-
Date submitted2024-05-02
-
Date accepted2024-11-07
-
Date published2025-04-29
Mineralogy and thermobarometry of the Kalevian volcano-plutonic complex of the Kaskama block (Inari Terrane, Kola-Norwegian Region, Fennoscandian Shield)
The petrogenesis and evolution of metamorphic rocks of the volcano-plutonic units of the Kaskama block of the Inari Terrane in northwestern Russia were studied. A petrographic and mineral study and modeling of igneous and metamorphic mineral formation were performed. PT -conditions of rocks, along with previously known data, including geochronological ones, do not allow us to correlate the studied units with rocks of the Belomorian complex, as previously thought. Modeling of igneous and metamorphic mineral shows good convergence with the fields of stability of mineral parageneses and quantitive ratio of minerals with those observed in the real samples. The early mineral parageneses of the magmatic stage corresponds to the crystallization of rock-forming and accessory minerals from the komatiite melt, and mineral parageneses of progressive and regressive metamorphism stages are superimposed on them. Relic igneous minerals (olivine, clinopyroxene, orthopyroxene, magnetite-spinel) in metaperidotites make it possible to estimate their liquidus temperatures in the range of 1,480-950 °С. The progressive stage of metamorphism is characterized by the development of mineral parageneses: garnet + amphibole + plagioclase + quartz ± biotite, amphibole + plagioclase + quartz. The late low-temperature regressive stage of metamorphism is characterized by the development of epidote-, zoisite-, actinolite-containing associations and a number of other low-temperature minerals. Peak parameters of progressive metamorphism are estimated as Т = 600-700 °С, Р = 5-9 kbar and for the regressive stage as Т = 400-500 °С, Р = 3-5 kbar. The identified thermodynamic conditions for the Kaskama block should be considered when determining whether the studied volcano-plutonic and metasedimentary units belong to the Paleoproterozoic terranes of the Kola-Norwegian Region of the Fennoscandian Shield.
-
Date submitted2024-03-29
-
Date accepted2024-11-07
-
Date published2025-04-25
Well killing with absorption control
The development of new fields with low-permeability reservoirs required the introduction of new production technologies, of which the most significant for well killing and underground repair were multi-ton hydraulic fracturing, the simultaneous operation of two or three development sites by one well grid, and an increase in the rate of fluid extraction. These global decisions in field development have led to the need to search for new effective materials and technologies for well killing. The article is devoted to the analysis of problems associated with the process of killing production wells in fields characterized by increased fracturing, both natural and artificial (due to hydraulic fracturing), with reduced reservoir pressure and a high gas factor. The relevance of the analysis is due to the increase in the number of development sites where complications arise when wells are killed. Particular attention is paid to technical solutions aimed at preserving the filtration and capacity properties of the bottomhole formation zone, preventing the absorption of process fluid, and blocking the manifestation of gas. The classification of block-packs used in killing is given, based on the nature of the process fluid. Suspension thickened water-salt solutions are considered, forming a waterproof crust on the surface of the rock, which prevents the penetration of water and aqueous solutions into the formation. This approach ensures the safety and efficiency of killing operations, especially when working with formations in which maintaining water saturation and preventing the ingress of the water phase are of critical importance. Modern trends in the development of technology are revealed, and promising areas for further improvement of well killing with absorption control are outlined.
-
Date submitted2023-10-02
-
Date accepted2024-11-07
-
Date published2025-04-25
Laboratory studies of hydraulic fracturing of intersecting boreholes in a non-uniform stress field
This study focuses on the features of hydraulic fracture propagation in intersecting boreholes in polymethyl methacrylate blocks in a non-uniform stress field. Glycerol aqueous solution and plasticine were used as the working fluids. According to linear fracture mechanics, a stress concentrator at the borehole intersection contributes to the beginning of crack formation, with further crack propagation occurring in the plane containing their axes. The relevance of this study is due to the search for innovative approaches and the development of technological solutions to address the issue of effective longitudinal crack formation and its further propagation in a rock mass under unfavourable stress field conditions. This paper provides a scheme of laboratory stand operation and a general view of the sealing packers used to isolate a specified interval when performing tests. The graphs of glycerol pressure versus injection time are presented, and the breakdown pressure in the blocks is specified. The shape of fractures formed during the indentation of plasticine into the borehole system was investigated. The findings of physical modelling indicate that longitudinal cracks are predominantly formed in the boreholes. The deviation of the crack trajectory from the vertical plane containing the borehole axes is primarily affected by the magnitude of the horizontal compressive stress field rather than the increase in the angle between them. In addition, the angles of inclination of the longitudinal crack plane measured at its intersection with the side face of the block are specified.
-
Date submitted2023-12-07
-
Date accepted2024-11-07
-
Date published2025-04-25
Determination of the tangential component of cutting resistance during frozen sedimentary rock cutting using blocked, deeply blocked and cell cutting methods
Due to the insufficient accuracy of existing studies of frozen sedimentary rock cutting process for practical calculations, the article solves the problem of determining the tangential component cutting resistance for blocked, deep blocked and cell cutting, which are currently the most commonly used methods in earthmoving equipment. The cutting tool and rock mass force interaction is considered from the point of view of the emerging stresses, which act on the separated chip element. The analytical dependences for determining the tangential component of cutting resistance were obtained. The numerical explanation of the choice of cell cutting in relation to blocked and deeply blocked cutting is given. For all three methods of cutting, under equal geometrical parameters of the cutting tool and the physical and mechanical properties of the frozen rock, the numerical value of the tangential component of cutting resistance is obtained. The comparison of the cutting resistance estimated values has shown that cell cutting requires relatively less energy and is preferred during the process of frozen sedimentary rock excavation. During field and laboratory investigations with the use of a multi-purpose cutting stand, a sufficient convergence of the analytical statements with the physics of frozen sedimentary rock cutting process was established. The results of the research allow a more reasonable approach to the adjustment of existing methods for determining the required tractive force and power for the drive of an excavation machine, and, therefore, to the actual efficiency and profitability of work.
-
Date submitted2023-07-05
-
Date accepted2024-06-03
-
Date published2024-12-25
Complete extraction of conditioned ores from complex-structured blocks due to partial admixture of substandard ores
- Authors:
- Bayan R. Rakishev
The paper presents mining-technological substantiation of complete extraction of conditioned ores from complex-structured blocks of benches by mixing a layer of substandard ores of certain sizes. The relevance of the work consists in the development of innovative methods of establishing the parameters of the substandard layer of ores to be added to the conditioned ores. The main problem is to ensure complete extraction of useful components into concentrate from shipped ore with acceptable deviations from the required ones. A new typification of complex-structured ore blocks of the bench has been carried out. Analytical dependences of mining and geological characteristics of complex-structured ore blocks were obtained. Theoretical dependences for determining the main indicators of mineral processing are derived. Analytical dependences for determination of the content of useful component in shipped ore α' – mixture of conditioned ore with the content of useful component α and admixed layer of substandard ore with the content of useful component α'' are offered. For the first time in mining science, a new approach of complete extraction of conditioned ores from complex-structured blocks of benches by grabbing a certain part of substandard ores during excavation, increasing the volume of extracted ore and expanding the extraction of useful components in the concentrate has been substantiated. The increment of useful components can reach 10-15 % of the total volume of extraction, which allows predicting a significant increase in the completeness of mineral extraction from the Earth's interior.
-
Date submitted2023-08-02
-
Date accepted2023-12-27
-
Date published2024-04-25
Justification of the approaches to improve management strategy of the mining system based on the analysis of data on the mining of complex structural rock blocks
Long-term activity of mining enterprises causes the necessity to substantiate the strategies of management of the mining and technical system functioning in terms of improvement of ore quality control, which is determined by its change in the course of field development due to the priority development of the main reserves and, as a consequence, forced transition to the mining of complex structural rock blocks with a decrease in the recovery percentage, which is typical in case the ore component meets the requirements of the feasibility study in terms of grade at substandard capacity. In this case, it is possible to identify the recovery percentage and the potential for its increase by analyzing the long-term activity of the mining and industrial enterprise, namely, by analyzing the data of mining complex structural rock blocks with the subsequent establishment of the relationship between the primary data on mining and geological conditions and information on the quality of the mineral obtained from the technological equipment. Therefore, the purpose of the research was to substantiate the necessity of improving the management strategy of the mining-technical system functioning, which consists in the fact that on the basis of analyzing the mining data of complex structural rock blocks it is possible to determine the ore mass losses and their quantity and to lay the basis for the development of decisions on its extraction. For this purpose, the collected data on the mining of complex structural rock blocks, accounting the geological and industrial type of extracted ores, were considered in modeling the conditions and studying the parameters of technological processes, the implementation of which provides additional products. It was revealed that the ore mass from substandard thickness layers is delivered to the dumps, and ore mass losses have been estimated at 25-40 % per year. It is proved that determination of ore mass losses based on the analysis of data on mining of complex structural rock blocks, as well as timely solution of this issue can significantly increase the production efficiency of mining and technical system. Taking into account for the results obtained, the options for optimizing the production of the mining and engineering system were proposed.
-
Date submitted2022-10-29
-
Date accepted2023-10-25
-
Date published2024-04-25
Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site)
The study presents the results of the research on geodynamic and geological conditions of the Enisei site (Krasnoyarsk Krai), chosen for the construction of an underground research laboratory. The laboratory is being built at a depth of 500 m to assess the suitability of the rock mass for burying high-level radioactive waste. The rocks consist of weakly fractured gneisses, granites, and dikes of metadolerites. Field observations were conducted on bedrock outcrops. They included the determination of rock mass quality indicators, measurement of rock fracturing, and a rating classification of stability using N.Barton's method. GNSS observations were also made to monitor surface deformations. These data were used to develop a three-dimensional structural model, including lithology, fault disruptions, intrusive bodies, elastic-strength properties of rocks, and the sizes of zones influenced by faulting. It will serve as a basis for boundary conditions and the construction of three-dimensional variational models of stress-strain states, identifying zones of concentration of hazardous stresses, and planning in situ geomechanical experiments in underground mines of the laboratory. The obtained values of the modified QR index for the main types of rocks allowed their classification as stable and moderately stable, corresponding to strong and very strong rocks on Barton's scale and the massif rating according to geomechanical classification.
-
Date submitted2022-04-12
-
Date accepted2022-11-17
-
Date published2022-12-29
Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)
Modern field operation conditions are characterized by a decline in gas production due to the depletion of its reserves, a decrease in reservoir pressure, an increase in water cut, as well as due to the depreciation of the operating well stock. These problems are especially specific at the late stage of development of the Cenomanian deposits of Western Siberia fields, where the anomaly factor below 0.2 prevails, while gas-bearing formations are represented mainly by complex reservoirs with high-permeability areas. When killing such wells, the classical reduction of overbalance by reducing the density of the process fluid does not provide the necessary efficiency, which requires the search for new technical and technological solutions. In order to prevent the destruction of the reservoir and preserve its reservoir properties during repair work in wells with abnormally low reservoir pressure, AO “SevKavNIPIgaz” developed compositions of special process fluids. A quantitative description of the process of blocking the bottomhole formation zone is proposed by means of mathematical modeling of injection of a gel-forming solution into a productive horizon. The well killing technology includes three main stages of work: leveling the injectivity profile of the productive strata using three-phase foam, pumping the blocking composition and its displacement with the creation of a calculated repression. Solutions obtained on the basis of a mathematical model allow optimizing technological parameters to minimize negative consequences in the well killing process.
-
Date submitted2022-04-29
-
Date accepted2022-07-21
-
Date published2022-11-10
Deep structure, tectonics and geodynamics of the Sea of Okhotsk region and structures of its folded frame
The use of the zonal-block model of the earth's crust for the construction of regional tectonic schemes and sections of the earth's crust based on a complex of geological and geophysical data makes it possible to consider the resulting maps and sections as tectonic models. The main elements of such models are blocks with an ancient continental base and interblock zones formed by complexes of island arcs, an accretionary prism, or oceanic crust. The developed geotectonic model of the Sea of Okhotsk region reflects the features of the deep structure, tectonics, and geodynamics. The Cimmerian Novosibirsk-Chukotka, Verkhoyansk-Kolyma, Kolyma-Omolon, and Amur folded regions and the Alpides of the Koryak-Kamchatka and Sakhalin-Sikhote-Alin folded regions are developed along the northern, western, and southern boundaries of the Sea of Okhotsk megablock with a continental crust type. From the east, the megablock is limited by oceanic basins and island arcs.
-
Date submitted2021-01-19
-
Date accepted2021-07-27
-
Date published2021-10-21
Geological and structural characteristics of deep-level rock mass of the Udachnaya pipe deposit
- Authors:
- Evgenii V. Serebryakov
- Andrei S. Gladkov
For hard rock massifs, structural disturbance is a key indicator of mining structure stability. The presence of intersecting structural elements in the massif reduces rock strength and leads to formation of potential collapse structures. In addition to that, disjunctive deformations that penetrate rock strata serve as channels for fluid migration and connect aquifers into a single system. It was established that the largest of them –faults of east-northeastern, northeastern and northwestern directions – form the kimberlite-bearing junction of the Udachnaya pipe. These faults represent zones of increased fracturing, brecciation and tectonic foliation, distinguished from adjacent areas by increased destruction of the rock mass. Specifics of tectonic fracture distribution within structural and lithological domains are determined by the presence of multidirectional prevailing systems of tectonic fracturing, as well as by differences in their quantitative characteristics. With some exceptions, the main systems form a diagonal network of fractures (northeastern – northwestern orientation), which is typical for larger structural forms – faults. Despite the differences in dip orientation of the systems, most of them correspond to identified directions, which is typical for both kimberlites and sedimentary strata. Overall disturbance of the massif, expressed in terms of elementary block volume, reaches its peak in the western ore body. For such type of deposits, friction properties of fracture structures have average values. Consideration of geological and structural data in the design and development of new levels of the deposit will allow to maintain the necessary balance between efficiency and safety of performed operations.
-
Date submitted2020-07-04
-
Date accepted2021-03-29
-
Date published2021-09-20
Transition between relieved and unrelieved modes when cutting rocks with conical picks
In the modern theory of rock cutting in production conditions, it is customary to distinguish two large classes of achievable cutting modes – relieved and unrelieved. The kinematics of rock-breaking machines in most cases determines the operation of the cutting tool in both modes in one cycle of the cutting tool. The currently available calculation methods have been developed for a stable, usually unrelieved cutting mode. In this article, the task is set to determine the conditions for the transition between cutting modes and the modernization of the calculation method for determining the forces on the cutting tool. The problem is solved by applying methods of algebraic analysis based on the search for the extremum of the force function on the cutter, depending on the ratio of the real cut spacing to the optimal spacing for the current chip thickness. As a result of solving the problem, an expression is obtained for determining the chip thickness, for which, at the specified parameters, the transition between the relieved and unrelieved cutting modes is provided. The obtained result made it possible to improve the method of calculating the forces on the cutting tool in the areas of the cutter movement with relieved cutting.
-
Date submitted2020-07-02
-
Date accepted2021-02-16
-
Date published2021-04-26
Development of viscoelastic systems and technologies for isolating water-bearing horizons with abnormal formation pressures during oil and gas wells drilling
Article provides a brief overview of the complications arising during the construction of oil and gas wells in conditions of abnormally high and abnormally low formation pressures. Technological properties of the solutions used to eliminate emergency situations when drilling wells in the intervals of catastrophic absorption and influx of formation fluid have been investigated. A technology for isolating water influx in intervals of excess formation pressure has been developed. The technology is based on the use of a special device that provides control of the hydrodynamic pressure in the annular space of the well. An experiment was carried out to determine the injection time of a viscoelastic system depending on its rheology, rock properties and technological parameters of the isolation process. A mathematical model based on the use of a special device is presented. The model allows determining the penetration depth of a viscoelastic system to block water-bearing horizons to prevent interformation crossflows and water breakthrough into production wells.
-
Date submitted2020-05-24
-
Date accepted2020-07-23
-
Date published2020-11-24
Estimation of ore contour movements after the blast using the BMM system
Measurement of ore movements by blast is one of the key components of the quality control system at any mining enterprise, which allows to obtain the accuracy necessary for determining the location of ore contours. About 15 years ago, a monitoring system was developed in Australia that allows mine personnel to make three-dimensional measurements of ore blocks movement at each blast. Studies have shown that ore blocks movement is extremely variable, and it characterized by a complete absence of a deterministic component. The consequence is that modeling ore contour movements during the blast will be inaccurate, and the best results for the mining enterprise can only be achieved by directly measuring the movement. The technology of measuring ore contours movements considered in the article is based on three-dimensional movement vectors obtained in different parts of the blasted block, characterized by different movements. It is obvious that the accuracy of determining the ore contours position after the blast is proportional to the number of measurements made on the block. Currently, the movement control technology based on the BMM system is actively used by global mining companies, its use reduces losses and dilution of ore. In 2017, the pilot implementation of the BMM system was started at the Olympiadinsky GOK, and the system is being implemented in several Russian mining companies.
-
Date submitted2018-11-23
-
Date accepted2019-01-03
-
Date published2019-04-23
Structural model and tectonic evolution of the fault system in the Southern part of the Khur area, Central Iran
- Authors:
- A. Sohrabi
- A. Nadimi
- I. V. Talovina
- H. Safaei
In the southern part of the Khur area, there is faults system with predominantly North-West strike. This network of tectonic disturbances is one of the most important fault systems in Central Iran which crosses Paleozoic metamorphic rocks, Cretaceous limestones, and Eocene volcanic rocks. Interpretation of satellite imagery ETM+ (Enhanced Thematic Mapper plus, Landsat) and field observations showed the presence of left-lateral shifts along with fault system. This formed the structure of the branch faults at the northeast end of the main fault. Another feature associated with shear dislocations is the rotation of blocks in the northeastern and southwestern segments of the area under study. There are several basins and positive structures within the area such as a series of uplifts and thrusts, indicating the presence of compressional and extensional tectonics. Another part of the work is devoted to the study of the correlation between active faults and earthquakes. Processing of satellite images, field observations, records of micro-earthquakes within a radius of 17 km made it possible to analyze the earthquakes parameters and the position of tectonic disturbances, and, as a result, confirm the presence of active faults in the region. In addition, we have identified three successive stages of the Khur area tectonics: rifting, contraction, change of convergence and uplift direction.
-
Date submitted2018-09-04
-
Date accepted2018-11-16
-
Date published2019-02-22
Development of an occupational safety management system based on the process approach
- Authors:
- V. A. Filimonov
- L. N. Gorina
The article discusses the relevance and possibility of using the process approach in the development and implementation of occupational safety management systems based on GOST 12.0.230-2007, which is the main document in this area for all industrial enterprises and organisations of the Russian Federation. The system of occupational safety management in the organisation is considered taking into account all its internal communications and input-output parameters. It is shown that the process approach used in the design of the occupational safety management system in the organisation, allows categorising the list of works (processes), participants, resources (responsible, performers, documents, etc.), the control and correction processes. The methodological substantiation of the process approach to the design of the occupational safety management system in the organisation is given, the basic issues of its applicability are considered. A context diagram of the process of an occupational safety management system is drawn in the IDEF0 graphical notation by means of the SADT structural analysis technology. The decomposition of the context diagram to the required levels of detail is presented and the balance factor of the models is calculated.
-
Date submitted2018-09-10
-
Date accepted2018-11-06
-
Date published2019-02-22
Comparative analysis of zincand tin oxidation with acids at room temperatures
- Authors:
- S. D. Pozhidaeva
- L. S. Ageeva
- A. M. Ivanov
The paper analyses the parameters of deep oxidation of zinc and tin by copper (II) compounds and molecular iodine in the presence of molecular oxygen and hydrogen peroxide, as second oxidizers working synchronously with them in various media (aqueous, aqueous-organic and organic) with the participation of mineral and carboxylic acids close to room temperature. The contribution of the reactivity of the metal to its rate of consumption, especially the average, is often much less than the contribution associated with the release characteristics of the working surface, determined by the rates of accumulation of surface deposits of metal oxidation products, their strength and adhesion characteristics their destruction and shifting into the bulk phase.
-
Date submitted2018-05-09
-
Date accepted2018-06-30
-
Date published2018-10-24
Scientific and methodical approaches to increase prospecting efficiency of the russian arctic shelf state geological mapping
- Authors:
- A. S. Egorov
- I. Yu. Vinokurov
- A. N. Telegin
A rationale for the set of theoretical and methodological techniques of mapping and deep modeling in the Russian Arctic shelf and adjacent sedimentary basins in continental Russia is based on the materials for the Barents and Kara Seas region. This article provides the factual basis of the research and shows how to apply zonal-block model of the crust and generalized models of geodynamic settings in terms of the different geophysical data inconsistency. The necessity and approach for global and regional paleo-reconstructions are also discussed. It is shown that localization of the principal structural and compositional units of the lithosphere being a consequence of geodynamic processes at the boundaries of lithospheric plates, form at the basis of sedimentary cover and crystalline basement layered maps as well as cross-sections of the continental crust. The identified parameters of the deep structure and milestones of the regional tectonic history open new opportunities to explore the regularities of ore deposits distribution. The shown example of the forecast and metallogeny problems solution within Western Siberia and Khatanga-Vilyui petroleum provinces is made using the parameters of known industrial oil and gas fields for training the pattern recognition system.
-
Date submitted2009-10-20
-
Date accepted2009-12-26
-
Date published2010-09-22
Change in presentations on mechanism of rock and tectonic bursts at ore mines at present time
- Authors:
- A. V. Lovchikov
It was shown that presentations on mechanism of rock and tectonic bursts developed for coal deposits, are not suitable for the conditions of ore deposits. Forms of manifestations of rock and tectonic bursts at ore deposits have been determined by experimental data including the artificial initiation of rock bursts in pillars.
-
Date submitted2009-10-21
-
Date accepted2009-12-26
-
Date published2010-09-22
Modeling of geomechanical processes in mining the steeply pitching ore bodies of rockburst-hazardous deposits
The article contains the results of numerical modeling of stress-strain state in constructive elements of mining systems, applied at hazardous and prone to rook bursts deposits of the Far-East. Consideration is given to some stated regularities of forming of teсhnogenic stress field and geomechanical processes proceeding in rock mass of minable deposits which allow to substantiate a сomplex of measures for prevention of dynamic rock pressure manifestations.
-
Date submitted2009-10-14
-
Date accepted2009-12-11
-
Date published2010-09-22
Investigation of present-day stress-strain state of rock mass by the results of observations at geodynamic polygons
- Authors:
- S. N. Savchenko
- E. V. Kasparyan
- Yu. G. Smagina
The methods are suggested for treatment of the results of optical distance and levelling measurements at the underground geodynamic polygons involving in their calculation the tensors of additional stresses and deformations, component of rotation and specific energy of deformability. As an example, consideration is given to changes in time of movements, deformations and specific energy of deformability at one of geodynamic polygons of the Kola peninsular.
-
Date submitted2009-10-29
-
Date accepted2009-12-26
-
Date published2010-09-22
Control system of rock pressure at the «Antey» deposit
- Authors:
- B. A. Prosekin
- E. A. Ilin
The paper deals with the geomechanical monitoring system of the Antey deposits of uranium ores. Characteristics of the methods and means for rock pressure control are given.
-
Date submitted2008-10-24
-
Date accepted2008-12-01
-
Date published2009-12-11
History and prospects for the development of the karelian isthmus facing stone mineral base
- Authors:
- A. Y. Tutakova
The prerequisites for the development of the deposits, the previous studies and the current state of Karelian Isthmus facing stone sources as well as their comparison with those of other regions of Northwestern Federal Districts of Russia are considered. The objects for top-priority geological prospecting are determined.
-
Date submitted2008-10-22
-
Date accepted2008-12-14
-
Date published2009-12-11
Peculiarities of structure and comparative analysis of oil-and-gas basins in the Pacific segment of lithosphere
- Authors:
- V. B. Archegov
Comparative analysis was carried out for oil-and-gas-bearing basins of young and oldland platforms of the Pacific segment. Previously the same kind of analysis had been realized for the Atlantic segment of lithosphere. Obtained results confirm the unique geological structure and oil-and-gas capacity of Siberian platform, by these features it differs from all other cratons in the whole world.