-
Date submitted2024-05-17
-
Date accepted2025-03-27
-
Date published2025-03-27
Determination of impact hazard potential of rocks in the Norilsk Industrial Region
The deeper the mineral deposits developments are, the worse the mining and geological conditions become. Significant growth of stress level in the rock mass contributes to possible manifestation of rock pressure in dynamic form. The resulting task of assessment of rock impact hazard is closely related to the task of obtaining more accurate results of compression tests of samples in rigid or servohydraulic test presses using graphs of their full deformation. This approach requires special expensive equipment, considerable time resources, and sufficient core material. Therefore, it is important to have an approach that allows to assess the propensity of rocks to brittle fracture with research methods simple enough not to result in the loss of quality and reliability of the obtained results. This paper presents the results of laboratory tests of rocks from the Norilsk Industrial Region to determine their tensile and compressive strengths. Test methods involved both domestic and foreign standards for determining the value of the brittleness coefficient. The impact hazard potential of rocks was determined using the Kaiser criterion. It is found that the tested lithological types (rich sulfide ores, hornblende, disseminated ores, and gabbro-dolerite rocks), with the exception of anhydrite, have a low impact hazard potential.
-
Date submitted2023-12-15
-
Date accepted2024-06-13
-
Date published2025-02-25
Development of equipment and improvement of technology for inertial thickening of backfill hydraulic mixtures at the final stages of transportation
The results of the study of the functioning of the developed thickening equipment as part of the stowing complex for the formation of a flow of high-concentration hydromixture are presented. To explain the operation of the hydrotransport system of the stowing complex, equipped with a thickener of the developed design, its basic diagram is presented. A mathematical model has been created that describes the mechanism of inertial sedimentation of a solid component of a hydraulic mixture in a working chamber equipped with hydrodynamic profiles. Interaction with the profile leads to flow stratification due to a change in the trajectory of movement and a decrease in speed. The interval of rational velocity of primary pulp entering the input of the working chamber of the inertial thickener is substantiated. The synthesis of solutions of the thickening process model is performed in the COMSOL Multiphysics and Ansys Fluent programs. This made it possible to eliminate physical contradictions in the operation of the equipment and justify the overall dimensions of its main elements, ensuring the implementation of the mechanism of inertial sedimentation of the slurry. It was found that the concentration of the thickened flow at the outlet branch pipe of the thickener working chamber is determined by the level of the primary hydraulic fluid velocity, the characteristic length of the section of interaction with the deflecting profile, and the ratio of the flow and attack angles. A nomogram of the dynamics of the change in the hydraulic fluid concentration in the section of the outlet branch pipe depending on the ratios of the overall dimensions of the deflecting profile of the working chamber was compiled. The results of the study allowed formulating recommendations for selecting the dimensions of the thickener's deflecting hydrodynamic profile to form a flow of hydraulic mixture with a concentration of about 50 % by weight. The developed equipment can be used in a stowage complex and will increase the range of supply of the stowage mixture. This is due to the fact that a flow of primary slurry with a low concentration, due to lower pressure losses, can be moved in a pipeline system over a greater distance than a flow with a high filler content. The use of a thickener at the final stage of transportation is intended to increase the concentration of the hydraulic mixture immediately before production.
-
Date submitted2021-10-31
-
Date accepted2023-03-02
-
Date published2023-12-25
Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps
On the example of the Alardinskaya mine, the problem of underground mining of seams prone to spontaneous combustion and rock bumps in the conditions of the Kondomsky geological and economic region of the Kuznetsk coal basin is considered. The contradictions in the requirements of regulatory documents for the width of the inter-panel coal pillars in the mining of seams with longwalls in conditions of endogenous fire hazard and in the mining of seams that are dangerous due to geodynamical phenomena are discussed. These contradictions impede the safe mining of seams using traditionally used layouts with the danger of spontaneous combustion of coal and rock bumps. A mining-geomechanical model is presented, which is used for numerical three-dimensional simulation of the stress-strain state of a rock mass with various layouts for longwall panels using the finite element method. The results of the numerical analysis of the stress state of the rock mass immediately before the rock bump are presented, and the main factors that contributed to its occurrence during the mining of the seam are established. A dangerous degree of stress concentration in the coal seam near the leading diagonal entries is shown, especially in conditions of application of abutment pressure from the edge of panels’ gob. The analysis of the features of stress distribution in the inter-panel pillar at different widths is carried out. Recommendations for improving the layout for the development and mining of coal seams that are prone to spontaneous combustion and dangerous in terms of rock bumps in the conditions of Alardiskaya mine have been developed. The need for further studies of the influence of pillars for various purposes, formed during the mining of adjacent seams, on the stress-strain state of previously overmined and undermined seams is shown.
-
Date submitted2021-12-15
-
Date accepted2022-09-12
-
Date published2023-08-28
Substantiation and selection of the design parameters of the hydroficated equipment complex for obtaining backfill mixtures from current enrichment tailings
The issue of the influence of the concentration of the solid phase on the reduction of energy costs and specific energy consumption during pulp transportation is considered. The procedure for preparing slurry from the current enrichment tailings is shown. A scheme is given and the operation of a hydroficated unit for thickening and hydraulic transport of backfill mixtures is described. A diagram of the movement of solid particles in one of the units of the complex – a lamellar thickener is shown. The summary table shows the main design parameters and characteristics of the lamellar thickener. A general view of the laboratory setup used for experimental studies with slurry at various concentrations is given. An example of calculating productivity, density and specific load is presented. The dependence of the shear stress on the velocity gradient was determined for various pulp concentrations. Experimental studies of the process of thickening the production of slurry from the current enrichment tailings have been carried out. It was found that the geometric dimensions of the thickener depend on the concentration of the solid phase in the transported mixture. It is concluded that the flow rate of the slurry and the head loss are functions of the rheological characteristics of the viscoplastic slurry and can be calculated from the derived calculated dependencies.
-
Date submitted2021-09-01
-
Date accepted2022-10-07
-
Date published2022-12-29
Parameter determination of the method of directional unloading of the reservoir based on physical modelling on a true triaxial loading setup
The article presents a theoretical and experimental substantiation of the method of directional unloading of the reservoir in fields with low-permeability reservoirs. The relevance of the article is due to the reduction of hydrocarbon resources in modern conditions and the need to create new efficient environmentally friendly technologies to develop hydrocarbon deposits with hard-to-recover reserves, primarily with low-permeability reservoirs. The results of a theoretical study of the stress-strain state in the vicinity of a well, both cased and open, are presented. They are necessary to develop programs for laboratory testing of core specimens from the studied fields. A technique for physical modelling of deformation processes in the bottomhole zone with a decrease in pressure at the well bottom in a true triaxial loading unit is described in order to determine the parameters of the process impact on the formation reservoir, leading to an increase in well productivity. The method was applied to the conditions of the low-permeability reservoir at the Verkhneviluchanskoye oil and gas condensate field in the southwest of the Republic of Sakha (Yakutia). Expe-rimental studies were carried out on a unique scientific unit for true triaxial loading, created at the IPMech RAS, the Triaxial Independent Loading Test System. The directional unloading method was adapted for the studied field, the process parameters of successful application of the method were determined: the bottomhole design, the drawdown values necessary to increase the permeability of the bottomhole formation zone.
-
Date submitted2021-05-27
-
Date accepted2022-09-06
-
Date published2022-11-10
Application of resonance functions in estimating the parameters of interwell zones
It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.
-
Date submitted2021-07-19
-
Date accepted2022-05-31
-
Date published2022-07-13
Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter
The factors influencing the qualitative and quantitative components of the result of surveying in open-pit mining using a quadcopter were identified and systematized, and the mathematical dependence of the influence of factors on the final error of surveying was determined. After a large number of field observations – numerous flights of a geodesic quadcopter over mining facilities – the subsequent mathematical justification of the results of the aerial photogrammetric surveying was made, which allowed to analyze the degree of participation in the final accuracy of the survey of each of the considered factors. The results of this study demonstrate the source of errors, which provide the surveyor with the opportunity to efficiently and competently carry out pre-flight preparation and planning of fieldwork. The study and subsequent consideration of the factors affecting the accuracy of surveying with the use of an unmanned aerial vehicle are the basis for the subsequent development and formation of a methodology for using a geodesic quadcopter in the conditions of open-pit mining.
-
Date submitted2021-07-05
-
Date accepted2022-01-24
-
Date published2022-04-29
Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings
- Authors:
- Oleg I. Kazanin
- Andrei A. Ilinets
On the basis of analysis of mining plans and field studies at mines of JSC SUEK-Kuzbass, it is shown that in conditions of increasing the size of excavation columns during the development of flat-lying coal seams the stress-strain state of the rock mass along the workings length changes significantly. The necessity of predicting the stress-strain state at the design stage of the workings timbering standards, as well as subsequent monitoring of the workings roof state and its changes in the mining operations using video endoscopes, is noted. The results of numerical studies of the stress-strain state of the rock mass during the development of excavation sites by three workings for various combinations of width of the pillars between the workings for mining-geological and mining-technical conditions of the “Taldinskaya-Zapadnaya-2” mine are provided. The stresses in the vicinity of the three workings are compared with the values obtained during the development of the excavation sites by double drift. A set of recommendations on the choice of the location of the workings, the width of pillars, timbering standards that ensure the stable condition of the workings throughout the entire service life at the minimal losses of coal in the pillars is presented.
-
Date submitted2021-03-05
-
Date accepted2021-10-18
-
Date published2021-12-16
Physical and mathematical model of rock destruction by a milling machine cutter
As a result of the analysis of the work on rock destruction by cutters of milling of machines, it was found that the existing developments do not allow us to proceed to the derivation of calculation d dependencies for determining fracture resistance, or can be used only in preliminary calculations of the known by design parameters of milling machines. To eliminate these disadvantages, a combined physical and mathematical model of the process of interaction of a single milling cutter with a spherical tip with the rock has been developed. Consideration of the physical picture of the action of forces and stresses acting from the cutter with spherical tips on the separating rock element in the limiting condition allowed to describe analytically the components of total resistance, which are the mathematical part of the physical and mathematical model of rock destruction by cutters. Analytical dependences for determining the tangential and normal components of fracture resistance of rocks of medium hardness have been obtained. The adequacy of the physical and mathematical model to the physical process of destruction of rocks of different hardness by cutters on a universal stand was tested both in the field and in the laboratory conditions. Technical evaluation of the results of experimental studies confirms the reliability of the developed physical and mathematical model.
-
Date submitted2019-01-31
-
Date accepted2022-12-02
-
Date published2020-02-25
The relationship of fracture toughness coefficients and geophysical characteristics of rocks of hydrocarbon deposits
This paper contains the results of laboratory tests to determine the fracture toughness coefficient K IC of rocks for terrigenous and carbonate objects by three methods. The tests were carried out by different methods due to the lack of a standard method for determining the fracture toughness characteristics of rocks in Russia. We used the following methods for determining the K IC coefficient: the extension of core specimens with an annular fracture, the action of a concentrated load on a beam specimen with a fracture and the method of bending semi-circular samples with a fracture according to ISRM recommendations. The paper presents the relationship of the fracture toughness coefficients with the P-wave velocity and porosity. The obtained dependencies characterize the general trend of changing for the studied parameter and can be used in the design of hydraulic fracturing in the fields for which tests were conducted.
-
Date submitted2018-08-30
-
Date accepted2018-10-26
-
Date published2019-02-22
Study of bearing units wear resistance of engines career dump trucks, working in fretting corrosion conditions
- Authors:
- Ju. Olt
- V. V. Maksarov
- V. A. Krasnyy
The occurrence of fretting corrosion on nominally fixed surfaces of high-loaded parts of mining machines and mechanisms is considered. Examples of wear and damage of critical parts, bearing assemblies of engines of dump trucks in fretting conditions are given. The mechanisms of fretting corrosion when using wear-resistant coatings are considered. It is noted that when choosing protective thin-layer coatings that provide an increase in the fretting-resistance of surfaces of tightly contacting parts, it is necessary to take into account both their wear resistance and the ability to resist shear. At the same time, the thickness of such coatings allows preserving, during operation, those provided during the assembly of the tension, without disturbing the maintainability of the nodes. The results of research of fretting wear of a number of coatings on a special installation are given. The mechanisms of wear of a number of thin-layer coatings based on friction-mechanical brazing, polymer fluorocarbon composition, solid lubricant coating using scanning electron microscopy were studied. Recommendations on the use of the studied thin-layer coatings for high-loaded parts of mining machines operating in fretting corrosion conditions have been developed. The aim of the work was to study the effect of a number of thin-layer coatings on the wear of highly loaded connections of the mechanisms of mining machines, in particular bearing assemblies of quarry dump trucks operating under fretting corrosion conditions.
-
Date submitted2018-07-18
-
Date accepted2018-09-22
-
Date published2018-12-21
Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit
- Authors:
- D. V. Sidorov
- M. I. Potapchuk
- A. V. Sidlyar
The subject of the research is the stress-strain and rock burst hazardous state of the ore massif of the Nikolaevskoe polymetallic deposit, formed under the influence of complex mining-geological and mining-technical factors. The purpose of the research is to establish the peculiarities of the formation of technogenic stress fields at the deposit, which is characterized by a block structure, a complex tectonic system and the presence of a large volume of developed spaces. Volumetric geodynamic modeling of the stress-strain state of the massif at different stages of the development of the deep horizons of the deposit was carried out by collecting information on the structure, properties and geodynamic state of the rock mass. The assessment of stress changes taking into account the effect of hypsometry, the configuration of the selvages, the physical-mechanical properties of the ore deposit and host rocks, the presence of tectonic disturbances was made using the developed numerical algorithms, the automation equipment of the initial data and the PRESS 3D URAL software. The simulation made it possible to establish that tectonic faults in the massif lead to a qualitative change in the stress-strain state in certain parts of the ore massif and in the pillars, namely, the reduction of stresses along the tectonic faults and their growth in nearby pillars. The identified features of the distribution of stresses in the tectonically disturbed rock massif of the Nikolaevskoe deposit will allow to identify in advance potentially hazardous areas both at the planning stage of mining operations and during development, as well as to work out effective rock burst measures to increase the safety of mining. The results of research can be used in enterprises with similar mining-geological and mining-technical conditions.
-
Date submitted2016-08-30
-
Date accepted2016-10-30
-
Date published2017-02-22
Gas-dynamic processes affecting coal mine radon hazard
- Authors:
- V. I. Efimov
- A. B. Zhabin
- G. V. Stas
The paper focuses on vertical migration of radon in surrounding rocks described by Fick's first law as well as by the continuity equation for diffusion flow, with allowance for sorption and radioactive decay processes. Taking into account special characteristics of vertical radon diffusion, the process can be considered stable. It is demonstrated that for productive areas it is feasible to consider one-dimensional convective diffusion, as diffusive transport of radon by the air of productive areas occurs at steady-state conditions. Normally the factor of radon emissions prevails if atmospheric pressure is constant. Amount of air, calculated using this factor, by 20-30 % exceeds the one needed to dilute carbon dioxide to maximum allowed concentration (MAC).
-
Date submitted2016-09-02
-
Date accepted2016-11-08
-
Date published2017-02-22
Mathematical models of gas-dynamic and thermophysical processes in underground coal mining at different stages of mine development
- Authors:
- M. V. Gryazev
- N. M. Kachurin
- S. A. Vorobev
New trends have been traced and the existing ones refined regarding filtration and diffusive motion of gases in coal beds and surrounding rock, spontaneous heating of coal and transport of gas traces by ventilation currents in operating coal mines. Mathematical models of gas-dynamic and thermophysical processes inside underworked territories after mine abandonment have been justified. Mathematical models are given for feasible air feeding of production and development areas, as well as for the development of geotechnical solutions to ensure gas-dynamic safety at every stage of coal mine operation. It is demonstrated that the use of high-performance equipment in the production and development areas requires more precise filtration equations used when assessing coal mine methane hazard. A mathematical model of pressure field of non-associated methane in the edge area of the coal seam has been justified. The model is based on one-dimensional hyperbolic equation and takes into consideration final rate of pressure distribution in the seam. Trends in gas exchange between mined-out spaces of high methane- and CO 2 -concentration mines with the earth surface have been refined in order to ensure environmental safety of underworked territories.
-
Date submitted2015-12-27
-
Date accepted2016-02-26
-
Date published2016-12-23
Simulation of rock deformation behavior
- Authors:
- Ya. I. Rudaev
- D. A. Kitaeva
- M. A. Mamadalieva
A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.
-
Date submitted2014-12-11
-
Date accepted2015-02-11
-
Date published2015-12-25
Influence of the type of hardening treatment on wear-resistant materials of mining equipment
- Authors:
- V. I. Bolobov
- S. A. Chupin
For example, steel 110G13L as the material of teeth of excavator buckets, shows that the work hardening (hardening) is an effective means to increase (up to 10 times) the wear resistance of components in contact with abrasive media, such as marble, yielding the steel in a state of hard-ening of hardness. In the case of wear on the rocks (granite, gabbro) with a hardness greater than the hardness of steel, the effect of hardening has almost no effect. It was found that high-temperature thermomechanical treatment of steel 35HGSA as the material of holders of rotary cut-ters (strain at 900 С, water quenching, tempering at 230 С) leads to a substantial increase of its hardness (23 %) and durability (38 %) compared to typical heat treatment used in the manufacture of cutting tools at the factory.
-
Date submitted2014-12-29
-
Date accepted2015-02-15
-
Date published2015-12-25
A study of distillates physical and chemical properties and residues after thermodestructive and catalytic processes and their application in the mining industry
- Authors:
- N. K. Kondrasheva
- O. V. Zyrianova
When transporting overburden rocks in a cold season, the lower layer of materials freezes to working surfaces of transport equipment, and at long transportations – congeals under its own weight. As a result, up to 50 % of rock remains in the vehicle, while the unloaded part represents indiscreete frozen mass. It considerably complicates the process of unloading transport and leads to increased labor and financial expenses. A rational and effective remedy for these problems is transport equipment and bulk material processing with chemical agents of oil and petrochemical origin – mixtures of distillate and bottom frations obtained as a result of thermodestructive processes during petroleum feedstock manufacturing. The article presents data on the quality of distillates and residual products of oil recycling, which are used as initial components for producing preventive drugs, which are used to prevent sticking and freezing of overburden rocks during transportation and storage in the cold time of year, as well as drugs used for pit roads treatment in surface mining operations. Optimal component compositions of new petrochemicals are developed, and the physical and chemical properties of the received test samples have been studied.
-
Date submitted2010-07-23
-
Date accepted2010-09-28
-
Date published2011-03-21
Sistaining mining in whole different rigidity
- Authors:
- L. K. Gorshkov
- S. G. Kokoev
Studies conducted in the mines «Rostovugol», showed that, for assessing the sustainability of preparatory excavations in the management of sewage treatment works is enough to determine the allowable values of convergence of the roof and ground-level workings and potential energy of elastic deformation of the pillars. These indicators can be used in the coal mines of other basins.
-
Date submitted2009-10-12
-
Date accepted2009-12-26
-
Date published2010-09-22
Methods and techniques for control of rockburst-hazard in underground mining at ore mines of the Far-East district
An assessment is given to the present-day state of control of dynamic rock pressure manifestations in the rockburst-hazardous ore mines of the Far-East district. Consideration is given to the used methods and facilities for control of rock pressure and the ways for their improvement . Basic foundations of methodical approaches to the assessment of geomechanical state of rock mass by data of geoacoustic control are considered.
-
Date submitted2009-10-14
-
Date accepted2009-12-03
-
Date published2010-09-22
Some geomechanical aspects in the development of calculation methods of rock pressure in permanent mine workings
- Authors:
- A. M. Kozel
The paper deals with the particular features of the stress-strain state and mechanical condition of the rocks surrounding the permanent mine workings; they should be taken into account in the development and updating of standards and calculation methods to ensure the stability of these workings.
-
Date submitted2009-10-26
-
Date accepted2009-12-27
-
Date published2010-09-22
Support of geodynamic safety in mining of the Khibini deposits
The paper deals with the problems of geodynamics in mining of the Khibini deposits. Description is given to the complex of organizational-technical arrangements for provision of geodynamic safety at the Apatit Co and to principal trends of its development.
-
Date submitted2009-10-12
-
Date accepted2009-12-19
-
Date published2010-09-22
Preventive measures of gas-dynamic phenomena in the workings drivage on the rockburst- outburst-hazardous seams under extremely complicated geological and mining conditions
- Authors:
- V. P. Kostromin
A complex of measures preventing the manifestation of rockbursts and sudden outbursts of coal and gas has been developed. Criteria of forecasting, an assessment of efficiency of the preventive measures are suggested, as well as the necessary technical facilities and technologies.
-
Date submitted2009-10-14
-
Date accepted2009-12-07
-
Date published2010-09-22
Determination of coal pillar sizes in preparation of seams with paired mine workings
- Authors:
- N. V. Krotov
- F. P. Ivchenko
- D. V. Sidorov
The results of introduction at coal mines of the methods for determination of coal pillar sizes in preparation of rockburst-hazardous seams with paired workings are discussed in the paper. Safe values of advancing in drivage of development workings with formation of yielding have been established.
-
Date submitted2009-07-02
-
Date accepted2009-09-30
-
Date published2010-04-22
On mechanisms for improvement of mine surveying works
- Authors:
- V. V. Gritskov
The article considers the aspects concerned with the improvement of mine surveying under conditions of market relations. It is shown that the financing of the urgent problems in safe mining operations related to the utilization of the Earth's interior, is practically absent on the federal level. In this connection, the development of the federal programme «Safe Utilization of Mineral Resources and Conservation of Reserves» is a high-priority task, which should include also the aspects of geodynamic safety in mining.
-
Date submitted2009-07-24
-
Date accepted2009-09-16
-
Date published2010-04-22
Determination of indices of strength certificate оf rocks using the method of specimens failure with spherical indentors
- Authors:
- V. A. Korshunov
- Yu. M. Kartashov
- V. A. Kozlov
The method has been developed for the determination of indices of strength certificate of rocks using the technique of specimen’s failure with oncoming spherical indentors. This method is based on the assessment of ultimate stresses acting in the tensile plane and within the zones of failured rocks under action of indentors at the moment of sample splitting. Formulas were obtained for calculation of indices of strength certificate, i.e. cohesion and angles of internal friction under tensile compression and nonuniform triaxial compression, ultimate strength in uniaxial compression and tension. This method is applicable in situ conditions.