Submit an Article
Become a reviewer
Vol 269
Pages:
803-814
Download volume:
RUS ENG

The influence of ocean anoxia on conditions for the Domanik deposits formation

Authors:
Irina N. Plotnikova1
Sergei B. Ostroukhov2
Nikita V. Pronin3
About authors
  • 1 — Ph.D., Dr.Sci. Director Institute of Advanced Studies, Academy of Sciences of the Republic of Tatarstan ▪ Orcid
  • 2 — Ph.D. Senior Researcher Institute of Advanced Studies, Academy of Sciences of the Republic of Tatarstan ▪ Orcid
  • 3 — Head of Laboratory OOO RN-BashNIPIneft ▪ Orcid
Date submitted:
2024-04-10
Date accepted:
2024-10-14
Date published:
2024-11-12

Abstract

The article considers one of conditions for the Domanik facies formation on the example of Tatarstan and Bashkortostan. The main emphasis is on the influence of anoxic paleobasin conditions on the high-carbon strata formation. A detailed study of the hydrocarbon composition of Domanik deposits made it possible to find characteristic biomarkers in their composition. They are based on the composition and structure of diagenetic products of biological compounds composing the sulphur bacteria living in anoxic/euxinic paleobasin conditions. Such compounds include C 40 diaryl isoprenoids – isorenieratane and paleorenieratane. C 10 tetramethylbenzenes also occupy a special place in the Domanik deposits study. Their appearance in the composition of organic matter of these deposits results from the transformation of sulphur bacteria compounds. Diaryl isoprenoids and tetramethylbenzenes are a reliable indicator of anoxic conditions of the Domanik deposits formation. The thermodynamic state of the hydrocarbon environment can be determined from the ratio of tetramethylbenzene isomers.

Keywords:
Domanik domanikites anoxia euxinia isorenieratane paleorenieratane tetramethylbenzenes oil sedimentation oil genesis
Go to volume 269

References

  1. Прищепа О.М., Аверьянова О.Ю. Понятийная база и первоочередные объекты нетрадиционного углеводородного сырья // Георесурсы, геоэнергетика, геополитика. 2014. № 2 (10). 11 с.
  2. Klemme H.D., Ulmishek G.F. Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors // American Association of Petroleum Geologists Bulletin. 1991. Vol. 75. Iss. 12. P. 1809-1851. DOI: 10.1306/0c9b2a47-1710-11d7-8645000102c1865d
  3. Takashima R., Nishi H., Huber B.T., Leckie R.M. Greenhouse World and the Mesozoic Ocean // Oceanography. 2006. Vol. 19. № 4. P. 82-92. DOI: 10.5670/oceanog.2006.07
  4. Тельнова О.П. Абиотические и биотические события на рубеже франского и фаменского веков // Вестник Института геологии Коми научного центра Уральского отделения РАН. 2008. № 6 (162). С. 2-6.
  5. Meyer K.M., Kump L.R. Oceanic Euxinia in Earth History: Causes and Consequences // Annual Review of Earth and Planetary Sciences. 2008. Vol. 36. P. 251-288. DOI: 10.1146/annurev.earth.36.031207.124256
  6. Tyson R.V., Pearson Т.Н. Modern and ancient continental shelf anoxia: an overview // Geological Society, London, Special Publications. 1991. Vol. 58. P. 1-24. DOI: 10.1144/GSL.SP.1991.058.01.01
  7. Buggisch W. The global Frasnian-Famennian «Kellwasser Event» // Geologische Rundschau. 1991. Vol. 80. Iss. 1. P. 49-72. DOI: 10.1007/BF01828767
  8. Carmichael S.K., Waters J.A., Königshof P. et al. Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression // Global and Planetary Change. 2019. Vol. 183. № 102984. DOI: 10.1016/j.gloplacha.2019.102984
  9. Zhuravlev A.V., Sokiran E.V. Frasnian-Famennian (Upper Devonian) transition in the northern hemisphere (NE Laurussia and NE Siberia) – an overview // Bulletin of Geosciences. 2020. Vol. 95. Iss. 4. P. 419-439. DOI: 10.3140/bull.geosci.1791
  10. Kotik I.S., Zhuravlev A.V., Maydl T.V. et al. Early-Middle Frasnian (Late Devonian) carbon isotope Event in the Timan-Pechora Basin (Chernyshev Swell, Pymvashor River section, North Cis-Urals, Russia) // Geologica Acta. 2021. Vol. 19. 17 p. DOI: 10.1344/geologicaacta2021.19.3
  11. Sageman В.В., Murphy А.Е., Werne J.P. et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin // Chemical Geology. 2003. Vol. 195. Iss. 1-4. P. 229-273. DOI: 10.1016/S0009-2541(02)00397-2
  12. Murphy A.E., Sageman В.В., Hollander D.J. et al. Black shale deposition and faunal overturn in the Devonian Appalachian basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling // Paleoceanography. 2000. Vol. 15. Iss. 3. P. 280-291. DOI: 10.1029/1999PA000445
  13. Прищепа О.М., Синица Н.В., Ибатуллин А.Х. Оценка влияния литолого-фациальных условий на распределение органического углерода в «доманиковых» верхнедевонских отложениях Тимано-Печорской провинции // Записки Горного института. 2024. Т. 268. С. 535-551.
  14. Prischepa O., Xu R., Martynov A. et al. Potential of High-Carbon Domanik (Upper Devonian) Shale Deposits: Timan-Pechora Oil and Gas Province Assessment // International Journal of Engineering. 2024. Vol. 37. № 8. P. 1639-1657. DOI: 10.5829/ije.2024.37.08b.16
  15. Formolo M.J., Riedinger N., Gill B.C. Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.) // Palaeogeography, Palaeoclimatology, Palaeoecology. 2014. Vol. 414. P. 146-154. DOI: 10.1016/j.palaeo.2014.08.024
  16. Jones B., Manning D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones // Chemical Geology. 1994. Vol. 111. Iss. 1-4. P. 111-129. DOI: 10.1016/0009-2541(94)90085-X
  17. Хаин В.Е., Полякова И.Д. Углеродистые металлоносные отложения и события океанской аноксии в фанерозойской истории Земли // Океанология. 2012. Т. 52. № 3. С. 423-436.
  18. Лукин А.Е. Черносланцевые формации эвксинского типа – мегаловушки природного газа // Геология и полезные ископаемые Мирового океана. 2013. № 4. С. 5-28.
  19. Briggs D.E.G., Summons R.E. Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life // BioEssays. 2014. Vol. 36. Iss. 5. P. 482-490. DOI: 10.1002/bies.201400010
  20. Brocks J.J., Grice K. Biomarkers (Molecular Fossils) / Encyclopedia of Geobiology. Springer, 2011. P. 147-167. DOI: 10.1007/978-1-4020-9212-1_30
  21. Jian Ma, Xingqian Cui. Aromatic carotenoids: Biological sources and geological implications // Geosystems and Geoenvironment. 2022. Vol. 1. Iss. 2. № 100045. DOI: 10.1016/j.geogeo.2022.100045
  22. Vogl К., Bryant D.A. Biosynthesis of the biomarker okenone: χ-ring formation // Geobiology. 2012. Vol. 10. Iss. 3. P. 205-215. DOI: 10.1111/j.1472-4669.2011.00297.x
  23. Vogl K., Bryant D.A. Elucidation of the Biosynthetic Pathway for Okenone in Thiodictyon sp. CAD16 Leads to the Discovery of Two Novel Carotene Ketolases // Journal of Biological Chemistry. 2011. Vol. 286. № 44. P. 38521-38532. DOI: 10.1074/jbc.M111.280131
  24. Hirabayashi H., Ishii T., Takaichi S. et al. The role of the carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaerobacteroides // Photochemistry and Photobiology. 2004. Vol. 79. Iss. 3. P. 280-285. DOI: 10.1111/j.1751-1097.2004.tb00396.x
  25. Overmann J., Cypionka H., Pfennig N. An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea // Limnology and Oceanography. 1992. Vol. 37. Iss. 1. P. 150-155. DOI: 10.4319/lo.1992.37.1.0150
  26. Niedzwiedzki D.M., Cranston L. Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids // Physical Chemistry Chemical Physics. 2015. Vol. 17. Iss. 20. P. 13245-13256. DOI: 10.1039/C5CP00836K
  27. Edge R., McGarvey D.J., Truscott T.G. The carotenoids as anti-oxidants – a review // Journal of Photochemistry and Photobiology B: Biology. 1997. Vol. 41. Iss. 3. P. 189-200. DOI: 10.1016/S1011-1344(97)00092-4
  28. Maresca J.A., Graham J.E., Bryant D.A. The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria // Photosynthesis Research. 2008. Vol. 97. Iss. 2. P. 121-140. DOI: 10.1007/s11120-008-9312-3
  29. Brocks J.J., Schaeffer P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation // Geochimica et Cosmochimica Acta. 2008. Vol. 72. Iss. 5. P. 1396-1414. DOI: 10.1016/j.gca.2007.12.006
  30. Остроухов С.Б., Плотникова И.Н., Носова Ф.Ф., Пронин Н.В. К вопросу о геохимических критериях изучения фациальных условий формирования сланцевых отложений // Георесурсы. 2015. № 3-1 (62). С. 42-47.
  31. Остроухов С.Б., Пронин Н.В., Плотникова И.Н., Хайртдинов Р.К. Новый метод «геохимического каротажа» для изучения доманиковых отложений // Георесурсы. 2020. Т. 22. № 3. С. 28-37. DOI: 10.18599/grs.2020.3.28-37
  32. Ostroukhov S.B., Plotnikova I.N., Nosova F.F. et al. Characteristic Features of the Composition and Structure of Crude Oils From the Pervomai and Romashkino Fields in Tatarstan // Chemistry and Technology of Fuels and Oils. 2015. Vol. 50. Iss. 6. P. 561-568. DOI: 10.1007/s10553-015-0564-2
  33. Смирнов М.Б., Полудеткина Е.Н., Фадеева Н.П. Свидетели аноксии в фотическом слое бассейна седиментации в нефтях Татарстана // Геохимия. 2019. Т. 64. № 6. С. 594-604. DOI: 10.31857/S0016-7525646594-604
  34. Бушнев Д.А. Геохимия органического вещества аноксических бассейнов // Вестник геонаук. 2022. № 2 (326). С. 3-1. DOI: 10.19110/geov.2022.2.1
  35. Бушнев Д.А., Бурдельная Н.С., Пономаренко Е.С., Зубова (Кирюхина) Т.А. Аноксия доманикового бассейна Тимано-Печорского региона // Литология и полезные ископаемые. 2016. № 4. С. 329-335. DOI: 10.7868/S0024497X16040029
  36. Смирнов М.Б., Фадеева Н.П., Полудеткина Е.Н. Распространение аноксичных условий в фотическом слое бассейна седиментации при формировании органического вещества доманиковых отложений северных и центральных районов Волго-Уральского НГБ // Геохимия. 2020. T. 65. № 3. С. 277-288. DOI: 10.31857/S0016752520030103
  37. Остроухов С.Б., Арефьев О.А., Макушина В.М. и др. Моноциклические ароматические углеводороды с изопреноидной цепью // Нефтехимия. 1982. Т. 22. С. 723-728.
  38. Koopmans M.P., Schouten S., Kohnen M.E.L., Sinninghe Damsté J.S. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia // Geochimica et Cosmochimica Acta. 1996. Vol. 60. Iss. 23. P. 4873-4876. DOI: 10.1016/S0016-7037(96)00303-1
  39. Hartgers W.A., Sinninghe Damsté J.S., Koopmans M.P., de Leeuw J.W. Sedimentary evidence for a diaromatic carotenoid with an unprecedented aromatic substitution pattern // Journal of the Chemical Society, Chemical Communications. 1993. Iss. 23. P. 1715-1716. DOI: 10.1039/C39930001715
  40. Hartgers W.A., Sinninghe Damsté J.S., Requejo A.G. et al. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids // Organic Geochemistry. 1994. Vol. 22. Iss. 3-5. P. 703-725. DOI: 10.1016/0146-6380(94)90134-1
  41. Clifford D.J., Clayton J.L., Sinninghe Damsté J.S. 2,3,6-/3,4,5-Trimethyl substituted diaryl carotenoid derivatives (Chlorobiaceae) in petroleums of the Belarussian Pripyat River Basin // Organic Geochemistry. 1998. Vol. 29. Iss. 5-7. P. 1253-1267. DOI: 10.1016/S0146-6380(98)00086-2
  42. French K.L., Rocher D., Zumberge J.E., Summons R.E. Assessing the distribution of sedimentary C40 carotenoids through time // Geobiology. 2015. Vol. 13. Iss. 2. P. 139-151. DOI: 10.1111/gbi.12126
  43. Ostroukhov S.B., Pronin N.V. Tetramethylbenzenes in Oils as New Geochemical Indicators to Establish Anoxic Sedimentation Conditions // Chemistry and Technology of Fuels and Oils. 2023. Vol. 59. Iss. 1. P. 40-46. DOI: 10.1007/s10553-023-01500-0
  44. Zhao-Wen Zhan, Guo-Xiang Wang, Yankuan Tian et al. Determination and petroleum geochemical significance of short-chain alkylbenzenes in lacustrine source rocks // Organic Geochemistry. 2023. Vol. 185. № 104685. DOI: 10.1016/j.orggeochem.2023.104685
  45. Bin Cheng, Tieguan Wang, Haiping Huang et al. Ratios of low molecular weight alkylbenzenes (C0–C4) in Chinese crude oils as indicators of maturity and depositional environment // Organic Geochemistry. 2015. Vol. 88. P. 78-90. DOI: 10.1016/j.orggeochem.2015.08.008

Similar articles

Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths
2024 Oleg M. Prishchepa, Tatyana N. Aleksandrova
Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics,estimation of hydrocarbon resources
2024 Aleksei E. Kontorovich, Lev M. Burshtein, Igor A. Gubin, Tatyana M. Parfenova, Pavel I. Safronov
On peculiarities of composition and properties of ancient hydrocarbon source rocks
2024 Mariya A. Bolshakova, Kseniya A. Sitar, Dmitrii D. Kozhanov
Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths
2024 Vladimir L. Trushko, Aleksandr O. Rozanov, Malik M. Saitgaleev, Dmitrii N. Petrov, Mikhail D. Ilinov, Daniil A. Karmanskii, Aleksandr A. Selikhov
Black shales – an unconventional source of noble metals and rhenium
2024 Elena G. Panova, Svyatoslav Yu. Engalychev, Yaroslav Yu. Fadin, Galina A. Oleinikova, Irina Yu. Tikhomirova
Specific features of kinetics of thermal transformation of organic matter in Bazhenov and Domanik source rocks based on results of pyrolysis gas chromatography
2024 Svetlana V. Mozhegova, Roman S. Gerasimov, Irina L. Paizanskaya, Anna A. Alferova, Elizaveta M. Kravchenko