Submit an Article
Become a reviewer

Search articles for by keywords:
plastic flow models

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-28
  • Date accepted
    2024-11-07
  • Date published
    2024-12-25

Methods of intensification of pipeline transportation of hydraulic mixtures when backfilling mined-out spaces

Article preview

The paper presents an analysis of the advantages and limitations of additional measures to intensify the transportation of the backfill hydraulic mixture flow. The results of the analysis of the conditions for using pumping equipment to move flows with different rheological properties are shown. Generalizations of the methods for influencing the internal resistance of backfill hydraulic mixtures by means of mechanical activation, as well as increasing fluidity due to the use of chemical additives are given. The article presents the results of studies confirming the feasibility of using pipes with polymer lining, which has proven its efficiency in pumping flows of hydraulic mixtures with different filler concentrations. An analytical model of hydraulic mixture movement in the pipeline of the stowage complex has been developed. The trends in pressure change required to ensure the movement of hydraulic mixture in pipelines of different diameters are exponential, provided that the flow properties are constant. The effect of particle size on the motion mode of the formed heterogeneous flow, as well as on the distribution of flow density over the cross-section, characterizing the stratification and change in the rheological properties of the backfill hydraulic mixture, is assessed. An analytical model of centralized migration of the dispersed phase of the hydraulic mixture flow is formulated, describing the effect of turbulent mixing of the flow on the behavior of solid particles. An assessment of the secondary dispersion of the solid fraction of the hydraulic mixture, which causes a change in the consistency of the flow, was performed. The studies of the influence of the coefficient of consistency of the flow revealed that overgrinding of the fractions of the filler of the hydraulic mixture contributes to an increase in the required pressure in the pipeline system.

How to cite: Vasilyeva M.A., Golik V.I., Zelentsova A.A. Methods of intensification of pipeline transportation of hydraulic mixtures when backfilling mined-out spaces // Journal of Mining Institute. 2024. p. EDN TJNVLR
Energy industry
  • Date submitted
    2023-11-10
  • Date accepted
    2024-06-03
  • Date published
    2025-02-25

Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations

Article preview

The objective of this study is to enhance user trust in electricity consumption forecasting systems for mining enterprises by applying explainable artificial intelligence methods that provide not only forecasts but also their justifications. The research object comprises a complex of mines and ore processing plants of a company purchasing electricity on the wholesale electricity and power market. Hourly electricity consumption data for two years, schedules of planned repairs and equipment shutdowns, and meteorological data were utilized. Ensemble decision trees were applied for time series forecasting, and an analysis of the impact of various factors on forecasting accuracy was conducted. An algorithm for interpreting forecast results using the SHapley Additive exPlanation method was proposed. The mean absolute percentage error was 7.84 % with consideration of meteorological factors, 7.41 % with consideration of meteorological factors and a load plan formulated by an expert, and the expert's forecast error was 9.85 %. The results indicate that the increased accuracy of electricity consumption forecasting, considering additional factors, further improves when combining machine learning methods with expert evaluation. The development of such a system is only feasible using explainable artificial intelligence models.

How to cite: Matrenin P.V., Stepanova A.I. Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations // Journal of Mining Institute. 2025. Vol. 271. p. 154-167. EDN DEFRIP
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-10-22
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

The mechanism and thermodynamics of ethyl alcohol sorption process on activated petroleum coke

Article preview

The low-quality petcoke does not find qualified application and is stockpiled at refineries or used as solid fuel. One of the promising ways to use low-quality petroleum coke is its physical or chemical activation in order to obtain a highly porous carbon material that can be used as a catalyst carrier, adsorbent, base for electrodes, etc. The possibility of using petroleum coke to produce sorbent for organic compounds was studied. The activated petroleum cake was obtained by chemical activation with KOH, a specific surface area is 1218 m2/g. Sorption of ethyl alcohol was studied at temperatures 285, 293 and 300 K. It is a physical process proceeding mainly in pores of activated petroleum coke, also sorption can be described as a reversible exothermic process. The effective Gibbs energy at a temperature of 293 K is –12.74 kJ/mol, the heat of sorption is –26.07 kJ/mol. The obtained data confirm that porous carbon material obtained from petroleum coke can be used as sorbent for ethanol at room temperature. For example, for adsorption of bioethanol from the effluent of the fermentation process or for purification of wastewater from organic compounds.

How to cite: Litvinova T.E., Tsareva A.A., Poltoratskaya M.E., Rudko V.A. The mechanism and thermodynamics of ethyl alcohol sorption process on activated petroleum coke // Journal of Mining Institute. 2024. Vol. 268. p. 625-636. EDN YUGLTO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-02
  • Date accepted
    2023-12-27
  • Date published
    2024-04-25

Justification of the approaches to improve management strategy of the mining system based on the analysis of data on the mining of complex structural rock blocks

Article preview

Long-term activity of mining enterprises causes the necessity to substantiate the strategies of management of the mining and technical system functioning in terms of improvement of ore quality control, which is determined by its change in the course of field development due to the priority development of the main reserves and, as a consequence, forced transition to the mining of complex structural rock blocks with a decrease in the recovery percentage, which is typical in case the ore component meets the requirements of the feasibility study in terms of grade at substandard capacity. In this case, it is possible to identify the recovery percentage and the potential for its increase by analyzing the long-term activity of the mining and industrial enterprise, namely, by analyzing the data of mining complex structural rock blocks with the subsequent establishment of the relationship between the primary data on mining and geological conditions and information on the quality of the mineral obtained from the technological equipment. Therefore, the purpose of the research was to substantiate the necessity of improving the management strategy of the mining-technical system functioning, which consists in the fact that on the basis of analyzing the mining data of complex structural rock blocks it is possible to determine the ore mass losses and their quantity and to lay the basis for the development of decisions on its extraction. For this purpose, the collected data on the mining of complex structural rock blocks, accounting the geological and industrial type of extracted ores, were considered in modeling the conditions and studying the parameters of technological processes, the implementation of which provides additional products. It was revealed that the ore mass from substandard thickness layers is delivered to the dumps, and ore mass losses have been estimated at 25-40 % per year. It is proved that determination of ore mass losses based on the analysis of data on mining of complex structural rock blocks, as well as timely solution of this issue can significantly increase the production efficiency of mining and technical system. Taking into account for the results obtained, the options for optimizing the production of the mining and engineering system were proposed.

How to cite: Tsupkina M.V., Kirkov A.E., Klebanov D.A., Radchenko D.N. Justification of the approaches to improve management strategy of the mining system based on the analysis of data on the mining of complex structural rock blocks // Journal of Mining Institute. 2024. Vol. 266. p. 316-325. EDN JOLUPJ
Geology
  • Date submitted
    2023-02-27
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Microstructural features of chromitites and ultramafic rocks of the Almaz-Zhemchuzhina deposit (Kempirsai massif, Kazakhstan) according to electron backscatter diffraction (EBSD) studies

Article preview

Microstructural features of the main rock-forming minerals of host ultramafic rocks (olivine, orthopyroxene) and chrome spinel from ores of the Almaz-Zhemchuzhina deposit were studied using the electron backscatter diffraction method. For ultramafic rocks, statistical diagrams of the crystallographic orientation of olivine and orthopyroxene were obtained, indicating the formation of a mineral association in conditions of high-temperature subsolidus plastic flow in the upper mantle. The main mechanisms were translation gliding and syntectonic recrystallization. Olivine deformation occurred predominantly along the (010)[100] and (001)[100] systems. The textural and structural features of chromitites reflect plastic flow processes, most pronounced in lenticular-banded ores. Microstructure maps in inverse pole figure encoding show differences in the grain size composition of the ores: areas consisting of disseminated chromitites are characterized by a finer-grained structure compared to lens-shaped segregations of a massive structure. Analysis of microstructure maps shows that during the transition from disseminated to massive ores, there is a widespread development of recrystallization, adaptation of neighbouring grains to each other, resulting in homogenization of crystallographic orientation in aggregates. The data obtained develop ideas about the rheomorphic nature of chromitite segregations in ophiolite dunites. It is assumed that the coarsening of the structure of massive chromitites is critically associated with an increase in the concentration of ore grains during solid-phase segregation within a plastic flow, when individual chrome spinel grains, initially separated by silicate material, begin to come into direct contact with each other.

How to cite: Saveliev D.E., Sergeev S.N., Makatov D.K. Microstructural features of chromitites and ultramafic rocks of the Almaz-Zhemchuzhina deposit (Kempirsai massif, Kazakhstan) according to electron backscatter diffraction (EBSD) studies // Journal of Mining Institute. 2024. Vol. 266. p. 218-230. EDN FJNEDQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-01-21
  • Date accepted
    2023-09-20
  • Date published
    2023-12-25

Adaptation of transient well test results

Article preview

Transient well tests are a tool for monitoring oil recovery processes. Research technologies implemented in pumping wells provide for a preliminary conversion of measured parameters to bottomhole pressure, which leads to errors in determining the filtration parameters. An adaptive interpretation of the results of well tests performed in pumping wells is proposed. Based on the original method of mathematical processing of a large volume of field data for the geological and geophysical conditions of developed pays in oil field, multidimensional models of well flow rates were constructed including the filtration parameters determined during the interpretation of tests. It is proposed to consider the maximum convergence of the flow rate calculated using a multidimensional model and the value obtained during well testing as a sign of reliability of the filtration parameter. It is proposed to use the analysis of the developed multidimensional models to assess the filtration conditions and determine the individual characteristics of oil flow to wells within the pays. For the Bashkirian-Serpukhovian and the Tournaisian-Famennian carbonate deposits, the influence of bottomhole pressure on the well flow rates has been established, which confirms the well-known assumption about possible deformations of carbonate reservoirs in the bottomhole areas and is a sign of physicality of the developed multidimensional models. The advantage of the proposed approach is a possibility of using it to adapt the results of any research technology and interpretation method.

How to cite: Martyushev D.A., Ponomareva I.N., Shen W. Adaptation of transient well test results // Journal of Mining Institute. 2023. Vol. 264. p. 919-925. EDN VHGTUT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-30
  • Date accepted
    2023-04-03
  • Date published
    2024-02-29

Optimization of the location of a multilateral well in a thin oil rim, complicated by the presence of an extensive gas cap

Article preview

The specific share of the reserves of hard-to-recover hydrocarbon raw materials is steadily growing. The search for technologies to increase the hydrocarbon recovery factor is one of the most urgent tasks facing the oil and gas industry. One of the methods to expand the coverage of oil reserves and increase oil recovery is to use the technology of drilling multilateral wells with a fishbone trajectory. In the Russian Federation, the most branched well was drilled in the Republic of Sakha (Yakutia) at the Srednebotuobinskoye oil and gas condensate field. The main object of development is the Botuobinsky horizon (Bt reservoir). About 75 % of the geological reserves of the reservoir are concentrated in a thin oil rim with an average oil-saturated layer thickness of 10 m with an extensive gas cap. This circumstance is one of the main complicating factors in the development of the Srednebotuobinskoye oil and gas condensate field. For such complex wells, one of the most important design stages is to determine the optimal location of the fishbone well in an oil-saturated reservoir. The article shows the results of sector modeling in the conditions of the Srednebotuobinskoye field to determine the optimal location of multilateral wells using Tempest simulator.

How to cite: Тomskii К.О., Ivanova M.S. Optimization of the location of a multilateral well in a thin oil rim, complicated by the presence of an extensive gas cap // Journal of Mining Institute. 2024. Vol. 265. p. 140-146. EDN XOVEYF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-27
  • Date accepted
    2023-04-03
  • Date published
    2023-12-25

The study of displacing ability of lignosulfonate aqueous solutions on sand packed tubes

Article preview

This paper presents the findings of laboratory studies of rheological properties and oil displacing ability of aqueous solutions of technical grade lignosulfonate done on the sand packed tube models. The solutions containing lignosulfonate can be useful as displacement agents in development of watered reservoirs with heterogeneous porosity and permeability. When used at high concentrations, technical grade lignosulfonate can achieve selective shut-off while maintaining the reservoir pressure. The oil displacement efficiency is improved by means of redistributing the flows and selective isolation of high-permeability zones. The use of such compositions allows increasing the sweep of low-permeability reservoir zones by created pressure differential and displacing the residual oil.

How to cite: Dorfman M.B., Sentemov A.А., Belozerov I.P. The study of displacing ability of lignosulfonate aqueous solutions on sand packed tubes // Journal of Mining Institute. 2023. Vol. 264. p. 865-873. EDN DZDUVM
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-06-20
  • Date accepted
    2023-01-10
  • Date published
    2023-08-28

Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir

Article preview

Results are discussed for evaluation of effectiveness of the cyclic geomechanical treatment (CGT) on a Tournaisian carbonate reservoir. Analysis of laboratory experiments performed according to a special program to assess permeability changes for Tournaisian samples under cyclic changes in pore pressure is presented. The main conclusion is the positive selectivity of the CGT: an increase in permeability is observed for samples saturated with hydrocarbons (kerosene) with connate water, and maximal effect is related to the tightest samples. For water-saturated samples, the permeability decreases after the CGT. Thus, the CGT improves the drainage conditions for tight oil-saturated intervals. It is also confirmed that the CGT reduces the fracturing pressure in carbonate reservoirs. Using flow simulations on detailed sector models taking into account the results of laboratory experiments, a possible increase in well productivity index after CGT with different amplitudes of pressure variation was estimated. Results of a pilot CGT study on a well operating a Tournaisian carbonate reservoir are presented, including the interpretation of production logging and well testing. The increase in the well productivity index is estimated at 44-49 % for liquid and at 21-26 % for oil, with a more uniform inflow profile after the treatment. The results of the field experiment confirm the conclusions about the mechanisms and features of the CGT obtained from laboratory studies and flow simulations.

How to cite: Indrupskiy I.M., Ibragimov I.I., Tsagan-Mandzhiev T.N., Lutfullin A.A., Chirkunov A.P., Shakirov R.I., Alekseeva Y.V. Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir // Journal of Mining Institute. 2023. Vol. 262. p. 581-593. DOI: 10.31897/PMI.2023.5
Economic Geology
  • Date submitted
    2022-06-28
  • Date accepted
    2023-01-19
  • Date published
    2023-02-27

Influence of mining rent on the efficiency of using natural potential: the paradox of plenty and its Russian specifics

Article preview

The most powerful potential of Russia's natural resources is only partially realized, and determining the reasons for the insufficient efficiency of its use is a current research topic. The exploitation of mineral resources that bring mining rent (primarily oil and gas) gives rise to the so-called “paradox of plenty” (PP), which in some cases manifests itself as a significant slowdown in economic development. The purpose of the article is to clarify the signs, degree and forms of PP manifestation and related problems (“resource curse”, “oil curse”, etc.) in the Russian economy. Since the causes of these phenomena are usually associated with rent extraction and peculiarities of the institutional structure of the economy, the works of leading economists who support the theories of “rent-oriented behavior” and the role of public institutions in the process of the PP emergence were critically analyzed. To determine the signs and degree of PP manifestation and related problems, an analysis of determining the shares of oil and gas in the structure of exports, revenues from their sale in the federal budget, and oil and gas products in the structure of GDP, was made. It is concluded that there are no sufficient grounds for ascertaining clear signs of a “rent-oriented” Russian economy and a “resource curse”; important counteracting factors that refute the unambiguous conclusions about the high degree of PP impact on the Russian economy were identified. The author's interpretation of the role of public institutions, the factors of formation and forms of PP manifestation, the specifics of differential mining rent and its role in the formation of PP are proposed; options for solving problems generated by PP – directions for improving the tax system in the field of oil and gas, etc.; substantiation of the need to develop a strategic state program for diversifying the sectoral structure of the Russian economy; directions for adjusting economic policy in the field of oil and gas industry development, etc.

How to cite: Lapinskas A.A. Influence of mining rent on the efficiency of using natural potential: the paradox of plenty and its Russian specifics // Journal of Mining Institute. 2023. Vol. 259. p. 79-94. DOI: 10.31897/PMI.2023.13
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-07-15
  • Date accepted
    2022-12-13
  • Date published
    2023-02-27

Mathematical modelling of displacement during the potash ores mining by longwall faces

Article preview

In favourable mining conditions, in particular at the Starobinskoye potash deposit (Belarus), longwall mining systems are used. They cause a high human-induced load on the subsoil, including intense deformation of the ground surface. The presented investigations are aimed at studying the dynamics of the ground surface displacement during the longwall face advance. Mathematical modelling was carried out in an elastic-plastic formulation with numerical implementation by the finite element method. The condition for the roof rocks collapse was opening of the contact between the seams when its boundaries were reached by shear fractures or formation of the tensile stresses area at the outcrop. With the working front advance, an increase in subsidence is observed, followed by its stabilization to a value determined by the process parameters of mining operations and the physical and mechanical properties of collapsed rocks. In this case, each point of the ground surface experiences sign-alternating horizontal deformations: when the front approaches, it causes tension, and when it moves away, compression. The obtained results of mathematical modelling are in good agreement with the data of instrumental measurements of the ground surface displacements, which indicates the adequate description of the rock mass deformation during the slice excavation of sylvinite seams by longwall faces.

How to cite: Baryakh A.A., Devyatkov S.Y., Denkevich E.T. Mathematical modelling of displacement during the potash ores mining by longwall faces // Journal of Mining Institute. 2023. Vol. 259. p. 13-20. DOI: 10.31897/PMI.2023.11
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-03-24
  • Date accepted
    2022-12-15
  • Date published
    2023-08-28

Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit

Article preview

Geomechanical monitoring of the rock mass state is an actively developing branch of geomechanics, in which it is impossible to distinguish a single methodology and approaches for solving problems, collecting and analyzing data when developing seismic monitoring systems. During mining operations, all natural factors are subject to changes. During the mining of a rock mass, changes in the state of structural inhomogeneities are most clearly manifested: the existing natural structural inhomogeneities are revealed; there are movements in discontinuous disturbances (faults); new man-made disturbances (cracks) are formed, which are accompanied by changes in the natural stress state of various blocks of the rock mass. The developed method for evaluating the results of monitoring geomechanical processes in the rock mass on the example of the United Kirovsk mine of the CF AO Apatit allowed to solve one of the main tasks of the geomonitoring system – to predict the location of zones of possible occurrence of dangerous manifestations of rock pressure.

How to cite: Gospodarikov A.P., Revin I.E., Morozov K.V. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit // Journal of Mining Institute. 2023. Vol. 262. p. 571-580. DOI: 10.31897/PMI.2023.9
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-12
  • Date accepted
    2022-09-15
  • Date published
    2022-12-29

Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well

Article preview

Modern drilling fluids are non-linear viscous media with an initial shear stress. In classical scientific works on hydromechanical modeling of drilling fluids motion in pipes and annular channels the Shvedov – Bingham approximation and Ostwald – de Waale power-law model were used, which did not fully account for behavior of technological fluids in a wide range of shear rates. This article presents a numerical solution for a mathematical model of drilling fluid motion of the three-parameter Herschel – Bulkley rheological model in the annular space of the well. The Herschel – Bulkley model in the rheological equation takes into account the presence of initial shear stress and a tendency for viscosity to change with shear rate, which distinguishes it from the Ostwald – de Waale and Shvedov – Bingham models. The target function in solving the equation of motion is the velocity distribution in the radial direction of the upward flow of the flushing fluid. The analysis of obtained solution is based on the theory of velocity profile influence on quality of cuttings removal during wellbore cleaning. Due to peculiarities of mathematical statement of the task, which supposes necessity of differential equation of motion solution, Wolfram Mathematica computational software has been used as a calculation tool. The analysis of numerical solution allowed to draw conclusions about the possibility of its application in evaluation of velocity profile when drilling fluid moves in annular space of the well. The possibility for application of modified excess coefficient as a relative quantitative parameter for evaluation of velocity profile uniformity was substantiated.

How to cite: Nikitin V.I. Problem solution analysis on finding the velocity distribution for laminar flow of a non-linear viscous flushing fluid in the annular space of a well // Journal of Mining Institute. 2022. Vol. 258. p. 964-975. DOI: 10.31897/PMI.2022.93
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-05-13
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing

Article preview

Hydraulic fracturing is an effective way to stimulate oil production, which is currently widely used in various conditions, including complex carbonate reservoirs. In the conditions of the considered field, hydraulic fracturing leads to a significant differentiation of technological efficiency indicators, which makes it expedient to study in detail the crack formation patterns. For all affected wells, the assessment of the resulting fractures spatial orientation was performed using the developed indirect technique, the reliability of which was confirmed by geophysical methods. In the course of the analysis, it was found that in all cases the fracture is oriented in the direction of the development system element area, which is characterized by the maximum reservoir pressure. At the same time, reservoir pressure values for all wells were determined at one point in time (at the beginning of hydraulic fracturing) using machine learning methods. The reliability of the used machine learning methods is confirmed by high convergence with the actual (historical) reservoir pressures obtained during hydrodynamic studies of wells. The obtained conclusion about the influence of the formation pressure on the patterns of fracturing should be taken into account when planning hydraulic fracturing in the considered conditions.

How to cite: Filippov Е.V., Zakharov L.A., Martyushev D.A., Ponomareva I.N. Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing // Journal of Mining Institute. 2022. Vol. 258. p. 924-932. DOI: 10.31897/PMI.2022.103
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-19
  • Date accepted
    2022-05-13
  • Date published
    2022-07-13

Development of a pump-ejector system for SWAG injection into reservoir using associated petroleum gas from the annulus space of production wells

Article preview

Implementation of SWAG technology by means of water-gas mixtures is a promising method of enhanced oil recovery. The use of associated petroleum gas as a gas component in the water-gas mixture allows to significantly reduce the amount of irrationally consumed gas and carbon footprint. Relevant task is to choose a simple, reliable and convenient equipment that can operate under rapidly changing operating conditions. Such equipment are pump-ejector systems. In order to create water-gas mixture it is proposed to use associated gas from the annulus space. This solution will reduce the pressure in the annulus space of the production well, prevent supply disruption and failure of well equipment. The paper presents a principal technological scheme of the pump-ejector system, taking into account the withdrawal of gas from the annulus space of several production wells. The layout of the proposed system enables more efficient implementation of the proposed technology, which expands the area of its application. Experimental investigations of pressure and energy characteristics of the ejector have been carried out. Analysis of the obtained data showed that it was possible to increase the value of maximum efficiency. The possibility of adapting the system in a wide range of changes in operating parameters has been established. Recommendations on selection of a booster pump depending on the values of working pressure and gas content are given.

How to cite: Drozdov A.N., Gorelkina Е.I. Development of a pump-ejector system for SWAG injection into reservoir using associated petroleum gas from the annulus space of production wells // Journal of Mining Institute. 2022. Vol. 254. p. 191-201. DOI: 10.31897/PMI.2022.34
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-16
  • Date accepted
    2022-04-07
  • Date published
    2022-07-13

The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis

Article preview

The article reviews the issues concerned with correctness of the engineering-geological and hydrogeological assessment of the Upper Kotlin clays, which serve as the foundation or host medium for facilities of various applications. It is claimed that the Upper Kotlin clays should be regarded as a fissured-block medium and, consequently, their assessment as an absolutely impermeablestratum should be totally excluded. Presence of a high-pressure Vendian aquifer in the lower part of the geological profile of the Vendian sediments causes inflow of these saline waters through the fissured clay strata, which promotes upheaval of tunnels as well as corrosion of their lining. The nature of the corrosion processes is defined not only by the chemical composition and physical and chemical features of these waters, but also by the biochemical factor, i.e. the availability of a rich microbial community. For the first time ever, the effect of saline water inflow into the Vendian complex on negative transformation of the clay blocks was studied. Experimental results revealed a decrease in the clay shear resistance caused by transformation of the structural bonds and microbial activity with the clay’s physical state being unchanged. Typification of the Upper Kotlin clay section has been performed for the region of Saint Petersburg in terms of the complexity of surface and underground building conditions. Fissuring of the bedclays, the possibility of confined groundwater inflow through the fissured strata and the consequent reduction of the block strength as well as the active corrosion of underground load-bearing structures must be taken into account in designing unique and typical surface and underground facilities and have to be incorporated into the normative documents.

How to cite: Dashko R.E., Lokhmatikov G.A. The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis // Journal of Mining Institute. 2022. Vol. 254. p. 180-190. DOI: 10.31897/PMI.2022.13
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-14
  • Date accepted
    2022-04-07
  • Date published
    2022-04-29

The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow

Article preview

The results of the analysis of statistical data on accidents at Russian mines caused by explosions in the workings space have shown that explosions of methane-dust-air mixtures at underground coal mines are the most severe accidents in terms of consequences. A detailed analysis of literature sources showed that in the total number of explosions prevails total share of hybrid mixtures, i.e. with the simultaneous participation of gas (methane) and coal dust, as well as explosions with the possible or partial involvement of coal dust. The main causes contributing to the occurrence and development of dust-air mixture explosions, including irregular monitoring of by mine engineers and technicians of the schedule of dust explosion protective measures; unreliable assessment of the dust situation, etc., are given. The main problem in this case was the difficulty of determining the location and volume of dust deposition zones in not extinguished and difficult to access for instrumental control workings. Determination of the class-shape of coal dust particles is a necessary condition for constructing a model of the dust situation reflecting the aerosol distribution in the workings space. The morphological composition of coal mine dust fractions with dispersion less than 0.1 has been studied. Particle studies conducted using an LEICA DM 4000 optical microscope and IMAGE SCOPE M software made it possible to establish the different class-shapes of dust particles found in operating mines. It was found that the coal dust particles presented in the samples correspond to the parallelepiped shape to the greatest extent. The mathematical model based on the specialized ANSYS FLUENT complex, in which this class-form is incorporated, is used for predicting the distribution of explosive and combustible coal dust in the workings space. The use of the obtained model in production conditions will allow to determine the possible places of dust deposition and to develop measures to prevent the transition of coal dust from the aerogel state to the aerosol state and thereby prevent the formation of an explosive dust-air mixture.

How to cite: Smirnyakov V.V., Rodionov V.A., Smirnyakova V.V., Orlov F.A. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow // Journal of Mining Institute. 2022. Vol. 253. p. 71-81. DOI: 10.31897/PMI.2022.12
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-09-22
  • Date accepted
    2022-03-24
  • Date published
    2022-04-29

Predicting dynamic formation pressure using artificial intelligence methods

Article preview

Determining formation pressure in the well extraction zones is a key task in monitoring the development of hydrocarbon fields. Direct measurements of formation pressure require prolonged well shutdowns, resulting in underproduction and the possibility of technical problems with the subsequent start-up of wells. The impossibility of simultaneous shutdown of all wells of the pool makes it difficult to assess the real energy state of the deposit. This article presents research aimed at developing an indirect method for determining the formation pressure without shutting down the wells for investigation, which enables to determine its value at any time. As a mathematical basis, two artificial intelligence methods are used – multidimensional regression analysis and a neural network. The technique based on the construction of multiple regression equations shows sufficient performance, but high sensitivity to the input data. This technique enables to study the process of formation pressure establishment during different periods of deposit development. Its application is expedient in case of regular actual determinations of indicators used as input data. The technique based on the artificial neural network enables to reliably determine formation pressure even with a minimal set of input data and is implemented as a specially designed software product. The relevant task of continuing the research is to evaluate promising prognostic features of artificial intelligence methods for assessing the energy state of deposits in hydrocarbon extraction zones.

How to cite: Zakharov L.А., Martyushev D.А., Ponomareva I.N. Predicting dynamic formation pressure using artificial intelligence methods // Journal of Mining Institute. 2022. Vol. 253. p. 23-32. DOI: 10.31897/PMI.2022.11
Mining
  • Date submitted
    2020-12-16
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Features of the thermal regime formation in the downcast shafts in the cold period of the year

Article preview

In the cold period of the year, to ensure the required thermal regime in underground mine workings, the air supplied to the mine is heated using air handling systems. In future, the thermodynamic state of the prepared air flow when it is lowered along the mine shaft changes due to the influence of a number of factors. At the same time, the processes of heat and mass exchange between the incoming air and its environment are of particular interest. These processes directly depend on the initial parameters of the heated air, the downcast shaft depth and the presence of water flows into the mine shaft. Based on the obtained experimental data and theoretical studies, the analysis of the influence of various heat and mass transfer factors on the formation of microclimatic parameters of air in the downcast shafts of the Norilsk industrial district mines is carried out. It is shown that in the presence of external water flows from the flooded rocks behind the shaft lining, the microclimatic parameters of the air in the shaft are determined by the heat transfer from the incoming air flow to the underground water flowing down the downcast shaft lining. The research results made it possible to describe and explain the effect of lowering the air temperature entering the underground workings of deep mines

How to cite: Zaitsev A.V., Semin M.A., Parshakov O.S. Features of the thermal regime formation in the downcast shafts in the cold period of the year // Journal of Mining Institute. 2021. Vol. 250. p. 562-568. DOI: 10.31897/PMI.2021.4.9
Mining
  • Date submitted
    2020-11-16
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Determination and verification of the calculated model parameters of salt rocks taking into account softening and plastic flow

Article preview

The article suggests using a combination of the modified Burgers model and the Mohr – Coulomb model with the degradation of the adhesion coefficient and the increase in the friction coefficient to determine the parameters of salt rocks. A comparative analysis of long-term laboratory tests and field observations in underground mine workings with the results obtained using a calculated model with certain parameters is carried out. The parameters of the Mohr – Coulomb model with the degradation of the adhesion coefficient and the increase in the friction coefficient were obtained from the statistically processed data of laboratory tests, and the parameters of the modified Burgers model were determined. Using numerical methods, virtual (computer) axisymmetric triaxial tests, both instantaneous and long-term, were performed on the basis of the proposed model with selected parameters. A model problem is solved for comparing the behavior of the model with the data of observation stations in underground mine workings obtained from borehole rod extensometers and contour deformation marks. The analytically obtained coefficients of the nonlinear viscous element of the modified Burgers model for all the analyzed salt rocks did not need to be corrected based on the monitoring results. At the same time, optimization was required for the viscoelastic element coefficients for all the considered rocks. The analysis of the model studies showed a satisfactory convergence with the data on the observation stations. The comparative analysis carried out on the models based on laboratory tests and observations in the workings indicates the correct determination of the parameters for salt rocks and the verification of the model in general.

How to cite: Kozlovskiy E.Y., Zhuravkov M.A. Determination and verification of the calculated model parameters of salt rocks taking into account softening and plastic flow // Journal of Mining Institute. 2021. Vol. 247. p. 33-38. DOI: 10.31897/PMI.2021.1.4
Mining
  • Date submitted
    2020-05-25
  • Date accepted
    2020-06-11
  • Date published
    2020-12-29

Technological aspects of cased wells construction with cyclical-flow transportation of rock

Article preview

A high-performance technology for constructing cased wells is proposed. Essence of the technology is the advance insertion of the casing pipe into the sedimentary rock mass and the cyclical-flow transportation of the soil rock portions using the compressed air pressure supplied to the open bottomhole end of the pipe through a separate line. Results of mathematical modeling for the process of impact insertion of a hollow pipe into a soil mass in horizontal and vertical settings are considered. Modeling of the technology is implemented by the finite element method in the ANSYS Mechanical software. Parameters of the pipe insertion in the sedimentary rock mass are determined - value of the cleaning step and the impact energy required to insert the pipe at a given depth. Calculations were performed for pipes with a diameter from 325 to 730 mm. Insertion coefficient is introduced, which characterizes the resistance of rocks to destruction during the dynamic penetration of the casing pipe in one impact blow of the pneumatic hammer. An overview of the prospects for the application of the proposed technology in geological exploration, when conducting horizontal wells of a small cross-section using a trenchless method of construction and borehole methods of mining, is presented. A variant of using the technology for determining the strength properties of rocks is proposed. Some features of the technology application at industrial facilities of the construction and mining industry are considered: for trenchless laying of underground utilities and for installing starting conductors when constructing degassing wells from the surface in coal deposits. Results of a technical and economic assessment of the proposed technology efficiency when installing starting conductors in sedimentary rocks at mining allotments of coal mines are presented.

How to cite: Kondratenko A.S. Technological aspects of cased wells construction with cyclical-flow transportation of rock // Journal of Mining Institute. 2020. Vol. 246. p. 610-616. DOI: 10.31897/PMI.2020.6.2
Oil and gas
  • Date submitted
    2020-05-21
  • Date accepted
    2020-10-05
  • Date published
    2020-11-24

Method of calculating pneumatic compensators for plunger pumps with submersible drive

Article preview

One of the most promising ways to improve the efficiency of mechanized oil production is a plunger pump with a submersible drive, which allows obtaining harmonic reciprocating movement of the plunger. In the pumping process of well products by plunger pumps, oscillations in the velocity and pressure of the liquid in the lifting pipes occur, which lead to an increase in cyclic variable loads on the plunger, a decrease in the drive life period and the efficiency of the pumping unit. To eliminate the pulsation characteristics of the plunger pump and increase the reliability indicators of the pumping unit (in particular, the overhaul period), pneumatic compensators can be used. A method for calculating the optimal technological parameters of a system of deep pneumatic compensators for plunger pumping units with a submersible drive, based on mathematical modeling of hydrodynamic processes in pipes, has been developed. Calculations of the forming flow velocity and pressure in the lifting pipes of submersible plunger units equipped with pneumatic compensators (PC) have been carried out. Influence of the PC technological parameters on the efficiency of smoothing the oscillations of velocity and pressure in the pipes has been analyzed. Non-linear influence of the charging pressure and PC total volume on the efficiency of their work has been established. Optimal pressure of PC charging, corresponding to the minimum pressure in the tubing during the pumping cycle for the considered section of the tubing, is substantiated. Two ultimate options of PC system placement along the lifting pipes are considered. In the first option, PC are placed sequentially directly at the outlet of the plunger pump, in the second - evenly along the lift. It is shown that the first option provides the minimum amplitude of pressure oscillations at the lower end of the tubing and, accordingly, variable loads on the pump plunger. Nature of the pressure and flow velocity oscillations in the tubing at the wellhead for both options of PC placement has similar values .

How to cite: Timashev E.O. Method of calculating pneumatic compensators for plunger pumps with submersible drive // Journal of Mining Institute. 2020. Vol. 245. p. 582-590. DOI: 10.31897/PMI.2020.5.10
Oil and gas
  • Date submitted
    2019-11-28
  • Date accepted
    2020-05-08
  • Date published
    2020-10-08

Development of the drilling mud composition for directional wellbore drilling considering rheological parameters of the fluid

Article preview

Article presents investigations on the development of a drilling mud composition for directional wells in an oil field located in the Republic of Tatarstan (Russia). Various rheological models of fluid flow and their applicability for drilling muds are analyzed. Laboratory experiments to measure the main rheological parameters of a solution, such as plastic viscosity, dynamic shear stress, as well as indicators of non-linearity and consistency are presented. On the basis of laboratory investigations, it was concluded that high molecular weight polymer reagents (for example, xanthan gum) can give tangible pseudoplastic properties to the washing fluid, and their combination with a linear high molecular weight polymer (for example, polyacrylamide) reduces the value of dynamic shear stress. Thus, when selecting polymer reagents for treating drilling muds at directional drilling, it is necessary to take into account their structure, molecular weight and properties. Combination of different types of reagents in the composition of the drilling mud can lead to a synergistic effect and increase the efficiency of the drilling process as a whole.

How to cite: Ulyasheva N.M., Leusheva E.L., Galishin R.N. Development of the drilling mud composition for directional wellbore drilling considering rheological parameters of the fluid // Journal of Mining Institute. 2020. Vol. 244. p. 454-461. DOI: 10.31897/PMI.2020.4.8
Oil and gas
  • Date submitted
    2020-06-15
  • Date accepted
    2020-06-15
  • Date published
    2020-06-30

Description of steady inflow of fluid to wells with different configurations and various partial drilling-in

Article preview

There are many equations of steady inflow of fluid to the wells depending on the type of well, presence or absence of artificial or natural fractures passing through the well, different degrees of drilling-in of the wellbores. For some complex cases, analytical solutions describing the inflow of fluid to the well have not yet been obtained. An alternative to many equations is the use of numerical methods, but this approach has a significant disadvantage – a considerable counting time. In this regard, it is important to develop a more general analytical approach to describe different types of wells with different formation drilling-in and presence or absence of fractures. Creation of this method is possible during modeling of fractures by a set of nodes-vertical wells passing from a roof to floor, and modeling of a wellbore (wellbores, perforation) by a set of nodes – spheres close to each other. As a result, based on this approach, a calculation algorithm was developed and widely tested, in which total inflow to the well consists of the flow rate of each node taking into account the interference between the nodes and considering the impermeable roof and floor of the formation. Performed modeling confirmed a number of known patterns for horizontal wells, perforation, partial drilling-in of a formation, and also allowed solving a number of problems.

How to cite: Iktissanov V.A. Description of steady inflow of fluid to wells with different configurations and various partial drilling-in // Journal of Mining Institute. 2020. Vol. 243. p. 305-312. DOI: 10.31897/PMI.2020.3.305
Electromechanics and mechanical engineering
  • Date submitted
    2020-06-15
  • Date accepted
    2020-06-15
  • Date published
    2020-06-30

Multi-terminal dc grid overall control with modular multilevel converters

Article preview

This paper presents a control philosophy for multiterminal DC grids, which are embedded in the main AC grid. DC transmission lines maintain higher power flow at longer distances compared with AC lines. The voltage losses are also much lower. DC power transmission is good option for Russian north. Arctic seashore regions of Russia don't have well developed electrical infrastructure therefore power line lengths are significant there. Considering above it is possible to use DC grids for supply mining enterprises in Arctic regions (offshore drilling platforms for example). Three different control layers are presented in an hierarchical way: local, primary and secondary. This whole control strategy is verified in a scaled three-nodes DC grid. In one of these nodes, a modular multilevel converter (MMC) is implemented (five sub-modules per arm). A novel model-based optimization method to control AC and circulating currents is discussed. In the remaining nodes, three-level voltage source converters (VSC) are installed. For their local controllers, a new variant for classical PI controllers are used, which allow to adapt the values of the PI parameters with respect to the measured variables. Concerning the primary control, droop control technique has been chosen. Regarding secondary level, a new power flow technique is suggested. Unbalance conditions are also verified in order to show the robustness of the whole control strategy.

How to cite: Jiménez Carrizosa M., Stankovic N., Vannier J.-C., Shklyarskiy Y.E., Bardanov A.I. Multi-terminal dc grid overall control with modular multilevel converters // Journal of Mining Institute. 2020. Vol. 243. p. 357-370. DOI: 10.31897/PMI.2020.3.357