Submit an Article
Become a reviewer

Search articles for by keywords:
kimberlite indicator minerals

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-03
  • Date accepted
    2024-11-07
  • Date published
    2025-04-02

Assessment of ancylite ore dressability by flotation method

Article preview

For more than 50 years, most rare earth elements were extracted from carbonatite deposits, which can contain different rare earth phases, but the main extracted minerals are bastnaesite, monazite and xenotime. Many studies focused on the improvement and development of dressing circuits for ores of these minerals. However, in some carbonatite complexes, rare earth deposits are composed partly or mainly of ancylite ores. This type of rare earth ores was very poorly studied in terms of dressability – previous experiments with ancylite ores are rare and not productive enough. Ancylite is the main concentrator of rare earth elements in most carbonatite complexes of the Devonian Kola Alkaline Province (northwest Russia). Dressability of ancylite ore from the Petyayan-Vara carbonatite field in the Vuorijärvi alkaline-ultramafic complex was assessed using the flotation method. The complex is one of the most potential rare earth deposits associated with carbonatites in the Kola Region. Petrographic and mineralogical studies demonstrated the occurrence of abundant iron and barite oxide inclusions in ancylite, which imposes restrictions on physical separation of these three minerals. The study of petrogeochemical and mineralogical composition of fractions formed during mechanical grinding of ores to a size less than 2.0 mm showed that even at this stage of sample preparation, the finest-grained fractions (less than 0.071 mm) were enriched in ancylite (to 19 vol.% or more with a content of 15 vol.% in ore). Three classes of reagents were considered as collectors in flotation experiments: fatty acids, alkyl hydroxamic acids, and amino acid derivatives. The reagent from the amino acid derivative class was highly efficient. The use of such a collector in combination with sodium hexametaphosphate depressant made it possible to obtain a flotation concentrate in an open circuit with total rare earth oxides content 33.4 wt.% at 64.7 % extraction.

How to cite: Mitrofanova G.V., Kozlov E.N., Fomina E.N., Chernousenko E.V., Chernyavskii A.V., Dorozhanova N.O. Assessment of ancylite ore dressability by flotation method // Journal of Mining Institute. 2025. p. EDN UOHOQP
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-31
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses

Article preview

Remediation is an important area of oil-contaminated soil restoration in Russia, since oil refining industry is the major one for Russia and neighbouring countries, and the issues of environmentally effective and economically profitable remediation of oil contamination have not yet been solved. Soils under various economic uses have different surface areas and degrees of soil particles envelopment with oil due to the presence or absence of cultivation, the amount of precipitation and plant litter. The introduction of various substances for remediation into oil-contaminated soils of steppes (arable land), forests, and semi-deserts, considering their differences, gives different results. Biochar is coal obtained by pyrolysis at high temperatures and in the absence of oxygen. The uniqueness of this coal lies in the combination of biostimulating and adsorbing properties. The purpose of the study is to conduct an environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses. The article compares the environmental assessments of biochar application in oil-contaminated soils with different particle size fraction. The following indicators of soil bioactivity were determined: enzymes, indicators of initial growth and development intensity of radish, microbiological indicators. We found that the most informative bioindicator correlating with residual oil content is the total bacteria count, and the most sensitive ones are the roots length (ordinary chernozem and brown forest soil) and the shoots length (brown semi-desert soil). The use of biochar on arable land and in forest soil (ordinary chernozem and brown forest soil) is less environmentally efficient than in semi-desert soil (brown semi-desert soil). The study results can serve to develop measures and managerial and technical solutions for remediation of oil-contaminated soils under various economic uses.

How to cite: Minnikova T.V., Kolesnikov S.I. Environmental assessment of biochar application for remediation of oil-contaminated soils under various economic uses // Journal of Mining Institute. 2025. Vol. 271 . p. 84-94. EDN UOQKTG
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-03
  • Date accepted
    2024-09-05
  • Date published
    2024-11-12

Platinum group elements as geochemical indicators in the study of oil polygenesis

Article preview

This study examines elements of the platinum group (PGE), primarily platinum and palladium, as geochemical indicators in the investigation of oil polygenesis. It has been found that, like other trace elements such as nickel, vanadium, and cobalt, platinum group elements and gold can occur in oil fields at both background levels and in elevated or even anomalously high concentrations. The objective of this research is to analyze PGE and trace elements as geochemical markers to identify the geological factors, including endogenous processes, responsible for these unusually high concentrations in oil. A comprehensive review of the literature on this subject was conducted, along with new data on the presence of precious metals in oils from Russia and globally. The study explores the geological mechanisms behind elevated PGE concentrations in oils, utilizing atomic absorption spectroscopy with atomization in the HGA-500 graphite furnace to measure PGE content. Previously, the tellurium co-deposition method (ISO 10478:1994) was used to isolate noble metals from associated elements. Possible geological origins of abnormally high concentrations of platinum metals in oils have been identified. These include endogenous factors such as the spatial proximity of oil fields to ultrabasic rock massifs, the effects of contact-metasomatic processes, and influences from mantle dynamics. Moreover, data concerning mantle elements can serve as indicators of the depth origins of certain hydrocarbon fluids, thus contributing to the study of oil polygenesis.

How to cite: Talovina I.V., Ilalova R.K., Babenko I.A. Platinum group elements as geochemical indicators in the study of oil polygenesis // Journal of Mining Institute. 2024. Vol. 269 . p. 833-847. EDN UYYBSB
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-12
  • Date accepted
    2024-09-05
  • Date published
    2024-11-12

Promising reagents for the extraction of strategic metals from difficult-to-enrich mineral raw materials

Article preview

The need of the mining and processing industry for new types of directional reagents is due to the deterioration of the material composition of the processed ores. Low Au content (less than 0.5-1.0 g/t), finely dispersed Au inclusions (0.1-10.0 microns) in the ore, similar properties of the separated minerals have an extremely negative effect on flotation performance when using traditional reagents, which leads to significant losses of valuable metal with enrichment tailings. Expanding the range of domestic flotation reagents based on the latest achievements of fundamental research and their targeted application at mining and processing companies will compensate for the negative impact of the mineral composition of raw materials and ensure maximum extraction of strategic metals from difficult-to-enrich ores. The use of modern research methods (scanning electron and laser microscopy, UV spectrophotometry, XRF and chemical analysis) made it possible to visualize the adsorption layer of new reagents-collectors of a number of dithiocarbamates with different structures of a hydrocarbon radical and an organic modifier on the surface of gold-containing sulfides. The amount of adsorbed reagents on the surface of minerals has been experimentally determined. The specific features of the fixation of reagents on minerals of various compositions led to optimal correlations of their consumption in the flotation process. Scientifically based reagent regimes ensured an increase in the gold content in the concentrate and a decrease in the loss of gold with tailings by 5-6 % during flotation enrichment of the refractory ore of the Malinovskoe deposit.

How to cite: Matveeva T.N., Gromova N.K., Lantsova L.B. Promising reagents for the extraction of strategic metals from difficult-to-enrich mineral raw materials // Journal of Mining Institute. 2024. Vol. 269 . p. 757-764. EDN XAAEGH
Editorial
  • Date submitted
    2024-10-29
  • Date accepted
    2024-10-29
  • Date published
    2024-11-12

Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths

Article preview

In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.

How to cite: Prishchepa O.M., Aleksandrova T.N. Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths // Journal of Mining Institute. 2024. Vol. 269 . p. 685-686.
Economic Geology
  • Date submitted
    2024-04-08
  • Date accepted
    2024-06-13
  • Date published
    2024-12-25

Analysing the problems of reproducing the mineral resource base of scarce strategic minerals

Article preview

The results of studying the scarcity of strategic minerals in the Russian Federation are presented, domestic consumption of which is largely provided by forced imports and/or stored reserves. Relevance of the work is due to aggravation of the geopolitical situation and a growing necessity to meet the demand of national economy for raw materials from own sources. Analysis of the state of mineral resource base of scarce minerals in the Russian Federation was accomplished, problems were identified and prospects for its development were outlined taking into account the domestic demand for scarce minerals, their application areas and the main consumers. Reducing the deficit through the import of foreign raw materials and the development of foreign deposits does not ensure the reproduction of the domestic mineral resource base, independence of the country from imported raw materials as well as additional competitive advantages, economic stability and security. It was ascertained that a major factor holding back the development of the mineral resource base is insufficient implementation of new technological solutions for the use of low-quality ore. Improving the technologies in the industry is relevant for all types of scarce minerals to solve the problem of reproducing their resource base. Taking into account the prospects for the development of the resource base for the minerals under consideration (manganese, uranium, chromium, fluorspar, zirconium, titanium, graphite) requires a set of legal and economic measures aimed at increasing the investment attractiveness of geological exploration for subsoil users at their own expense without attracting public funding. The proposed measures, taking into account the analysis of positive experience of foreign countries, include the development of junior businesses with expansion of the “declarative” principle, the venture capital market, various tax incentives, preferential loans as well as conditions for the development of infrastructure in remote regions. The proposed solution to the problem of scarcity of strategic minerals will make it possible in future to present measures to eliminate the scarcity of certain types of strategic minerals taking into account their specificity.

How to cite: Pashkevich N.V., Khloponina V.S., Pozdnyakov N.A., Avericheva A.A. Analysing the problems of reproducing the mineral resource base of scarce strategic minerals // Journal of Mining Institute. 2024. Vol. 270 . p. 1004-1023. EDN HNTQBF
Geology
  • Date submitted
    2023-07-07
  • Date accepted
    2023-12-27
  • Date published
    2024-12-25

A new insight into recording the mineral composition of carbonate reservoirs at well killing: experimental studies

Article preview

Well killing operation remains an important technological stage before well workover or servicing, during which filtrate penetrates the bottomhole area of the formation. The impact of process fluids and their filtrate on rock has a significant influence on permeability and porosity of carbonate reservoirs, which decrease due to fines migration. There are few known scientific studies of the interaction of killing fluid filtrate with carbonate rock and fines migration. In our experiments, an aqueous phase was used which is the basis for well killing in pure form, for the preparation of blocking agents and is used in reservoir pressure maintenance system. Core samples taken from the pay of the reservoir were used to simulate the well killing process with generation of reservoir thermobaric conditions. Killing fluid filtrate was kept for seven days, which characterizes the average workover time at flowing wells in the fields of the Perm Territory. Using micro-X-ray tomography and scanning electron microscope, images were obtained before and after the experiment, which allowed confirming a decrease in total number of voids due to fines migration and, as a consequence, a decreasing permeability of samples. Measurement of pH and fines concentration in the aqueous phase was performed before and after the experiment and pointed to mineral reactions occurring as a result of rock dissolution. The results of experiments made it possible to record a decrease in permeability of carbonate samples by an average of 50 % due to clogging of void space and migration of fines (clayey and non-clayey).

How to cite: Chernykh V.I., Martyushev D.A., Ponomareva I.N. A new insight into recording the mineral composition of carbonate reservoirs at well killing: experimental studies // Journal of Mining Institute. 2024. Vol. 270 . p. 893-903. EDN QOALPE
Geology
  • Date submitted
    2023-04-04
  • Date accepted
    2023-09-20
  • Date published
    2024-08-26

Association of quartz, Cr-pyrope and Cr-diopside in mantle xenolith in V.Grib kimberlite pipe (northern East European Platform): genetic models

Article preview

The first results of mineralogical and geochemical studies of a unique xenolith of lithospheric mantle are presented illustrating the earlier non-described mineral association of quartz, Cr-pyrope and Cr-diopside. Structural and textural features of the sample suggest a joint formation of these minerals. The calculated P-T-parameters of the formation of Cr-diopside indicate the capture of xenolith from the depth interval ~ 95-105 km (31-35 kbar) corresponding to the stability field of coesite. This suggests that quartz in the studied xenolith can represent paramorphs after coesite. It was shown that quartz in this rock is not a product of postmagmatic processes. The transformation stage of the source lherzolite into garnet- and clinopyroxene-enriched rock/garnet pyroxenite as a result of exposure to a high-temperature silicate melt was reconstructed. Subsequent stages of the influence of metasomatic agents were identified by the presence of a negative Eu-anomaly in some garnet grains, which could result from the impact of subduction-related fluid and the enrichment of rock-forming minerals with light rare earth elements, Sr, Th, U, Nb and Ta as a consequence of fluid saturated with these incompatible elements. Several models for the formation of SiO2 phase (quartz/coesite) in association with high-chromium mantle minerals are considered including carbonatization of mantle peridotites/eclogites and melting of carbonate-containing eclogites at the stage of subduction and the impact of SiO2-enriched melt/fluid of subduction genesis with peridotites of the lithospheric mantle.

How to cite: Agasheva E.V., Mikhailenko D.S., Korsakov A.V. Association of quartz, Cr-pyrope and Cr-diopside in mantle xenolith in V.Grib kimberlite pipe (northern East European Platform): genetic models // Journal of Mining Institute. 2024. Vol. 268 . p. 503-519. EDN HLLHDR
Energy industry
  • Date submitted
    2023-01-12
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials

Article preview

The issues of energy saving in pyrometallurgical production during processing of mineral raw materials in ore-thermal furnaces are particularly important for the development of new energy-efficient technologies. The reduction of the specific power consumption during melting at different stages of heating and melting of charge materials when modeling is related to obtaining kinetic curves in the process of kyanite concentrate regeneration in polythermal conditions. Based on practical data of carbo-thermal reduction the mathematical modeling of reduction processes from alumosilicic raw materials – kyanite was carried out. In this work, the nonisothermal method based on a constant rate of charge heating (i.e. a linear dependence between time and temperature) was used for the reduction of kyanite charge, which saves electrical energy. The experiments were carried out on a high-temperature unit with a heater placed in a carbon-graphite crucible. Based on the obtained kinetic dependences of nonisothermal heating of enriched kyanite concentrates in plasma heating conditions we obtained a number of kinetic anamorphoses of the linear form which point to the possibility of describing the reaction rate using the modified Kolmogorov – Erofeev equation for given heating conditions and within a narrow temperature range. The complex of mathematical modeling makes it possible to create a control algorithm of technological process of reduction of kyanite concentrate to a metallized state within the specified temperature range for the full flow of reaction exchange and to reduce the specific power consumption by 15-20 %. With the help of the received kinetic dependences, taking into account the thermodynamics of processes and current state of the art it is possible to create a universal thermal unit for the optimal carbothermal reduction of charge to a metallized state (alloy) with minimum power inputs compared to existing technologies.

How to cite: Bazhin V.Y., Ustinova Y.V., Fedorov S.N., Shalabi M.E.K. Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials // Journal of Mining Institute. 2023. Vol. 261 . p. 384-391. EDN RTQXSE
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-08
  • Date accepted
    2023-03-02
  • Date published
    2023-04-25

Geochemical properties and transformation of the microelement composition of soils during the development of primary diamond deposits in Yakutia

Article preview

Extraction of diamonds from primary deposits in Siberia is associated with the development of kimberlite pipes in challenging environmental conditions, accompanied by a complex impact on the environment. The article presents the results of monitoring the soil cover of the Nakyn kimberlite field in the Yakutia diamond province, which is affected by the facilities of the Nyurba Mining and Processing Division. Development of primary diamond deposits has a large-scale impact on the subsoil, topography, and soil cover: creation of the world's largest quarries, formation of dumps more than 100 m high, arrangement of extensive tailings, formation of solid and liquid industrial wastes of various chemical composition. The research is aimed at studying the spatial and temporal patterns of the technogenic impact on the soil cover, identifying the nature and level of transformation of the microelement composition of soils based on the analysis of the intra-profile and lateral distribution of mobile forms of trace elements. The study targets in 2007-2018 were zonal types of permafrost soils of northern taiga landscapes, cryozems, occupying 84 % of the total study area, which are characterized by biogenic accumulation of mobile forms of Ni, Mn, and Cd in the upper AO, A cr horizons, and Cr, Ni, Co, Mn, Cu in the suprapermafrost CR horizon. We found out that the contamination of the soil cover of the industrial site at the Nyurba Mining and Processing Division is of a multielement nature with local highly to very highly contaminated areas. Over a ten-year observation period, areas of stable soil contamination are formed, where the main pollutants are mobile forms of Mn, Zn, Ni. We suggest that against the background of a natural geochemical anomaly associated with trap and kimberlite magmatism, technogenic anomalies are formed in the surface horizons of soils. They are spatially linked to technogenically transformed landscapes. One of the sources of pollutants is the dispersion of the solid phase of dust emissions in the direction of the prevailing winds, which leads to the formation of soils with abnormally high contents of mobile forms of Mn, Zn, Ni.

How to cite: Legostaeva Y.B., Gololobova A.G., Popov V.F., Makarov V.S. Geochemical properties and transformation of the microelement composition of soils during the development of primary diamond deposits in Yakutia // Journal of Mining Institute. 2023. Vol. 260 . p. 212-225. DOI: 10.31897/PMI.2023.35
Economic Geology
  • Date submitted
    2022-11-08
  • Date accepted
    2022-11-21
  • Date published
    2023-02-27

Assessment of the role of the state in the management of mineral resources

Article preview

Mineral resources as natural capital can be transformed into human, social and physical capital that guarantees the sustainable development of a country, exclusively through professional public management. Public management of a country's mineral resource potential is seen as an element of transnational governance which provides for the use of laws, rules and regulations within the jurisdictional and sectoral capabilities of the state, minimising its involvement as a producer of minerals. The features of the ideology of economic liberalism, which polarises the societies of mineral-producing countries and denies the role of the state as a market participant, have been studied. The analysis of the influence of the radical new order of neoliberal world ideology on the development of the extractive sector and state regulation has been presented.

How to cite: Litvinenko V.S., Petrov E.I., Vasilevskaya D.V., Yakovenko A.V., Naumov I.A., Ratnikov M.A. Assessment of the role of the state in the management of mineral resources // Journal of Mining Institute. 2023. Vol. 259 . p. 95-111. DOI: 10.31897/PMI.2022.100
Metallurgy and concentration
  • Date submitted
    2022-06-17
  • Date accepted
    2022-10-18
  • Date published
    2022-11-03

Scientific experimental bases for dry beneficiation of mineral ores

Article preview

The article presents the results of research on the development of processes and equipment for ore preparation and pneumatic dry beneficiation of mineral ores. The methods of crushing and grinding before enrichment of minerals have been considered, dry enrichment of geomaterials is investigated. Highly efficient prototypes of beneficiation equipment are developed and tested: crushers of multiple dynamic impact RD-MDV-900, DKD-300, centrifugal grinders CMVU-800 and VCI-12, pneumatic separator POS-2000. Fundamental designs are created, and a number of new ore preparation and pneumatic beneficiation instruments are being designed. The efficiency of approbation of an autonomous dry beneficiation complex with new safe environmental standards for the processing of gold-bearing ores, which makes it possible to fully release and extract free gold with a particle size from 10,000 to 100 µm, is shown. The introduction of the dry beneficiation method is very promising for the mining industry. It will allow to reduce capital costs for the construction of stationary beneficiation plants, completely or partially withdraw from the use of process water, the construction of a water supply system, a traditional tailing dam, etc.

How to cite: Matveev A.I., Lebedev I.F., Vinokurov V.R., Lvov E.S. Scientific experimental bases for dry beneficiation of mineral ores // Journal of Mining Institute. 2022. Vol. 256 . p. 613-622. DOI: 10.31897/PMI.2022.90
Metallurgy and concentration
  • Date submitted
    2022-04-13
  • Date accepted
    2022-05-25
  • Date published
    2022-11-03

Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit

Article preview

The growing demand for ferrous metallurgy products necessitates the introduction of technologies that increase the efficiency of the processing of iron-bearing raw materials. A promising trend in this area is the implementation of solutions based on the possibility of selective disintegration of ores. The purpose of this work was to establish the laws of selective disintegration of ferruginous quartzites based on the results of the study of mineralogical and technological properties of raw materials. We present data on the study of mineralogical and technological features of ferruginous quartzites of the Mikhailovskoye deposit. The data were obtained using X-ray fluorescence analysis and automated mineralogical analysis. Based on studies of the nature of dissemination and the size of grains of rock-forming and ore minerals, the tasks of ore preparation are formulated. The parameters for the iron and silicon oxide distribution by grain-size classes in the grinding products were established during the study. Based on empirical dependences, the grain size of grinding was predicted, at which the most effective release of intergrowths of ore minerals and their minimum transition to the size class of –44 µm should be achieved.

How to cite: Aleksandrova T.N., Chanturiya A.V., Kuznetsov V.V. Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit // Journal of Mining Institute. 2022. Vol. 256 . p. 517-526. DOI: 10.31897/PMI.2022.58
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-07-05
  • Date accepted
    2022-07-21
  • Date published
    2022-11-10

Fragmentation analysis using digital image processing and empirical model (KuzRam): a comparative study

Article preview

The rock fragmentation reflects the degree of control of blasting. Despite the accuracy of screening analysis to determine the size distribution of blasted rocks, this technique remains complex and long because of the large volume of blasted rocks. The digital image processing method can overcome these constraints of accuracy and speed. Our method uses the empirical model of KuzRam and numerical method (Digital image processing) through two image processing software’s (WipFrag and Split-Desktop) to analyze the particle size distribution of rocks fragmented by explosives in Jebel Medjounes limestone quarry. The digital image processing is based on the photography of the pile of blasted rock analyzed using image processing techniques. The objective of this work is to evaluate and compare the results obtained for each blast from the two methods and to discuss the similarities and differences among them. Three different blasts with the same design were analyzed through the two methods. The result of the KuzRam model gave idealistic results due to the heterogeneity of the structure of the rocks; although, this model can be used for an initial evaluation of blast design. For better efficiency of the explosion, we proposed a new fragmentation indicator factor in order to compare the fragment produced to the estimated ideal size obtained from the KuzRam model by incorporating the blast design parameters and the rock factor. Both image processing gives close results with more accuracy for the Split-Desktop software. Our method can improve the efficiency and reduce crushing costs of the studied career.

How to cite: Saadoun A., Fredj M., Boukarm R., Hadji R. Fragmentation analysis using digital image processing and empirical model (KuzRam): a comparative study // Journal of Mining Institute. 2022. Vol. 257 . p. 822-832. DOI: 10.31897/PMI.2022.84
Geology
  • Date submitted
    2022-05-04
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Prospecting models of primary diamond deposits of the north of the East European Platform

Article preview

As a result of a comprehensive study of the geological structure and diamond presense of the northern part of the East European Platform, generalization of the data accumulated by various organizations in the USSR, the Russian Federation, and other states, three main prospecting models of primary diamond deposits have been identified and characterized: Karelian, Finnish, and Arkhangelsk. Geological, structural, mineralogical, and petrographic criteria of local prediction, as well as the features of the response of kimberlite and lamproite bodies in dispersion haloes and geophysical fields, are considered using known examples, including data on the developed M.V.Lomonosov and V.P.Grib mines. It is shown that the most complicated prospecting environments occur in the covered areas of the Russian Plate, where, in some cases, the primary diamond-bearing rocks are similar in their petrophysical properties to the host formations. The buried dispersion haloes of kimberlite minerals in the continental Carboniferous and Quaternary deposits are traced at a short distance from the sources. Differences in the prospecting features of magnesian (Lomonosov mine) and ferromagnesian (Grib mine) kimberlites are also shown. Conclusions about the diamond potential of the model objects of various types are given in this paper.

How to cite: Ustinov V.N., Mikoev I.I., Piven G.F. Prospecting models of primary diamond deposits of the north of the East European Platform // Journal of Mining Institute. 2022. Vol. 255 . p. 299-318. DOI: 10.31897/PMI.2022.49
Geology
  • Date submitted
    2022-04-12
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Rare minerals of noble metals in the collection of the Mining Museum: new data

Article preview

Modern analytical methods (optical and electron microscopy, X-ray microanalysis) were used to study the unique samples of sulfide ores from the Norilsk ore field from the Mining Museum collections of Saint Petersburg Mining University. Samples containing rare minerals of silver and platinum-group metals (sobolevskite, urvantsevite, sperrylite, argentopentlandite, froodite, kotulskite, and others) were studied. The chemical composition, grain sizes, aggregates, and mineral associations of more than ten noble metal minerals have been refined. The efficiency of combining various methods of electron microscopy and X-ray microanalysis for studying samples of this type is shown. The results of the work made it possible to obtain high-quality images of rare minerals, to detail information on museum objects, and to compile their scientific description. The conducted research showed the relevance of studying museum objects from known deposits of complex genesis and mineral composition in order to find and describe the samples with rare minerals.

How to cite: Petrov D.A., Ryzhkova S.O., Gembitskaya I.M. Rare minerals of noble metals in the collection of the Mining Museum: new data // Journal of Mining Institute. 2022. Vol. 255 . p. 493-500. DOI: 10.31897/PMI.2022.42
Geology
  • Date submitted
    2022-03-31
  • Date accepted
    2022-05-11
  • Date published
    2022-07-26

Carbonatite complexes of the South Urals: geochemical features, ore mineralization, and geodynamic settings

Article preview

The article presents the results of study of the Ilmeno-Vishnevogorsky and Buldym carbonatite complexes in the Urals. It has been established that the carbonatites of the Ilmeno-Vishnevogorsky complex are represented by high-temperature calciocarbonatites (sövites I and II) with pyrochlore ore mineralization. U-Ta-rich populations of uranium pyrochlores (I) and fluorocalciopyrochlores (II) crystallize in miaskite-pegmatites and sövites I; fluorocalciopyrochlores (III) and Sr-REE-pyrochlores (IV) of late populations form in sövites II. In the Buldym complex, along with high-temperature calciocarbonatites containing fluorocalciopyrochlore (III), medium-temperature varieties of magnesiocarbonatites with REE-Nb mineralization (monazite, niobo-aeschynite, columbite, etc.) are widespread. Miaskites and carbonatites of the Urals are characterized by high contents of LILE (Sr, Ba, K, Rb) and HFSE (Nb, Ta, Zr, Hf, Ti), which are close to the contents in rift-related carbonatite complexes of intraplate settings and significantly differ from synorogenic collisional carbonatite complexes. The Ural carbonatite complexes formed on continental rift margins during the opening of the Ural Ocean at the time of transition from extensional to compressional tectonics. Later on, they were captured and deformed in the suture zone as a result of collision. Plastic and brittle deformations, anatexis, recrystallization of rocks and ores of carbonatite complexes in the Urals are associated with orogenic and post-collision settings.

How to cite: Nedosekova I.L. Carbonatite complexes of the South Urals: geochemical features, ore mineralization, and geodynamic settings // Journal of Mining Institute. 2022. Vol. 255 . p. 349-368. DOI: 10.31897/PMI.2022.28
Geology
  • Date submitted
    2022-02-24
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

Litsa uranium ore occurrence (Arctic zone of the Fennoscandian Shield): new results of petrophysical and geochemical studies

Article preview

Mineralogical, petrophysical and geochemical studies have been carried out to determine the sequence and formation conditions of uranium mineralization within the Litsa ore occurrence (Kola Region). Mineralogical studies show the following formation sequence of ore minerals: uraninite – sulfides – uranophane, coffinite, pitchblende. Two stages of uranium mineralization are distinguished: Th-U (1.85-1.75 Ga) and U (400-300 Ma). The distribution of physical properties of rocks in the area is consistent with the presence of two temporal stages in the formation of mineralization with different distribution and form of uranium occurrence in rocks. The factors that reduce rock anisotropy are the processes of migmatization and hydrothermal ore mineralization, which heal pores and cracks. Fluid inclusions in quartz studied by microthermometry and Raman spectroscopy contain gas, gas-liquid and aqueous inclusions of different salinity (1.7-18.4 wt.% NaCl-eq.). According to homogenization temperatures of inclusions in liquid phase, the temperature of the Paleoproterozoic and Paleozoic stages of uranium mineralization at the Litsa ore occurrence is ~ 300 and 200 °С, respectively. Correlations of the spatial distribution of elastic anisotropy index with an elevated radioactive background allow using this petrophysical feature as one of the prognostic criteria for uranium and complex uranium mineralization when carrying out uranium predictive work.

How to cite: Il’chenko V.L., Afanasieva E.N., Kaulina T.V., Lyalina L.M., Nitkina E.A., Mokrushina O.D. Litsa uranium ore occurrence (Arctic zone of the Fennoscandian Shield): new results of petrophysical and geochemical studies // Journal of Mining Institute. 2022. Vol. 255 . p. 393-404. DOI: 10.31897/PMI.2022.44
Geology
  • Date submitted
    2022-01-28
  • Date accepted
    2022-04-26
  • Date published
    2022-07-26

On the presence of the postmagmatic stage of diamond formation in kimberlites

Article preview

On nowadays multiphase and the facies heterogeneity of the formations are distinguished at the study of kimberlite pipes. Most researchers associate the formation of diamonds only with the mantle source. To date, satellite minerals with specific compositions associated with kimberlite diamonds have been identified as deep mantle diamond association. They are extracted from the concentrate of the kimberlites heavy fraction and may reflect the diamond grade of the pipe. For some minerals in the diamond association, however, they can not be reliable. Some researchers also revealed shallow diamond associations, related to the formation of serpentine, calcite, apatite, and phlogopite. There is recent data on the formation of diamonds in rocks of the oceanic crust. In the last years microdiamonds were identified in chromites of the oceanic crust in association with antigorite formed at 350-650 °C and 0.1-1.6 GPa. As a result, the authors established a postmagmatic kimberlitic stage of diamond formation associated with secondary mineral associations based on the experimental and mineralogical data for the conditions of the shallow upper mantle and crust. Mineralogical and petrographic studies of Angolan kimberlite pipe show that antigorite is the indicator mineral of this stage.

How to cite: Simakov S.K., Stegnitskiy Y.B. On the presence of the postmagmatic stage of diamond formation in kimberlites // Journal of Mining Institute. 2022. Vol. 255 . p. 319-326. DOI: 10.31897/PMI.2022.22
Mining
  • Date submitted
    2021-06-01
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Indicator assessment of the reliability of mine ventilation and degassing systems functioning

Article preview

The gas emission control in the mines is operated by ventilation and degassing systems that ensure the aerological safety of the mines or minimize the aerological risks. The ventilation system of the mine and its individual sites includes a significant number of technical devices and equipment, and the air tubes are mainly mining workings, the condition of which determines the quality of the ventilation network (its capacity) and depends on a number of mining factors. Similarly, one of the most important elements of the degassing system, which includes its own chain of technological equipment, are wells, and in some cases, mining workings. Thus, mine ventilation and degassing systems cannot be attributed to purely technical systems, since they include mining elements characterized by high variability of the determining parameters. To assess their reliability, it is necessary to use various combined methods that include additional characteristics in relation to the mining component. At the same time, the reliability of technical devices that ensure the functioning of mine ventilation and degassing systems largely determines the efficiency (stability and reliability) of these systems and, consequently, affects the level of aerological risks. The described approach to assessing the reliability of ventilation and degassing systems of coal mines when analyzing aerological risks is based on the developed system of risk indicators for the methane factor and will allow determining the risk dynamics in automatic mode based on monitoring the parameters of the ventilation and degassing system state.

How to cite: Kaledina N.O., Malashkina V.A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning // Journal of Mining Institute. 2021. Vol. 250 . p. 553-561. DOI: 10.31897/PMI.2021.4.8
Geology
  • Date submitted
    2021-01-19
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Geological and structural characteristics of deep-level rock mass of the Udachnaya pipe deposit

Article preview

For hard rock massifs, structural disturbance is a key indicator of mining structure stability. The presence of intersecting structural elements in the massif reduces rock strength and leads to formation of potential collapse structures. In addition to that, disjunctive deformations that penetrate rock strata serve as channels for fluid migration and connect aquifers into a single system. It was established that the largest of them –faults of east-northeastern, northeastern and northwestern directions – form the kimberlite-bearing junction of the Udachnaya pipe. These faults represent zones of increased fracturing, brecciation and tectonic foliation, distinguished from adjacent areas by increased destruction of the rock mass. Specifics of tectonic fracture distribution within structural and lithological domains are determined by the presence of multidirectional prevailing systems of tectonic fracturing, as well as by differences in their quantitative characteristics. With some exceptions, the main systems form a diagonal network of fractures (northeastern – northwestern orientation), which is typical for larger structural forms – faults. Despite the differences in dip orientation of the systems, most of them correspond to identified directions, which is typical for both kimberlites and sedimentary strata. Overall disturbance of the massif, expressed in terms of elementary block volume, reaches its peak in the western ore body. For such type of deposits, friction properties of fracture structures have average values. Consideration of geological and structural data in the design and development of new levels of the deposit will allow to maintain the necessary balance between efficiency and safety of performed operations.

How to cite: Serebryakov E.V., Gladkov A.S. Geological and structural characteristics of deep-level rock mass of the Udachnaya pipe deposit // Journal of Mining Institute. 2021. Vol. 250 . p. 512-525. DOI: 10.31897/PMI.2021.4.4
Geology
  • Date submitted
    2019-10-17
  • Date accepted
    2020-01-24
  • Date published
    2020-04-24

Composition and probable ore igneous rocks source of columbite from alluvial deposits of Mayoko district (Republic of the Congo)

Article preview

The article presents the results of optical, electron microscopic and electron microprobe studies of columbite group minerals, collected during heavy mineral concentrate sampling of alluvial deposits in the Mayoko region (Republic of the Congo). The aim of the study is revealing tantalum niobates ore body in this region. We found that these minerals in loose deposits are represented by two grain-size groups: less than 1.6 mm (fine fraction) and 1.6-15 mm (coarse fraction). The grains of both fractions belong mainly to columbite-(Fe), less often to columbite-(Mn), tantalite-(Mn) and tantalite-(Fe), contain impurities of Sc, Ti, and W. The crystals have micro-scaled zoning (zones varies slightly in the Ta/Nb ratio values) and contains a lot of mineral inclusions and veins represented by zircon, pyrochlore supergroup minerals and others. Columbite-(Fe) and columbite-(Mn) are characterized by an increased content of Ta 2 O 5 up to the transition to tantalite-(Fe) and tantalite-(Mn). This allows us to exclude the formation of subalkaline rare-metal granites, their metasomatites (albitites and greisenes) and carbonatites, from the list of possible columbite ore rocks source in the Mayoko district. Thus, beryl type and complex spodumene subtype rare-element pegmatites of the mixed petrogenetic family LCT-NYF (according to P.Černý) should be considered as a probable root source. The results of the research should be taken into account when developing the methodology for prospecting in this area.

How to cite: Matondo I.P.L., Ivanov M.A. Composition and probable ore igneous rocks source of columbite from alluvial deposits of Mayoko district (Republic of the Congo) // Journal of Mining Institute. 2020. Vol. 242 . p. 139-149. DOI: 10.31897/PMI.2020.2.139
Electromechanics and mechanical engineering
  • Date submitted
    2018-11-13
  • Date accepted
    2019-01-23
  • Date published
    2019-04-23

Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation

Article preview

The balance of electricity consumption a significant part is occupied by the production of compressed air at the mining enterprises. Many compressor stations of enterprises are equipped with automated parameter management systems that allow reliable, uninterrupted and safe operation of the compressor facilities. But the majority of automation systems at compressor stations do not perform the function of monitoring the energy efficiency indicators of the operation of a compressor station. The article discusses the issue of including compressed air flow sensors (flow meters) in an automated control system of a compressor station, which allows you to control the production of compressed air and the consumption of electrical energy for its production. Monitoring and recording of these parameters makes it possible, using microprocessor technology, to control one of the main indicators of energy efficiency – the specific energy consumption for producing one cubic meter of compressed air, determine how efficiently the compressor station works, and take appropriate measures to reduce specific energy consumption in time. . The use of additional functions of automated control and monitoring systems will allow the development and application of energy-saving measures aimed at improving the energy efficiency of the enterprise, which will lead to a reduction in the cost of finished products and increase their competitiveness

How to cite: Ugolnikov A.V., Makarov N.V. Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation // Journal of Mining Institute. 2019. Vol. 236 . p. 245-248. DOI: 10.31897/PMI.2019.2.245
Geology
  • Date submitted
    2018-08-30
  • Date accepted
    2018-11-06
  • Date published
    2019-02-22

Tourmaline as an ondicator of tin occurrences of cassiterite-quartz and cassiterite-silicate formations (a case study of the Verkhneurmiysky ore cluster, Far East)

Article preview

The research focused on the composition of tourmaline from tin ore deposits and ore occurrences within the Verkhneurmiysky ore cluster in the Amur region. The aim of the study is to determine the indicative signs of tourmaline from cassiterite-quartz and cassiterite-silicate formations. This research is based on the materials of a long-term study of the mineralogy of the Far East deposits, conducted at the Mining University under the scientific supervision of Professor Yu.B.Marin. The relevance of the study involves predicting of tin and associated mineralization. For the first time, SIMS and Mössbauer spectroscopy were used to study tourmaline from this region. We identified the typomorphic characteristics of the tourmaline composition, which are proposed to be used as indicators of tin-ore deposits. Typomorphic characteristics of tourmaline from cassiterite-quartz formation: schorl (Mg/(Mg + Fe) = 0.06) with a high content of Al and K; Fe 3+ /(Fe 3+ + Fe 2+ ) = 0.03; Z Fe 3+ = 1 %; impurities: Nb, LREE (La, Ce, Pr), Be, Bi, F, Li, and Mn; LREE content > 9 ppm; positive Gd anomaly. Typomorphic characteristics of tourmaline from cassiterite-silicate formation: schorl-dravite (Mg/(Mg + Fe) = 0.22) with a high Ca content; Fe 3+ / (Fe 3+ + Fe 2+ ) = 0.17; Z Fe 3+ = 9 %; impurities: Zr, Y, Cr, V, Sn, In, Pb, W, Mo, Ti, HREE, Eu, Sr, Sb, and Sc; the content of Y is > 2 ppm, of HREE is > 3 ppm, Eu is > 0.1 ppm.

How to cite: Alekseev V.I., Marin Y.B. Tourmaline as an ondicator of tin occurrences of cassiterite-quartz and cassiterite-silicate formations (a case study of the Verkhneurmiysky ore cluster, Far East) // Journal of Mining Institute. 2019. Vol. 235 . p. 3-9. DOI: 10.31897/PMI.2019.1.3
Geology
  • Date submitted
    2017-11-09
  • Date accepted
    2017-12-28
  • Date published
    2018-04-24

Chemical weathering of lower paleozoic black shales of south Sweden

Article preview

Lower Paleozoic black shales are widespread in Sweden and form part of the Baltic paleobasin, which deposits are also known in Estonia and the Leningrad Oblast of Russia. These rocks are enriched in a carbon substance and characterized by the significant content of uranium, vanadium, molybdenum, copper, nickel, cobalt, zinc, and lead. Black shales contain high levels of Sr – 968; Ba – 337; U – 229; V – 509; Mo – 165; Zn – 411; Ni – 214; Cu – 112 (ppm) in secondary minerals composition formed on their surface. Retrograde diagenetic conditions facilitate the black shales chemical weathering. Elements of the first (U), second (Mo, Sr, Zn), and third (V) hazard classes are washed out of black shales and secondary minerals and can further enter biological cycles.

How to cite: Voronin D.O., Panova E.G. Chemical weathering of lower paleozoic black shales of south Sweden // Journal of Mining Institute. 2018. Vol. 230 . p. 116-122. DOI: 10.25515/PMI.2018.2.116