Submit an Article
Become a reviewer
G. V. Stas
G. V. Stas
Tula State University
Tula State University

Articles

Geoecology and occupational health and safety
  • Date submitted
    2016-08-30
  • Date accepted
    2016-10-30
  • Date published
    2017-02-26

Gas-dynamic processes affecting coal mine radon hazard

Article preview

The paper focuses on vertical migration of radon in surrounding rocks described by Fick's first law as well as by the continuity equation for diffusion flow, with allowance for sorption and radioactive decay processes. Taking into account special characteristics of vertical radon diffusion, the process can be considered stable. It is demonstrated that for productive areas it is feasible to consider one-dimensional convective diffusion, as diffusive transport of radon by the air of productive areas occurs at steady-state conditions. Normally the factor of radon emissions prevails if atmospheric pressure is constant. Amount of air, calculated using this factor, by 20-30 % exceeds the one needed to dilute carbon dioxide to maximum allowed concentration (MAC). 

How to cite: Efimov V.I., Zhabin A.B., Stas G.V. Gas-dynamic processes affecting coal mine radon hazard // Journal of Mining Institute. 2017. Vol. 223. p. 109. DOI: 10.18454/PMI.2017.1.109