Multi-terminal dc grid overall control with modular multilevel converters
- 1 — Ph.D. Assistant Professor Centro de Electrónica Industrial, Universidad Politécnica de Madrid ▪ Orcid ▪ Scopus
- 2 — Ph.D., Dr.Sci. Professor Electricité de France (EDF)
- 3 — Ph.D., Dr.Sci. Professor Department of Power & Energy Systems of CentraleSupélec
- 4 — Ph.D., Dr.Sci. Head of Departmen Saint Petersburg Mining University ▪ Orcid ▪ Elibrary ▪ Scopus ▪ ResearcherID
- 5 — Ph.D. Assistant Professor Saint Petersburg Mining University ▪ Orcid ▪ Elibrary ▪ Scopus ▪ ResearcherID
Abstract
This paper presents a control philosophy for multiterminal DC grids, which are embedded in the main AC grid. DC transmission lines maintain higher power flow at longer distances compared with AC lines. The voltage losses are also much lower. DC power transmission is good option for Russian north. Arctic seashore regions of Russia don't have well developed electrical infrastructure therefore power line lengths are significant there. Considering above it is possible to use DC grids for supply mining enterprises in Arctic regions (offshore drilling platforms for example). Three different control layers are presented in an hierarchical way: local, primary and secondary. This whole control strategy is verified in a scaled three-nodes DC grid. In one of these nodes, a modular multilevel converter (MMC) is implemented (five sub-modules per arm). A novel model-based optimization method to control AC and circulating currents is discussed. In the remaining nodes, three-level voltage source converters (VSC) are installed. For their local controllers, a new variant for classical PI controllers are used, which allow to adapt the values of the PI parameters with respect to the measured variables. Concerning the primary control, droop control technique has been chosen. Regarding secondary level, a new power flow technique is suggested. Unbalance conditions are also verified in order to show the robustness of the whole control strategy.
References
- Yao K., Ren Y., Sun J., Lee K., Xu M., Zhou J., Lee F.C. Adaptive voltage position design for voltage regulators. Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC’04. IEEE, 2004. Vol. 1, p. 272-278. DOI: 10.1109/APEC.2004.1295821
- Li H., Liu C., Li G., Iravani R. An Enhanced DC Voltage Droop-Control for the VSC--HVDC Grid. IEEE Trans. Power Syst. 2017. Vol.32(2), p. 1520-1527. DOI: 10.1109/TPWRS.2016.2576901
- Stankovic N., Carrizosa M.J., Arzand A., Egrot P., Vannier J.-C. An HVDC experimental platform with MMC and two-level VSC in the back-to-back configuration. 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE). IEEE. 2016, p. 436-441, DOI: 10.1109/ISIE.2016.7744929
- Arrillaga J., Liu Y.H., Watson N.R. Flexible Power Transmission. The HVDC Options. 1st ed. Chichester: John Wiley, 2007, p. 362.
- Benchaib A. Advanced control of AC/DC power networks. System of systems approach based on spatio-temporal scales. Wiley, 2015. 164 p. DOI: 10.1002/9781119135760
- Carrizosa M.J. Hierarchical control scheme for multi-terminal high voltage direct current power networks. 2015. URL: tel.archives-ouvertes.fr/tel-01179391 (date of access 22.07.2015)
- Prieto-Araujo E., Junyent-Ferŕe A., Clariana-Colet G., GomisBellmunt O. Control of Modular Multilevel Converters Under Singular Unbalanced Voltage Conditions With Equal Positive and Negative Sequence Components. IEEE Transactions on Power Systems. 2017. Vol. 32(3), p.2131-2141. DOI: 10.1109/TPWRS.2016.2598617
- Carrizosa M.J., Arzand A., Navas F.D., Damm G., Vannier J.-C. A Control Strategy for Multiterminal DC Grids With Renewable Production and Storage Devices. IEEE Trans. Sustain. Energy. 2018. Vol. 9(2), p. 930-939. DOI: 10.1109/TSTE.2017.2766290
- Yang R., Zhang C., Cai X., Shi G., Lyu J. Control of VSC-HVDC for Wind Farm Integration with Real-Time Frequency Mirroring and Self-Synchronizing Capability. 2018 International Power Electronics Conference. IEEE. 2018, p. 4220-4226. DOI: 10.23919/IPEC.2018.8507477
- Bi K., An Q., Duan J., Sun L., Gai K. Fast Diagnostic Method of Open Circuit Fault for Modular Multilevel DC/DC Converter Applied in Energy Storage System. IEEE Trans. Power Electron. 2017. Vol. 32(5), p. 3292-3296. DOI: 10.1109/TPEL.2016.2646402
- Gnanarathna U.N., Gole A.M., Jayasinghe R.P. Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs. IEEE Trans. Power Deliv. 2011. Vol. 26(1), p. 316-324. DOI: 10.1109/TPWRD.2010.2060737
- Hydro-Qubec Rapport Annuel 2012. Hydro-Qubec. URL: www.metallos.org/site/assets/ files/2622/ rapport-annuel-2012_hydro-quebec.pdf (date of access 14.03.2020).
- HVDC in china. Doubletree Systems, Inc. URL: www.dsius.com/cet/HVDCinChina_ EPRI2013_HVDC.pdf (date of access 14.03.2020)
- Inelfe, the France-Spain HVDC plus interconnection is being realized as part of the european HVDC power freeways. Siemens. URL: www.ptd.siemens.de/newsletter2012_07.htm (date of access 14.03.2020).
- Jimenez E., Carrizosa M.J., Benchaib A., Damm G., Lamnabhi-Lagarrigue F. A new generalized power flow method for multi connected DC grids. Int. J. Electr. Power Energy Syst. Elsevier, 2016. Vol. 74, p. 329-337. DOI: 10.1016/J.IJEPES.2015.07.032
- Jovcic D., Ahmed K., Wiley J. High voltage direct current transmission : converters, systems and DC grids. 2007, p. 456.
- Lesnicar A., Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range. 2003 IEEE Bologna Power Tech Conference Proceedings. IEEE. 2003. Vol. 3, p. 272-277. DOI: 10.1109/PTC.2003.1304403
- Li R., Xu L., Yao L. DC Fault Detection and Location in Meshed Multiterminal HVDC Systems Based on DC Reactor Voltage Change Rate. IEEE Trans. Power Deliv. 2017. Vol.32(3), p. 1516-1526. DOI: 10.1109/TPWRD.2016.2590501
- Bergna G., Suul J.-A., Berne E., Vannier J.-C., Molinas M. MMC circulating current reference calculation in ABC frame by means of Lagrange Multipliers for ensuring constant DC power under unbalanced grid conditions. 2014 16th European Conference on Power Electronics and Applications. IEEE. 2014, p. 1-10. DOI: 10.1109/EPE.2014.6910909
- Mayne D.Q., Seron M.M., Raković S.V. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica. Pergamon. 2005. Vol. 41(2). P. 219-224. DOI: 10.1016/J.AUTOMATICA.2004.08.019
- Chen Y., Dai J., Damm G., Lamnabhi-Lagarrigue F. Nonlinear control design for a multi-terminal VSC-HVDC system. 2013 European Control Conference. IEEE. 2013. P. 3536-3541. DOI: 10.23919/ECC.2013.6669665
- Ottersten R. On control of back-to-back converters and sensorless induction machine drives. Chalmers University of Technology. Göteborg, 2003, p. 153.
- Park R.H. Two-reaction theory of synchronous machines generalized method of analysis-part I. Trans. Am. Inst. Electr. Eng. 1929. Vol. 48(3), p. 716-727. DOI: 10.1109/T-AIEE.1929.5055275
- Sanjuan S.L. Voltage Oriented Control of Three-Phase Boost PWM Converters. Chalmers University of Technology. Göteborg, 2010, p. 105.
- Shah S., Hassan R., Sun J. HVDC transmission system architectures and control – A review. 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics. IEEE. 2013, p. 1-8. DOI: 10.1109/COMPEL.2013.6626396
- Sardinia – Corsica – Italy Interconnection. Terna. URL: www.terna.it/en/projects/projects-common-interest/sardinia-corsica-italy-interconnection (date of access 14.03.2020).
- The Gotland HVDC link. ABB group. URL: new.abb.com/systems/hvdc/references/the-gotland-hvdc-link (date of access 14.03.2020).
- Shinoda K., Benchaib A., Dai J., Guillaud X. Virtual Capacitor Control: Mitigation of DC Voltage Fluctuations in MMC-Based HVdc Systems. IEEE Trans. Power Deliv. 2018. Vol. 33(1), p. 455-465. DOI: 10.1109/TPWRD.2017.2723939
- Wang X., Li Y.W., Blaabjerg F., Loh P.C. Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters. IEEE Trans. Power Electron. 2015. Vol. 30(12), p. 7019-7037. DOI: 10.1109/TPEL.2014.2382565