring at great and super-great depths with partial oil-to-gas transformation. It was ascertained that among the factors controlling preservation of liquid and gaseous hydrocarbons are the temperature, pressure, subsidence rate (rate of temperature and pressure increase), time spent under ultrahigh thermobaric conditions, and initial composition of organic matter. The possibility of existence of liquid components of oil at great and super-great depths is characteristic of sedimentary basins of China, the Gulf of Mexico, the Santos and Campos basins on the Brazilian shelf, and in the Russian Federation it is most probable for the Caspian Depression, some submontane troughs and zones of intense accumulation of young sediments. Determination of critical temperatures and pressures of phase transitions and the onset of cracking is possible using the approach considered in the article, based on estimation of organic matter transformation degree, kinetic and thermobaric models taking into account the composition of hydrocarbon fluid. The second aspect is the estimation of composition of hydrocarbons associated with rocks forming at great depths or rocks transformed under conditions of critical temperatures and pressures. This aspect of considerable science intensity can hardly be considered as practically significant. The study focuses on the investigation of the possibilities of thermodynamic modelling and the use of alternative methods for studying the transformation degree of liquid formation fluid into components of the associated gas through the example of two areas with identified oil, condensate and gas accumulations.

How to cite: Prishchepa O.M., Lutskii D.S., Kireev S.B., Sinitsa N.V. Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths // Journal of Mining Institute. 2024. Vol. 269. p. 815-832. EDN CWLSTC
Editorial
  • Date submitted
    2024-10-29
  • Date accepted
    2024-10-29
  • Date published
    2024-11-12

Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths

Article preview

In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.

How to cite: Prishchepa O.M., Aleksandrova T.N. Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths // Journal of Mining Institute. 2024. Vol. 269. p. 685-686.
Economic Geology
  • Date submitted
    2023-11-15
  • Date accepted
    2024-09-24
  • Date published
    2024-12-25

Development and validation of an approach to the environmental and economic assessment of decarbonization projects in the oil and gas sector

Article preview

This article addresses the problem of selecting a priority decarbonization project for an oil and gas company aiming to reduce greenhouse gas emissions. The wide range of decarbonization options and assessment methods prompted the development of a comprehensive ranking system for project selection. This system incorporates both internal and external factors of project implementation, a two-stage algorithm that filters out unsuitable projects taking into account sustainable development goals, and a quantitative evaluation approach using absolute and relative indicators. The proposed system evaluates decarbonization projects by considering not only the reduction of emissions in both absolute and relative terms, but also the broader environmental, social, and economic aspects relevant to the oil and gas company and the national economy. It includes a ranking mechanism for identifying priority projects and integrates carbon regulation incentives and green taxonomy tools into the economic assessment for more precise comparative analysis. The quantitative assessment in absolute terms involves a specialized net present value calculation, which accounts for revenue from both carbon credit sales and the potential sale of new low-carbon products, if applicable. The proposed assessment provides for targeted analysis of specific performance indicators, such as the cost per unit of emissions reduced, tax and social security contributions per unit of emissions reduced, energy efficiency improvements, and other indicators used for additional assessments of projects under otherwise equal conditions.

How to cite: Sheveleva N.A. Development and validation of an approach to the environmental and economic assessment of decarbonization projects in the oil and gas sector // Journal of Mining Institute. 2024. Vol. 270. p. 1038-1055. EDN GAOTZW
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-06-17
  • Date accepted
    2024-07-17
  • Date published
    2024-10-03

Justification on the safe exploitation of closed coal warehouse by gas factor

Article preview

The annual increase of coal production and its demand lead to the necessity in temporary storage places (warehouses) organization to accommodate raw coal materials before the shipment. It is noted that at the open method of coal storing the dust emission from loading/unloading operations and from the pile surface effects negatively the health of the warehouse workers and adjacent territories. An alternative solution is closed-type warehouses . One of the main hazards of such coal storage can be the release of residual methane from coal segregates into the air after degassing processes during mining and extraction to the surface, as well as transportation to the place of temporary storage. The study carries the analysis of methane content change in coal during the processes of extraction, transportation and storage. Physical and chemical bases of mass transfer during the interaction between gas-saturated coal mass and air are studied. It is determined that the intensity of methane emission depends on: the coal seam natural gas content, parameters of mass transfer between coal, and air and the ambient temperature. The dynamics of coal mass gas exchange with atmospheric air is evaluated by approximate approach, which is based on two interrelated iterations. The first one considers the formation of methane concentration fields in the air space of the bulk volume and the second accounts the methane emission from the pile surface to the outside air. It is determined that safety of closed coal warehouses exploitation by gas factor can be ensured by means of artificial ventilation providing volumetric methane concentration in the air less than 1 %. The flow rate sufficient to achieve this methane concentration was obtained as a result of computer modeling of methane concentration fields formation in the air medium at theoretically calculated methane emission from the pile surface.

How to cite: Gendler S.G., Stepantsova A.Y., Popov M.M. Justification on the safe exploitation of closed coal warehouse by gas factor // Journal of Mining Institute. 2024. p. EDN SIJDWE
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-05
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Complete extraction of conditioned ores from complex-structured blocks due to partial admixture of substandard ores

Article preview

The paper presents mining-technological substantiation of complete extraction of conditioned ores from complex-structured blocks of benches by mixing a layer of substandard ores of certain sizes. The relevance of the work consists in the development of innovative methods of establishing the parameters of the substandard layer of ores to be added to the conditioned ores. The main problem is to ensure complete extraction of useful components into concentrate from shipped ore with acceptable deviations from the required ones. A new typification of complex-structured ore blocks of the bench has been carried out. Analytical dependences of mining and geological characteristics of complex-structured ore blocks were obtained. Theoretical dependences for determining the main indicators of mineral processing are derived. Analytical dependences for determination of the content of useful component in shipped ore α' – mixture of conditioned ore with the content of useful component α and admixed layer of substandard ore with the content of useful component α'' are offered. For the first time in mining science, a new approach of complete extraction of conditioned ores from complex-structured blocks of benches by grabbing a certain part of substandard ores during excavation, increasing the volume of extracted ore and expanding the extraction of useful components in the concentrate has been substantiated. The increment of useful components can reach 10-15 % of the total volume of extraction, which allows predicting a significant increase in the completeness of mineral extraction from the Earth's interior.

How to cite: Rakishev B.R. Complete extraction of conditioned ores from complex-structured blocks due to partial admixture of substandard ores // Journal of Mining Institute. 2024. Vol. 270. p. 919-930. EDN HNCZSX
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-13
  • Date accepted
    2024-09-05
  • Date published
    2024-11-12

Potential trace element markers of naphthogenesis processes: modeling and experimentation

Article preview

With the growing demand for hydrocarbon energy resources, there is a need to involve oil fields at deeper horizons in processing and increase the profitability of their development. Reduction of expenses on prospecting works is possible at revealing and substantiation of physicochemical markers of the naphthogenesis processes. One of the key markers is the transition metals content, which are both a measure of oil age and markers of potential associated processes in the migration and formation of hydrocarbons in the Earth's strata. The elemental composition of samples of oil and reservoir rocks of the Timan-Pechora field was studied. Based on the results of thermodynamic modeling, plausible processes of contact rock minerals transformation were proposed. Based on the results of molecular modeling the probable structure of vanadium and nickel host molecules in the heavy fraction of oils is proposed. The ratios of transition metal and sulfur contents were experimentally established, and assumptions about possible mechanisms of formation of deep hydrocarbon reservoirs were made. Analysis of the obtained ratios of transition metal contents in reservoir rocks and oil samples allowed to suggest possible processes of mantle fluids contact with the host rock and subsequent accumulation of hydrocarbons on sorption active rocks. According to the combined results of experimental and theoretical studies it was found that polymers of heavy fraction more selectively capture vanadium, which indicates the predominance of vanadium content in oil-bearing rocks in relation to the content of nickel. In this case, oil acts as a transport of transition metals, leaching them from the bedrock.

How to cite: Aleksandrova T.N., Kuznetsov V.V., Nikolaeva N.V. Potential trace element markers of naphthogenesis processes: modeling and experimentation // Journal of Mining Institute. 2024. Vol. 269. p. 687-699. EDN OXGNYL
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-04
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

Localization and involvement in development of residual recoverable reserves of a multilayer oil field

Article preview

During waterflooding of a multilayer oil field there is a constant deterioration of the structure and composition of residual reserves due to geological and technological reasons. The largest share of residual reserves is localized in pillars, which arise from uneven development of the production facility and are undrained or poorly drained zones. The results of a quantitative assessment of the distribution of residual oil reserves in the Middle and Upper Devonian deposits of the Romashkinskoe oil field of the Republic of Tatarstan are presented. A retrospective method is proposed to identify reserves by analyzing and summarizing historical exploration data and the long history of reservoir development, and a calculation algorithm is proposed to quantify them. It has been established that residual oil reserves are localized in rows of dividing and injection wells, as well as in the central rows of producing wells in a three-line drive, in abandoned and piezometric wells, in the areas adjacent to the zones of reservoir confluence, pinch-out, oil-bearing contours, distribution of reservoirs with deteriorated porosity and permeability properties. Depending on geological conditions, algorithms for selecting geological and technical measures to include localized reserves in development and forecasting production profiles were proposed. According to the proposed method, residual recoverable reserves were identified and a number of wells were recommended for experimental works on their additional recovery: in well 16 (hereinafter in the text, conventional well numbers are used) after isolation of overlying high-water-cut formations, the additional perforation was carried out and oil flow was obtained. Additional perforation in well 6 resulted in oil recovery during development as well. Thus, the developed approaches to identifying residual recoverable reserves and patterns of their spatial distribution can be recommended in other multilayer oil fields with a long history of development.

How to cite: Burkhanov R.N., Lutfullin A.A., Raupov I.R., Maksyutin A.V., Valiullin I.V., Farrakhov I.M., Shvydenko M.V. Localization and involvement in development of residual recoverable reserves of a multilayer oil field // Journal of Mining Institute. 2024. Vol. 268. p. 599-612. EDN DKXZSP
Geology
  • Date submitted
    2022-11-21
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

M1 formation tectono-structural features and gas-oil potential within Archinskaya area Paleozoic basement (Western Siberia)

Article preview

Western Siberian Plate basement oil and gas potential evaluation largely depends on structural and stratigraphic complex architecture representation. New modern procedures for seismic data processing, detailed Paleozoic deposits stratigraphic studies and expanded geophysical well logging significantly change the representation of the basement rocks fold-block structure and previously developed hydrocarbon reservoirs models. Detailed studies conducted within the Archinskii uplift showed that Paleozoic sediments form a contrasting folded structure complicated by block tectonics. The significant block displacements amplitude determines the lithological and stratigraphic basement rocks erosional-tectonic surface, while the identified stratigraphic blocks control the oil productivity distribution within the Archinskaya area. The filtration-capacity heterogeneity folded structure of the Paleozoic sediments is reflected in the distribution of hydrocarbon saturation in the well section, forming independent gas, oil, and oil-water zones for the development process. The relationship between anticlinal structural forms of basement rocks to lowered, and synclinal to elevated blocks, determines the necessity to conduct exploration prospecting within younger stratigraphic blocks when assessing the deep Paleozoic oil and gas potential.

How to cite: Belozerov V.B., Korovin M.O. M1 formation tectono-structural features and gas-oil potential within Archinskaya area Paleozoic basement (Western Siberia) // Journal of Mining Institute. 2024. Vol. 268. p. 520-534. EDN XDUIIJ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-27
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Normalized impulse response testing in underground constructions monitoring

Article preview

Impulse Response testing is a widespread geophysical technique of monolithic plate-like structures (foundation slabs, tunnel lining, and supports for vertical, inclined and horizontal mine shafts, retaining walls) contact state and grouting quality evaluation. Novel approach to data processing based on normalized response attributes analysis is presented. It is proposed to use the energy of the normalized signal calculated in the time domain and the normalized spectrum area and the average-weighted frequency calculated in the frequency domain as informative parameters of the signal. The proposed technique allows users a rapid and robust evaluation of underground structure’s grouting or contact state quality. The advantage of this approach is the possibility of using geophysical equipment designed for low strain impact testing of piles length and integrity to collect data. Experimental study has been carried out on the application of the technique in examining a tunnel lining physical model with a known position of the loose contact area. As examples of the application of the methodology, the results of the several monolitic structures of operating municipal and transport infrastructure underground structures survey are presented. The applicability of the technique for examining the grouting of the tunnel lining and the control of injection under the foundation slabs is confirmed. For data interpretation the modified three-sigma criteria and the joint analysis of the attribute’s behavior were successfully used. The features of the field work methodology, data collection and analysis are discussed in detail. Approaches to the techniques' development and its application in the framework of underground constructions monitoring are outlined. The issues arising during acoustic examination of reinforced concrete plate-like structures are outlined.

How to cite: Churkin A.A., Kapustin V.V., Pleshko M.S. Normalized impulse response testing in underground constructions monitoring // Journal of Mining Institute. 2024. Vol. 270. p. 963-976. EDN BPIOTO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-28
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Assessing the effectiveness of sewage sludge in the reclamation of disturbed areas in the Kola subarctic zone (a case study of a sand quarry)

Article preview

An assessment was made of the effectiveness of reclamation using sewage sludge for the accelerated formation of a stable erosion-proof vegetation cover on the unproductive anthropogenic soil of a sand quarry in the context of the Kola North. The experiment, launched in 2017, included three treatments: control – no treatment, experiment 1 – fragmentary (50 %) application of sewage sludge, experiment 2 – continuous application. In the sixth growing season, anthropogenic soil samples were examined, and measurements of CO2 emissions were carried out. It was shown that the application of sewage sludge had a positive effect on the physicochemical and agrochemical properties of the soils: in situ pH and density decreased, hygroscopicity increased, available phosphorus and potassium increased. Significant differences (p < 0.05) were found between CO2 emissions in the control and experimental treatments. The content of organic carbon in the control treatment was lower than in the experimental ones; under fragmentary application of sewage sludge, it was three times lower, and under continuous application, it was nine times lower. Significant (p < 0.05) differences in the content of carbon and nitrogen in cold and hot water extracts between control and treatment samples were found under continuous application of sewage sludge. At the same time, by calculating the C/N ratio, a very low level of nitrogen was found in the humus. The main factors behind the variability of the estimated parameters were identified – the treatment itself and the method of its application, the contribution of the treatment alone was 60 %, the contribution of the application method was 14 %. Taking into account the economic factors, fragmentary application of sewage sludge onto the anthropogenic sand quarry soil is recommended to support the establishment of a stable erosion-proof phytocenosis.

How to cite: Ivanova L.A., Slukovskaya M.V., Krasavtseva E.A. Assessing the effectiveness of sewage sludge in the reclamation of disturbed areas in the Kola subarctic zone (a case study of a sand quarry) // Journal of Mining Institute. 2024. Vol. 267. p. 444-452. EDN FNAPXK
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-29
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Potential use of water treatment sludge for the reclamation of small-capacity sludge collectors

Article preview

In small settlements, collectors for the sludge produced during water treatment processes are small-sized and located in the vicinity of drinking water storage reservoirs or in coastal areas. Sludge removal is not economical. Besides, the relief depressions formed after sludge disposal are required to be reclaimed. In ore mining regions, where the main settlements of the Urals are located, sludge produced in water treatment has high contents of heavy metals typical of ore mining provinces. Consequently, places of sludge accumulation are potential sources of water pollution. The article discusses the possibility to mix sludge with slaked lime and local overburden with the help of special equipment. So far water treatment sludge in the region has been used to reclaim the surface of solid waste landfills by creating anaerobic conditions for waste decomposition. When placed inside the embankment dams as an independent object, sludge needs to be improved for the increase of its bearing capacity and the ability to bind heavy metals. The article aims at the substantiation of the composition and properties of the reclamation material made of the water treatment sludge mixed with local overburden and slaked lime (technosoil). For this reason the paper describes the composition of the sludge in a sludge collector, the composition and properties of the overburden rocks as a component of the mixtures with water treatment sludge, the composition and properties of the mixtures of water treatment sludge with overburden rocks and Ca(OH)2 as a component dewatering sludge and neutralizing toxicants. Furthermore, the research work provides the technology created for the optimal processing of the water treatment sludge in the process of the reclamation of a sludge collector. The research results and the experience obtained in reclamation of disturbed lands in the region have confirmed the possible use of technosoil for the reclamation of small-capacity sludge collectors. The analysis of the chemical composition and physical and mechanical properties of the mixtures under study has shown that the most economical and environmentally sound reclamation material is a mixture of water treatment sludge, loose overburden dump soils and Ca(OH)2 in a ratio of 60 : 30 : 10 %.

How to cite: Guman O.M., Antonova I.A. Potential use of water treatment sludge for the reclamation of small-capacity sludge collectors // Journal of Mining Institute. 2024. Vol. 267. p. 466-476. EDN MSIDNU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-22
  • Date accepted
    2024-06-13
  • Date published
    2024-07-04

Comprehensive utilization of urban wastewater sludge with production of technogenic soil

Article preview

The article presents the analysis of the existing approach to wastewater sludge treatment and justifies the selection of the most promising management technology that allows maximum use of wastewater sludge resource po-tential. To obtain a useful product (biocompost) suitable for use as part of technogenic soil, experimental studies of aerobic stabilization of organic matter of dehydrated urban wastewater sludge with the addition of other waste by using passive composting technology were carried out. The technology is included in the list of best available technologies (BAT). The selection of the most optimal components for the mixture was based on the results of determining the C and N content, humidity and pH of the components used that ensured the composting of organic waste. The results of laboratory studies of the obtained biocompost according to the main agrochemical and sanitary-epidemiological indicators are presented. Testing was carried out according to the criterion of toxicity of the biocompost’s aqueous extract. The assessment of the technogenic soil was performed when using biocompost in its composition for compliance with existing hygienic requirements for soil quality in the Russian Federation. Based on the results of the vegetation experiment, optimal formulations of the technogenic soil were determined, i.e., the ratio of biocompost and sand, under which the most favorable conditions for plant growth are observed according to a combination of factors such as the number of germinated seeds, the maximum height of plants and the amount of biomass. The conducted research makes it possible to increase the proportion of recycled urban wastewater sludge in the future to obtain soils characterized by a high degree of nutrient availability for plants and potentially suitable for use in landscaping, the biological stage of reclamation of technogenically disturbed lands, as well as for growing herbaceous plants in open and protected soil.

How to cite: Bykova M.V., Malyukhin D.M., Nagornov D.O., Duka A.A. Comprehensive utilization of urban wastewater sludge with production of technogenic soil // Journal of Mining Institute. 2024. Vol. 267. p. 453-465. EDN IAYJKS
Geology
  • Date submitted
    2023-05-21
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

Assessment of the influence of lithofacies conditions on the distribution of organic carbon in the Upper Devonian “Domanik” deposits of the Timan-Pechora Province

Article preview

The study of high-carbon formations was instigated both by the decreasing raw material base of oil as a result of its extraction, and by the progress in development of low-permeability shale strata, primarily in the USA, Australia, and China. The most valuable formations occur in traditional hydrocarbon production areas – the West Siberian, Volga-Ural and Timan-Pechora, North Pre-Caucasian and Lena-Tunguska oil and gas provinces. Specific features of the Late Devonian-Early Carboniferous high-carbon formation occurring in the eastern marginal part of the East European Platform are: heterogeneous section due to intense progradation of the carbonate platform from west to east; succession of lithofacies environments that determined the unevenness of the primary accumulation and secondary distribution of organic matter (OM); possible migration or preservation in the source strata during the subsidence stages of the moving parts of bitumides, which determined the prospects for oil and gas potential. The distribution pattern of the present OM content was investigated depending on lithofacies conditions and lithological composition of rocks in the “Domanik type” Upper Devonian-Tournaisian deposits in the Timan-Pechora Province (TPP), its transformation degree to bring it to the initial content of organic carbon and further estimation of the share of stored “mobile oil” in oil and gas source formation. The study was based on the analysis of the data set on organic carbon content in core samples and natural exposures in the Ukhta Region in the Domanik-Tournaisian part of the section including more than 5,000 determinations presented in reports and publications of VNIGRI and VNIGNI and supplemented by pyrolytic and bituminological analyses associated with the results of microtomographic, macro- and lithological studies and descriptions of thin sections made at the Saint Petersburg Mining University. For each tectonic zone of the TPP within the investigated high-carbon intervals, the content of total volumes of organic carbon was determined. The data obtained allow estimating the residual mass of mobile bitumoids in a low-permeability matrix of the high-carbon formation.

How to cite: Prishchepa O.M., Sinitsa N.V., Ibatullin A.K. Assessment of the influence of lithofacies conditions on the distribution of organic carbon in the Upper Devonian “Domanik” deposits of the Timan-Pechora Province // Journal of Mining Institute. 2024. Vol. 268. p. 535-551. EDN JPUKCM
Economic Geology
  • Date submitted
    2024-01-18
  • Date accepted
    2024-05-02
  • Date published
    2024-12-25

Industrial clusters as an organizational model for the development of Russia petrochemical industry

Article preview

The article explores the challenges facing Russia petrochemical industry over the past decade and examines the reasons behind its significant lag compared to other industrialized nations. It presents a review of academic research on clusters accompanied by a comparative analysis, generalization, and consolidation of factors influencing the development of the petrochemical industry in Russia. It is argued that advancing the petrochemical industry from production plants to integrated production complexes necessitates a shift towards clustering, which will improve resource utilization efficiency, bolster product competitiveness, and reduce production costs. The article examines and consolidates key cluster concepts, encompassing definitions, characteristics, composition, and constituent elements. It also examines strategic documents guiding the development of the petrochemical sector, assesses the progress made in forming petrochemical clusters in Russia, and draws upon European and Asian experiences and government support tools in the domain of petrochemical clusters. The successful development of petrochemical clusters in Russia is argued to be strongly dependent on state initiatives and support for infrastructure development. Additionally, the presence of research organizations within clusters is crucial for fostering high-tech product innovation and forming an efficient value chain that integrates research and development with specific assets. When establishing petrochemical clusters in Russia, it is essential to consider the unique characteristics of each cluster, including the types of raw materials and resources used, the necessary infrastructure, and the specific support measures and incentives provided by the state.

How to cite: Ponomarenko T.V., Gorbatyuk I.G., Cherepovitsyn A.E. Industrial clusters as an organizational model for the development of Russia petrochemical industry // Journal of Mining Institute. 2024. Vol. 270. p. 1024-1037. EDN DESOAU
Geology
  • Date submitted
    2023-02-28
  • Date accepted
    2024-03-05
  • Date published
    2024-04-25

Assessment of the contribution of Precambrian deposits in forming the petroleum potential of the eastern part of the Volga-Urals basin using results of modeling

Article preview

Consideration is given to results of geochemical analysis of organic matter and oils of the Proterozoic (the RF-V complex) and the Paleozoic (the pay intervals D2, D3, C1-2) of the eastern part of the Volga-Urals petroleum basin. The obtained data is corroborated by results of 2D basin modeling along four regional profiles two of which are situated in the Kama and two in the Belaya parts of the Kama-Belaya aulacogen. An update is given to earlier data on degree of catagenetic alteration of oil/gas source rocks of the Riphean-Vendian play, maps of catagenesis are constructed. New evidence is provided concerning presence of Precambrian oils in the Paleozoic plays. The oils under investigation are mixed – those formed from generation products of the Precambrian (Riphean, Vendian) and Paleozoic (Devonian and Early Carboniferous) source rock intervals. The results of modeling have shown that the principal source rock intervals in the RF-V play of the Kama part of the Kama-Belaya aulacogen are deposits of the Kaltasy formation of the Lower Riphean and the Vereshchagino formation of the Upper Vendian, while in the Belaya part these are rocks of the Kaltasy, Kabakov, Olkhovo, Priyutovo, Shikhan and Leuza formations of the Riphean and the Staropetrovo formation of the Vendian. It is found that the interval of the main oil and gas window increases in the southeastward direction. In both depressions of the Kama-Belaya aulacogen, a single oil play is distinguished that functions within the stratigraphic interval from the Riphean to the Lower Carboniferous. As the principal petroleum source rock intervals within this play, Riphean-Vendian deposits are considered, reservoirs are confined to the Riphean carbonate complex, Upper Vendian and Middle Devonian clastic deposits, while the Upper Devonian – Tournaisian deposits serve as the upper seal.

How to cite: Kozhanov D.D., Bolshakova M. Assessment of the contribution of Precambrian deposits in forming the petroleum potential of the eastern part of the Volga-Urals basin using results of modeling // Journal of Mining Institute. 2024. Vol. 266. p. 199-217. EDN OCPXEH
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-14
  • Date accepted
    2023-12-27
  • Date published
    2024-12-25

Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons

Article preview

In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.

How to cite: Kusochkova E.V., Indrupskii I.M., Surnachev D.V., Alekseeva Y.V., Drozdov A.N. Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons // Journal of Mining Institute. 2024. Vol. 270. p. 904-918. EDN QBQQCT