Submit an Article
Become a reviewer
Vol 235
Pages:
3
Download volume:
RUS ENG

TOURMALINE AS AN INDICATOR OF TIN OCCURRENCES ОF CASSITERITE-QUARTZ AND CASSITERITE-SILICATE FORMATIONS (A CASE STUDY OF THE VERKHNEURMIYSKY ORE CLUSTER, FAR EAST)

Authors:
V. I. Alekseev1
Yu. B. Marin2
About authors
  • 1 — Saint-Petersburg Mining University ▪ Orcid
  • 2 — Saint-Petersburg Mining University
Date submitted:
2018-08-30
Date accepted:
2018-11-06
Date published:
2019-02-25

Abstract

The research focused on the composition of tourmaline from tin ore deposits and ore occurrences within the Verkhneurmiysky ore cluster in the Amur region. The aim of the study is to determine the indicative signs of tourmaline from cassiterite-quartz and cassiterite-silicate formations. This research is based on the materials of a long-term study of the mineralogy of the Far East deposits, conducted at the Mining University under the scientific supervision of Professor Yu.B.Marin. The relevance of the study involves predicting of tin and associated mineralization. For the first time, SIMS and Mössbauer spectroscopy were used to study tourmaline from this region. We identified the typomorphic characteristics of the tourmaline composition, which are proposed to be used as indicators of tin-ore deposits. Typomorphic characteristics of tourmaline from cassiterite-quartz formation: schorl (Mg/(Mg + Fe) = 0.06) with a high content of Al and K; Fe 3+ /(Fe 3+ + Fe 2+ ) = 0.03; Z Fe 3+ = 1 %; impurities: Nb, LREE (La, Ce, Pr), Be, Bi, F, Li, and Mn; LREE content > 9 ppm; positive Gd anomaly. Typomorphic characteristics of tourmaline from cassiterite-silicate formation: schorl-dravite (Mg/(Mg + Fe) = 0.22) with a high Ca content; Fe 3+ / (Fe 3+ + Fe 2+ ) = 0.17; Z Fe 3+ = 9 %; impurities: Zr, Y, Cr, V, Sn, In, Pb, W, Mo, Ti, HREE, Eu, Sr, Sb, and Sc; the content of Y is > 2 ppm, of HREE is > 3 ppm, Eu is > 0.1 ppm. The formation conditions of the cassiterite-silicate ore mineralization were more oxidizing than those of the cassiterite-quartz one. Tourmaline, formed under oxidizing conditions, contains such impurities as Sn, In, Nb, Bi, Sc, and LREE. The content of Sn isomorphic impurity in tourmaline reaches 8000 ppm.

10.31897/pmi.2019.1.3
Go to volume 235

References

  1. Alekseev V.I. Metasomatic zonality of ore fields of the Badzhalsky District (Amur River region). Zapiski Vsesoyuznogo mine-ralogicheskogo obshchestva. 1989. Iss. 5, p. 27-37 (in Russian).
  2. Gavrilenko V.V., Panova E.G. Geochemistry, genesis and typomorphism of the minerals of tin and tungsten deposits. St. Petersburg: Nevskii kur'er, 2001, p. 260 (in Russian).
  3. Gorelikova N.V. Paragenesis of tourmaline microelements from tin ore formations. Vladivostok: DVGI DVO AN the USSR, 1983, p. 123 (in Russian).
  4. State geological map of the Russian Federation. Scale 1: 1 000 000. List М-53 – Khabarovsk. Ob''yasnitel'naya zapiska. St. Petersburg: VSEGEI, 2009, p. 376. (in Russian).
  5. Gorelikova N.V., Balashov F.V., Bychkova J.V., Minervina E.A., Korostelev P.G, Magazina L.O., Bortnikov N.S. Duality of REE occurrence form in tourmaline of Far East tin ore deposits and their genetic value. Doklady Akademii nauk. 2016. Vol. 467. N 4, p. 445-449. DOI: 10.7868/S0869565216100170 (in Russian).
  6. Criteria of prognostic estimations of territories on solid mineral deposits. Pod red. D.V.Rundkvista. 2 izd. Pererab. i dop. Len-ingrad: Nedra, 1986, p. 751. (in Russian).
  7. Kuzmin V.I., Dobrovolskaja N.V., Solntseva L.S. Tourmaline and its use at prospecting-estimating work. Мoscow: Nedra, 1979, p. 269. (in Russian).
  8. Marin Yu.B., Skublov G.T., Gul'bin Yu.L. Mineralogical and geochemical criteria local forecasting rare metal deposits. Miner-alogicheskoe kartirovanie i indikatory orudeneniya: Sb. nauchnykh trudov. Leningrad: Nauka. 1990, p. 67-94 (in Russian).
  9. Gonevchuk V.G, Kokorin A.M., Korostelev P.G, Semenjak B.I., Gonevchuk G.A, Kokorina D.K., Orekhov А.А. About problems in tin deposits classification according to the formation basis. The Pacific Ocean ore belt: data of new investigations (for the centenary of E.A. Radkevich’s birth). Vladivostok: Dal'nauka, 2008, p. 70-88 (in Russian).
  10. Bortnikov N.S., Gorelikova N.V., Korostelev P.G, Gonevchuk V.G. Rare earth elements in tourmaline and chlorite of stan-niferous associations: the factors supervising the REE fractionation oin hydrothermal systems. Geologiya rudnykh mestorozhdenii. 2008. Vol. 50. N 6, p. 507-525 (in Russian).
  11. Afonina G.G, Makagon V.M., Bogdanova L.A., Zorina L.D. Tourmaline (X-ray diffraction and typomorphism). Novosi-birsk: Nauka, 1990, p. 143 (in Russian).
  12. Andreozzi G.B., Bosi F., Longo M. Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines. American Mineralogist. 2008. Vol. 93, p. 658-666. DOI: 10.2138 / am.2008.2721
  13. Grice J.D., Ercit T.S., Hawthorne F.C. Povondraite, a redefinition of the tourmaline ferridravite. American Mineralogist. 1993. Vol. 78, p. 433-436.
  14. Jiang S.-Y., Yu J.-M., Lu J.-J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic-hydrothermal fluid evolution and ore genesis. Chemical Geology. 2004. Vol. 209, p. 193-213. DOI: 10.1016 / j.chemgeo.2004.04.021
  15. Henry D.J., Novák M., Hawthorne F.C., Ertl A., Dutrow B.L., Uher P., Pezzotta F. Nomenclature of the tourmaline-supergroup minerals. American Mineralogist. 2011. Vol. 96, p. 895-913. DOI: 10.2138 / am.2011.3636
  16. Yang S.Y., Jiang S.Y., Zhao K.D., Dai B.-Z., Yang T. Tourmaline as a recorder of magmatic-hydrothermal evolution: an in situ major and trace element analysis of tourmaline from the Qitianling batholith, South China. Contributions to Mineralogy and Petrol-ogy. 2015. Vol. 170. Article id.42, p. 4. 21. DOI 10.1007/s00410-015-1195-7

Similar articles

OPERATION EXPERIENCE OF CENTRIFUGAL SINGLE-STAGE PUMPS IN «ALROSA» JOINT STOCK COMPANY
2019 N. P. Ovchinnikov
STUDY OF BEARING UNITS WEAR RESISTANCE OF ENGINES CAREER DUMP TRUCKS, WORKING IN FRETTING CORROSION CONDITIONS
2019 Ju. Olt, V. A. Krasnyy, V. V. Maksarov
FEASIBILITY OF TYPE OF DEEP-WATER TECHNOLOGIES FOR THE EXTRACTION OF MARINE FERRO-MANGANESE NODULES
2019 D. A. Yungmeister, S. M. Sudarikov, K. A. Kireev
COMPLEXATION OF TELECOMMUNICATIONS AND ELECTRICAL SYSTEMS IN MINES AND UNDERGROUND FACILITIES
2019 V. A. Shpenst
COMPARATIVE ANALYSIS OF ZINC AND TIN OXIDATION WITH ACIDS AT ROOM TEMPERATURES
2019 S. D. Pozhidaeva, L. S. Ageeva, A. M. Ivanov
MATHEMATICAL MODELING OF ROCK CRUSHING AND MULTIPHASE FLOW OF DRILLING FLUID IN WELL DRILLING
2019 B. S. Grigoriev, A. A. Eliseev, T. A. Pogarskaya, E. E. Toropov