The influence of ocean anoxia on conditions for the Domanik deposits formation
Abstract
The article considers one of conditions for the Domanik facies formation on the example of Tatarstan and Bashkortostan. The main emphasis is on the influence of anoxic paleobasin conditions on the high-carbon strata formation. A detailed study of the hydrocarbon composition of Domanik deposits made it possible to find characteristic biomarkers in their composition. They are based on the composition and structure of diagenetic products of biological compounds composing the sulphur bacteria living in anoxic/euxinic paleobasin conditions. Such compounds include C 40 diaryl isoprenoids – isorenieratane and paleorenieratane. C 10 tetramethylbenzenes also occupy a special place in the Domanik deposits study. Their appearance in the composition of organic matter of these deposits results from the transformation of sulphur bacteria compounds. Diaryl isoprenoids and tetramethylbenzenes are a reliable indicator of anoxic conditions of the Domanik deposits formation. The thermodynamic state of the hydrocarbon environment can be determined from the ratio of tetramethylbenzene isomers.
References
- Прищепа О.М., Аверьянова О.Ю. Понятийная база и первоочередные объекты нетрадиционного углеводородного сырья // Георесурсы, геоэнергетика, геополитика. 2014. № 2 (10). 11 с.
- Klemme H.D., Ulmishek G.F. Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors // American Association of Petroleum Geologists Bulletin. 1991. Vol. 75. Iss. 12. P. 1809-1851. DOI: 10.1306/0c9b2a47-1710-11d7-8645000102c1865d
- Takashima R., Nishi H., Huber B.T., Leckie R.M. Greenhouse World and the Mesozoic Ocean // Oceanography. 2006. Vol. 19. № 4. P. 82-92. DOI: 10.5670/oceanog.2006.07
- Тельнова О.П. Абиотические и биотические события на рубеже франского и фаменского веков // Вестник Института геологии Коми научного центра Уральского отделения РАН. 2008. № 6 (162). С. 2-6.
- Meyer K.M., Kump L.R. Oceanic Euxinia in Earth History: Causes and Consequences // Annual Review of Earth and Planetary Sciences. 2008. Vol. 36. P. 251-288. DOI: 10.1146/annurev.earth.36.031207.124256
- Tyson R.V., Pearson Т.Н. Modern and ancient continental shelf anoxia: an overview // Geological Society, London, Special Publications. 1991. Vol. 58. P. 1-24. DOI: 10.1144/GSL.SP.1991.058.01.01
- Buggisch W. The global Frasnian-Famennian «Kellwasser Event» // Geologische Rundschau. 1991. Vol. 80. Iss. 1. P. 49-72. DOI: 10.1007/BF01828767
- Carmichael S.K., Waters J.A., Königshof P. et al. Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression // Global and Planetary Change. 2019. Vol. 183. № 102984. DOI: 10.1016/j.gloplacha.2019.102984
- Zhuravlev A.V., Sokiran E.V. Frasnian-Famennian (Upper Devonian) transition in the northern hemisphere (NE Laurussia and NE Siberia) – an overview // Bulletin of Geosciences. 2020. Vol. 95. Iss. 4. P. 419-439. DOI: 10.3140/bull.geosci.1791
- Kotik I.S., Zhuravlev A.V., Maydl T.V. et al. Early-Middle Frasnian (Late Devonian) carbon isotope Event in the Timan-Pechora Basin (Chernyshev Swell, Pymvashor River section, North Cis-Urals, Russia) // Geologica Acta. 2021. Vol. 19. 17 p. DOI: 10.1344/geologicaacta2021.19.3
- Sageman В.В., Murphy А.Е., Werne J.P. et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin // Chemical Geology. 2003. Vol. 195. Iss. 1-4. P. 229-273. DOI: 10.1016/S0009-2541(02)00397-2
- Murphy A.E., Sageman В.В., Hollander D.J. et al. Black shale deposition and faunal overturn in the Devonian Appalachian basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling // Paleoceanography. 2000. Vol. 15. Iss. 3. P. 280-291. DOI: 10.1029/1999PA000445
- Прищепа О.М., Синица Н.В., Ибатуллин А.Х. Оценка влияния литолого-фациальных условий на распределение органического углерода в «доманиковых» верхнедевонских отложениях Тимано-Печорской провинции // Записки Горного института. 2024. Т. 268. С. 535-551.
- Prischepa O., Xu R., Martynov A. et al. Potential of High-Carbon Domanik (Upper Devonian) Shale Deposits: Timan-Pechora Oil and Gas Province Assessment // International Journal of Engineering. 2024. Vol. 37. № 8. P. 1639-1657. DOI: 10.5829/ije.2024.37.08b.16
- Formolo M.J., Riedinger N., Gill B.C. Geochemical evidence for euxinia during the Late Devonian extinction events in the Michigan Basin (U.S.A.) // Palaeogeography, Palaeoclimatology, Palaeoecology. 2014. Vol. 414. P. 146-154. DOI: 10.1016/j.palaeo.2014.08.024
- Jones B., Manning D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones // Chemical Geology. 1994. Vol. 111. Iss. 1-4. P. 111-129. DOI: 10.1016/0009-2541(94)90085-X
- Хаин В.Е., Полякова И.Д. Углеродистые металлоносные отложения и события океанской аноксии в фанерозойской истории Земли // Океанология. 2012. Т. 52. № 3. С. 423-436.
- Лукин А.Е. Черносланцевые формации эвксинского типа – мегаловушки природного газа // Геология и полезные ископаемые Мирового океана. 2013. № 4. С. 5-28.
- Briggs D.E.G., Summons R.E. Ancient biomolecules: Their origins, fossilization, and role in revealing the history of life // BioEssays. 2014. Vol. 36. Iss. 5. P. 482-490. DOI: 10.1002/bies.201400010
- Brocks J.J., Grice K. Biomarkers (Molecular Fossils) / Encyclopedia of Geobiology. Springer, 2011. P. 147-167. DOI: 10.1007/978-1-4020-9212-1_30
- Jian Ma, Xingqian Cui. Aromatic carotenoids: Biological sources and geological implications // Geosystems and Geoenvironment. 2022. Vol. 1. Iss. 2. № 100045. DOI: 10.1016/j.geogeo.2022.100045
- Vogl К., Bryant D.A. Biosynthesis of the biomarker okenone: χ-ring formation // Geobiology. 2012. Vol. 10. Iss. 3. P. 205-215. DOI: 10.1111/j.1472-4669.2011.00297.x
- Vogl K., Bryant D.A. Elucidation of the Biosynthetic Pathway for Okenone in Thiodictyon sp. CAD16 Leads to the Discovery of Two Novel Carotene Ketolases // Journal of Biological Chemistry. 2011. Vol. 286. № 44. P. 38521-38532. DOI: 10.1074/jbc.M111.280131
- Hirabayashi H., Ishii T., Takaichi S. et al. The role of the carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaerobacteroides // Photochemistry and Photobiology. 2004. Vol. 79. Iss. 3. P. 280-285. DOI: 10.1111/j.1751-1097.2004.tb00396.x
- Overmann J., Cypionka H., Pfennig N. An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea // Limnology and Oceanography. 1992. Vol. 37. Iss. 1. P. 150-155. DOI: 10.4319/lo.1992.37.1.0150
- Niedzwiedzki D.M., Cranston L. Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids // Physical Chemistry Chemical Physics. 2015. Vol. 17. Iss. 20. P. 13245-13256. DOI: 10.1039/C5CP00836K
- Edge R., McGarvey D.J., Truscott T.G. The carotenoids as anti-oxidants – a review // Journal of Photochemistry and Photobiology B: Biology. 1997. Vol. 41. Iss. 3. P. 189-200. DOI: 10.1016/S1011-1344(97)00092-4
- Maresca J.A., Graham J.E., Bryant D.A. The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria // Photosynthesis Research. 2008. Vol. 97. Iss. 2. P. 121-140. DOI: 10.1007/s11120-008-9312-3
- Brocks J.J., Schaeffer P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation // Geochimica et Cosmochimica Acta. 2008. Vol. 72. Iss. 5. P. 1396-1414. DOI: 10.1016/j.gca.2007.12.006
- Остроухов С.Б., Плотникова И.Н., Носова Ф.Ф., Пронин Н.В. К вопросу о геохимических критериях изучения фациальных условий формирования сланцевых отложений // Георесурсы. 2015. № 3-1 (62). С. 42-47.
- Остроухов С.Б., Пронин Н.В., Плотникова И.Н., Хайртдинов Р.К. Новый метод «геохимического каротажа» для изучения доманиковых отложений // Георесурсы. 2020. Т. 22. № 3. С. 28-37. DOI: 10.18599/grs.2020.3.28-37
- Ostroukhov S.B., Plotnikova I.N., Nosova F.F. et al. Characteristic Features of the Composition and Structure of Crude Oils From the Pervomai and Romashkino Fields in Tatarstan // Chemistry and Technology of Fuels and Oils. 2015. Vol. 50. Iss. 6. P. 561-568. DOI: 10.1007/s10553-015-0564-2
- Смирнов М.Б., Полудеткина Е.Н., Фадеева Н.П. Свидетели аноксии в фотическом слое бассейна седиментации в нефтях Татарстана // Геохимия. 2019. Т. 64. № 6. С. 594-604. DOI: 10.31857/S0016-7525646594-604
- Бушнев Д.А. Геохимия органического вещества аноксических бассейнов // Вестник геонаук. 2022. № 2 (326). С. 3-1. DOI: 10.19110/geov.2022.2.1
- Бушнев Д.А., Бурдельная Н.С., Пономаренко Е.С., Зубова (Кирюхина) Т.А. Аноксия доманикового бассейна Тимано-Печорского региона // Литология и полезные ископаемые. 2016. № 4. С. 329-335. DOI: 10.7868/S0024497X16040029
- Смирнов М.Б., Фадеева Н.П., Полудеткина Е.Н. Распространение аноксичных условий в фотическом слое бассейна седиментации при формировании органического вещества доманиковых отложений северных и центральных районов Волго-Уральского НГБ // Геохимия. 2020. T. 65. № 3. С. 277-288. DOI: 10.31857/S0016752520030103
- Остроухов С.Б., Арефьев О.А., Макушина В.М. и др. Моноциклические ароматические углеводороды с изопреноидной цепью // Нефтехимия. 1982. Т. 22. С. 723-728.
- Koopmans M.P., Schouten S., Kohnen M.E.L., Sinninghe Damsté J.S. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia // Geochimica et Cosmochimica Acta. 1996. Vol. 60. Iss. 23. P. 4873-4876. DOI: 10.1016/S0016-7037(96)00303-1
- Hartgers W.A., Sinninghe Damsté J.S., Koopmans M.P., de Leeuw J.W. Sedimentary evidence for a diaromatic carotenoid with an unprecedented aromatic substitution pattern // Journal of the Chemical Society, Chemical Communications. 1993. Iss. 23. P. 1715-1716. DOI: 10.1039/C39930001715
- Hartgers W.A., Sinninghe Damsté J.S., Requejo A.G. et al. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids // Organic Geochemistry. 1994. Vol. 22. Iss. 3-5. P. 703-725. DOI: 10.1016/0146-6380(94)90134-1
- Clifford D.J., Clayton J.L., Sinninghe Damsté J.S. 2,3,6-/3,4,5-Trimethyl substituted diaryl carotenoid derivatives (Chlorobiaceae) in petroleums of the Belarussian Pripyat River Basin // Organic Geochemistry. 1998. Vol. 29. Iss. 5-7. P. 1253-1267. DOI: 10.1016/S0146-6380(98)00086-2
- French K.L., Rocher D., Zumberge J.E., Summons R.E. Assessing the distribution of sedimentary C40 carotenoids through time // Geobiology. 2015. Vol. 13. Iss. 2. P. 139-151. DOI: 10.1111/gbi.12126
- Ostroukhov S.B., Pronin N.V. Tetramethylbenzenes in Oils as New Geochemical Indicators to Establish Anoxic Sedimentation Conditions // Chemistry and Technology of Fuels and Oils. 2023. Vol. 59. Iss. 1. P. 40-46. DOI: 10.1007/s10553-023-01500-0
- Zhao-Wen Zhan, Guo-Xiang Wang, Yankuan Tian et al. Determination and petroleum geochemical significance of short-chain alkylbenzenes in lacustrine source rocks // Organic Geochemistry. 2023. Vol. 185. № 104685. DOI: 10.1016/j.orggeochem.2023.104685
- Bin Cheng, Tieguan Wang, Haiping Huang et al. Ratios of low molecular weight alkylbenzenes (C0–C4) in Chinese crude oils as indicators of maturity and depositional environment // Organic Geochemistry. 2015. Vol. 88. P. 78-90. DOI: 10.1016/j.orggeochem.2015.08.008