Submit an Article
Become a reviewer

Search articles for by keywords:
геохимические параметры

Geology
  • Date submitted
    2024-05-15
  • Date accepted
    2024-11-07
  • Date published
    2025-04-14

Metacarbonate rocks of the Paleoproterozoic Khapchan series (southeastern part of the Anabar Shield): mineral and chemical composition, metamorphic conditions

Article preview

The mineral composition of metacarbonate rocks (silicate marbles and carbonate-silicate rocks) of the Khapchan series (southeastern part of the Anabar Shield) was studied, and the PT (pressure and temperature)-parameters of their formation were established. Silicate marbles contain calcite, dolomite, forsterite, clinohumite, spinel, enstatite, diopside, pargasite, meionite, phlogopite, and feldspars. Carbonate-silicate rocks are composed of calcite, quartz, feldspars, diopside, grossular, marialite, and vesuvianite. Carbonate-silicate rocks are significantly enriched in SiO2, Al2O3, FeO, Na2O, K2O, TiO2 and contain less MgO, CaO than silicate marbles. A difference was revealed in PT-parameters determined for silicate marbles (temperatures 700-900 °C and pressure no more than 8 kbar) and for carbonate-silicate rocks (temperatures 680-820 °C, pressures 8-15 kbar). Silicate marbles have a primary sedimentary nature, as evidenced by their rare-element composition and the presence of fragments of host terrigenous rocks. There is no doubt about the primary sedimentary nature of carbonate-silicate rocks, which are very similar in REE distribution spectra and in rare-element composition to silicate marbles. A number of features indicate that metacarbonate rocks have undergone metasomatic alteration. Thus, in silicate marbles, reaction rims are observed around orthopyroxene, forsterite, potassium feldspar, as well as quartz veins bordered by accumulations of phlogopite, feldspars, and diopside. In carbonate-silicate rocks, the development of secondary marialite on potassium feldspar has been established; the rare-element composition of garnet may indicate its metasomatic origin.

How to cite: Akimova E.Y., Gusev N.I., Savelev A.D., Donchenko D.R. Metacarbonate rocks of the Paleoproterozoic Khapchan series (southeastern part of the Anabar Shield): mineral and chemical composition, metamorphic conditions // Journal of Mining Institute. 2025. p. EDN VKUFOP
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-03
  • Date accepted
    2024-09-05
  • Date published
    2024-11-12

Platinum group elements as geochemical indicators in the study of oil polygenesis

Article preview

This study examines elements of the platinum group (PGE), primarily platinum and palladium, as geochemical indicators in the investigation of oil polygenesis. It has been found that, like other trace elements such as nickel, vanadium, and cobalt, platinum group elements and gold can occur in oil fields at both background levels and in elevated or even anomalously high concentrations. The objective of this research is to analyze PGE and trace elements as geochemical markers to identify the geological factors, including endogenous processes, responsible for these unusually high concentrations in oil. A comprehensive review of the literature on this subject was conducted, along with new data on the presence of precious metals in oils from Russia and globally. The study explores the geological mechanisms behind elevated PGE concentrations in oils, utilizing atomic absorption spectroscopy with atomization in the HGA-500 graphite furnace to measure PGE content. Previously, the tellurium co-deposition method (ISO 10478:1994) was used to isolate noble metals from associated elements. Possible geological origins of abnormally high concentrations of platinum metals in oils have been identified. These include endogenous factors such as the spatial proximity of oil fields to ultrabasic rock massifs, the effects of contact-metasomatic processes, and influences from mantle dynamics. Moreover, data concerning mantle elements can serve as indicators of the depth origins of certain hydrocarbon fluids, thus contributing to the study of oil polygenesis.

How to cite: Talovina I.V., Ilalova R.K., Babenko I.A. Platinum group elements as geochemical indicators in the study of oil polygenesis // Journal of Mining Institute. 2024. Vol. 269 . p. 833-847. EDN UYYBSB
Editorial
  • Date submitted
    2024-10-29
  • Date accepted
    2024-10-29
  • Date published
    2024-11-12

Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths

Article preview

In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.

How to cite: Prishchepa O.M., Aleksandrova T.N. Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths // Journal of Mining Institute. 2024. Vol. 269 . p. 685-686.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-09
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies

Article preview

Nature-like technologies are being introduced into many human activities including mining wastewater treatment. This work is based on long-term studies of the Sibay copper-zinc-pyrite deposit development. It is dedicated to assessment of geochemical barriers effectiveness in Cu, Zn, Cd removal from water of the Karagayly River (receiving quarry and dump drainage water). The research is based on the elements’ content and forms in water and bottom sediments, pH values etc. Four types of hydrogeochemical environment (formed due to changes in the water use over the past 20 years) were distinguished using discriminant analysis. The mechanisms of barriers formation and destruction were described. Statistical modeling of the metals’ precipitation was performed by multivariate regression analysis. Cu is adsorbed by recently formed Fe hydroxides, and, to a lesser extent, precipitates with sulfates as water pH increases. Antagonism to Mn hydroxides has been demonstrated, due to different physicochemical conditions for their precipitation. Zn enters solid phase mainly with sulfates, this element also forms its own mineral phases. The second mechanism is adsorption by recently formed Mn hydroxides, which corresponds to the idea of similar conditions for the precipitation of metal hydroxides. Cd behavior reflects conditions intermediate between these of Cu and Zn. Contribution of both mechanisms (related to Fe hydroxides and aqueous sulfates) is equal. Antagonism to Mn is absent. According to the assessment results using of nature-like technologies in situ in watercourses, canals and other water drainage systems is promising. Developed statistical models can be used for needs of experimental studies and artificial geochemical barriers engineering.

How to cite: Opekunov A.Y., Korshunova D.V., Opekunova M.G., Somov V.V., Akulov D.A. Analysis of the geochemical barriers effectiveness as the basis for the use of nature-like water purification technologies // Journal of Mining Institute. 2024. Vol. 267 . p. 343-355. EDN KKNLQG
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-01-21
  • Date accepted
    2023-09-20
  • Date published
    2023-12-25

Adaptation of transient well test results

Article preview

Transient well tests are a tool for monitoring oil recovery processes. Research technologies implemented in pumping wells provide for a preliminary conversion of measured parameters to bottomhole pressure, which leads to errors in determining the filtration parameters. An adaptive interpretation of the results of well tests performed in pumping wells is proposed. Based on the original method of mathematical processing of a large volume of field data for the geological and geophysical conditions of developed pays in oil field, multidimensional models of well flow rates were constructed including the filtration parameters determined during the interpretation of tests. It is proposed to consider the maximum convergence of the flow rate calculated using a multidimensional model and the value obtained during well testing as a sign of reliability of the filtration parameter. It is proposed to use the analysis of the developed multidimensional models to assess the filtration conditions and determine the individual characteristics of oil flow to wells within the pays. For the Bashkirian-Serpukhovian and the Tournaisian-Famennian carbonate deposits, the influence of bottomhole pressure on the well flow rates has been established, which confirms the well-known assumption about possible deformations of carbonate reservoirs in the bottomhole areas and is a sign of physicality of the developed multidimensional models. The advantage of the proposed approach is a possibility of using it to adapt the results of any research technology and interpretation method.

How to cite: Martyushev D.A., Ponomareva I.N., Shen W. Adaptation of transient well test results // Journal of Mining Institute. 2023. Vol. 264 . p. 919-925. EDN VHGTUT
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-31
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field

Article preview

Issues related to the influence of reservoir properties uncertainty on oil field development modelling are considered. To increase the reliability of geological-hydrodynamic mathematical model in the course of multivariate matching, the influence of reservoir properties uncertainty on the design technological parameters of development was estimated, and their mutual influence was determined. The optimal conditions for the development of the deposit were determined, and multivariate forecasts were made. The described approach of history matching and calculation of the forecast of technological development indicators allows to obtain a more reliable and a less subjective history match as well as to increase the reliability of long-term and short-term forecasts.

How to cite: Kochnev A.A., Kozyrev N.D., Krivoshchekov S.N. Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field // Journal of Mining Institute. 2022. Vol. 258 . p. 1026-1037. DOI: 10.31897/PMI.2022.102
Metallurgy and concentration
  • Date submitted
    2022-05-12
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

Morphometric parameters of sulphide ores as a basis for selective ore dressing

Article preview

To assess the possibility of selective disintegration and reduction of overgrinding of hard-to-reproduce ores, optical microscopic and X-ray microtomographic studies were carried out and quantitative characteristics of morphological parameters of disseminated and rich cuprous ore samples from Norilsk-type Oktyabrsky deposit were identified. Among quantitative morphological parameters the most informative are area, perimeter, edge roughness, sphericity, elongation and average grain spacing for disseminated copper-nickel ores; area, perimeter, edge roughness and elongation for rich cuprous ores. The studied parameters are characterized by increased values and dispersion in ore zones, which is especially important for fine-grained ores, which are difficult to diagnose by optical methods. Three-dimensional modelling of the internal structure of sulphide mineralisation samples was carried out using computed X-ray microtomography, which allows observation of quantitative parameters of grains, aggregates and their distribution in the total rock volume and interrelationship with each other. The evaluation of rock pore space by computer microtomography made it possible to compare the results obtained with the strength characteristics of rocks and ores, including those on different types of crushers. The obtained quantitative characteristics of structural-textural parameters and analysis of grain size distribution of ore minerals allow us to evaluate the possibility of applying selective crushing at various stages of ore preparation

How to cite: Duryagina A.M., Talovina I.V., Lieberwirth H., Ilalova R.K. Morphometric parameters of sulphide ores as a basis for selective ore dressing // Journal of Mining Institute. 2022. Vol. 256 . p. 527-538. DOI: 10.31897/PMI.2022.76
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-27
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Application of resonance functions in estimating the parameters of interwell zones

Article preview

It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.

How to cite: Batalov S.А., Andreev V.Е., Mukhametshin V.V., Lobankov V.М., Kuleshova L.S. Application of resonance functions in estimating the parameters of interwell zones // Journal of Mining Institute. 2022. Vol. 257 . p. 755-763. DOI: 10.31897/PMI.2022.85
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-09-17
  • Date accepted
    2022-04-07
  • Date published
    2022-12-29

Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover

Article preview

Technique for automated calculation of technological parameters for non-Newtonian liquids injection into a well during workover is presented. At the first stage the algorithm processes initial flow or viscosity curve in order to determine rheological parameters and coefficients included in equations of rheological models of non-Newtonian fluids. At the second stage, based on data from the previous stage, the program calculates well design and pump operation modes, permissible values of liquid flow rate and viscosity, to prevent possible hydraulic fracturing. Based on the results of calculations and dependencies, a decision is made on the necessity of changing the technological parameters of non-Newtonian liquid injection and/or its composition (components content, chemical base) in order to prevent the violation of the technological operation, such as unintentional formation of fractures due to hydraulic fracturing. Fracturing can lead to catastrophic absorptions and, consequently, to increased consumption of technological liquids pumped into the well during workover. Furthermore, there is an increased risk of uncontrolled gas breakthrough through highly conductive channels.

How to cite: Mardashov D.V., Bondarenko А.V., Raupov I.R. Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover // Journal of Mining Institute. 2022. Vol. 258 . p. 881-894. DOI: 10.31897/PMI.2022.16
Geoecology and occupational health and safety
  • Date submitted
    2021-04-27
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Regularities of electrochemical cleaning of oil-contaminated soils

Article preview

Electrochemical cleaning of oil-contaminated soils is a promising area of environmental safety, as it can be easily organized even in locations remote from settlements. For this purpose, a power source and a system of electrodes are necessary as equipment. It is possible to use an electric generator if there are no power supply lines nearby. The material of electrodes affects the features of redox processes, which can affect the energy consumption and the degree of soil cleansing from oil or oil products. Therefore, the correct choice of electrode materials is one of the important tasks in the field of engineering electrochemical methods of purification. Changes in the main parameters (humidity, temperature, degree of acidity) in an oil-contaminated model soil, similar in composition to one of the oil fields, were investigated. Measurements of parameters when using graphite and metal electrodes were carried out at several fixed sections of the interelectrode space depending on the treatment time. The established patterns of parameter changes in the purification of oil-contaminated soils allow us to draw conclusions about the stages of the electrochemical process, its speed, and energy efficiency. The results obtained form a basis for designing industrial facilities for soil treatment.

How to cite: Shulaev N.S., Pryanichnikova V.V., Kadyrov R.R. Regularities of electrochemical cleaning of oil-contaminated soils // Journal of Mining Institute. 2021. Vol. 252 . p. 937-946. DOI: 10.31897/PMI.2021.6.15
Mining
  • Date submitted
    2020-12-16
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Features of the thermal regime formation in the downcast shafts in the cold period of the year

Article preview

In the cold period of the year, to ensure the required thermal regime in underground mine workings, the air supplied to the mine is heated using air handling systems. In future, the thermodynamic state of the prepared air flow when it is lowered along the mine shaft changes due to the influence of a number of factors. At the same time, the processes of heat and mass exchange between the incoming air and its environment are of particular interest. These processes directly depend on the initial parameters of the heated air, the downcast shaft depth and the presence of water flows into the mine shaft. Based on the obtained experimental data and theoretical studies, the analysis of the influence of various heat and mass transfer factors on the formation of microclimatic parameters of air in the downcast shafts of the Norilsk industrial district mines is carried out. It is shown that in the presence of external water flows from the flooded rocks behind the shaft lining, the microclimatic parameters of the air in the shaft are determined by the heat transfer from the incoming air flow to the underground water flowing down the downcast shaft lining. The research results made it possible to describe and explain the effect of lowering the air temperature entering the underground workings of deep mines

How to cite: Zaitsev A.V., Semin M.A., Parshakov O.S. Features of the thermal regime formation in the downcast shafts in the cold period of the year // Journal of Mining Institute. 2021. Vol. 250 . p. 562-568. DOI: 10.31897/PMI.2021.4.9
Geoecology and occupational health and safety
  • Date submitted
    2020-10-13
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Trace element accumulation by soils and plants in the North Caucasian geochemical province

Article preview

Long-term studies of the North Caucasian geochemical province allowed to establish regional abundances and calculate accumulation (dispersion) factors for chemical elements in rocks, soils, and plants. Certain natural regional patterns characterize the province. Associations of elements in high and low concentrations are often determined by the predominant composition of rocks: carbonate-terrigenous, terrigenous, and igneous. The study of the average contents of several chemical elements in the soils of the province showed that the association of accumulated elements includes metals with different migration characteristics. Thus, despite the rather close values of the ionic radii, Pb, Zn, Cu, and Li (judging by the ionic potential) are characterized by the formation of cations, while Mn, Mo, and Zr form complex ions. Such elements as Zn, Cu, and Pb are mainly accumulated on hydrosulfuric barriers, while Mo, Co, and Mn are stopped by oxygenous barriers. For Cu, Zn, Mo, and Co, biogenic accumulation plays a significant role, while for Pb and Ni it is practically absent. The absolute dispersion of the elements did not reach environmentally hazardous values, although it indicates a fairly intensive migration. In woody plants, Ba, Nb, Sc, Sr, and Zn are accumulated most intensively.

How to cite: Alekseenko V.A., Shvydkaya N.V., Bech J., Puzanov A.V., Nastavkin A.V. Trace element accumulation by soils and plants in the North Caucasian geochemical province // Journal of Mining Institute. 2021. Vol. 247 . p. 141-153. DOI: 10.31897/PMI.2021.1.15
Mining
  • Date submitted
    2021-01-25
  • Date accepted
    2021-02-22
  • Date published
    2021-04-26

Conducting industrial explosions near gas pipelines

Article preview

The problem to ensure the safety of objects which are in the area of blasting operations, ensuring the destruction of hard rocks, remains relevant. The article presents the results of a large-scale experiment to determine the safe conditions for conducting drilling and blasting operations near the active gas pipeline. The simplest and most reliable way to ensure the safety of the protected object from seismic impact is to reduce the intensity of the seismic wave, which is achieved by changing the parameters of drilling and blasting operations. This requires research to determine the impact of blasting operations on the parameters of seismic waves and the development of methods for measuring these parameters. The paper presents a detailed analysis of the seismic blast wave impact on the displacement of the ground and the model gas pipeline. The features of seismic monitoring during blasting operations near the active gas pipeline are shown. The seismic coefficients and attenuation coefficient of seismic waves are determined. It is proved that the readings of the seismic receivers on the surface and in the depth of the massive differ by two or more times.

How to cite: khokhlov S.V., Sokolov S.T., Vinogradov Y.I., Frenkel I.B. Conducting industrial explosions near gas pipelines // Journal of Mining Institute. 2021. Vol. 247 . p. 48-56. DOI: 10.31897/PMI.2021.1.6
Oil and gas
  • Date submitted
    2020-05-21
  • Date accepted
    2020-10-05
  • Date published
    2020-11-24

Method of calculating pneumatic compensators for plunger pumps with submersible drive

Article preview

One of the most promising ways to improve the efficiency of mechanized oil production is a plunger pump with a submersible drive, which allows obtaining harmonic reciprocating movement of the plunger. In the pumping process of well products by plunger pumps, oscillations in the velocity and pressure of the liquid in the lifting pipes occur, which lead to an increase in cyclic variable loads on the plunger, a decrease in the drive life period and the efficiency of the pumping unit. To eliminate the pulsation characteristics of the plunger pump and increase the reliability indicators of the pumping unit (in particular, the overhaul period), pneumatic compensators can be used. A method for calculating the optimal technological parameters of a system of deep pneumatic compensators for plunger pumping units with a submersible drive, based on mathematical modeling of hydrodynamic processes in pipes, has been developed. Calculations of the forming flow velocity and pressure in the lifting pipes of submersible plunger units equipped with pneumatic compensators (PC) have been carried out. Influence of the PC technological parameters on the efficiency of smoothing the oscillations of velocity and pressure in the pipes has been analyzed. Non-linear influence of the charging pressure and PC total volume on the efficiency of their work has been established. Optimal pressure of PC charging, corresponding to the minimum pressure in the tubing during the pumping cycle for the considered section of the tubing, is substantiated. Two ultimate options of PC system placement along the lifting pipes are considered. In the first option, PC are placed sequentially directly at the outlet of the plunger pump, in the second - evenly along the lift. It is shown that the first option provides the minimum amplitude of pressure oscillations at the lower end of the tubing and, accordingly, variable loads on the pump plunger. Nature of the pressure and flow velocity oscillations in the tubing at the wellhead for both options of PC placement has similar values .

How to cite: Timashev E.O. Method of calculating pneumatic compensators for plunger pumps with submersible drive // Journal of Mining Institute. 2020. Vol. 245 . p. 582-590. DOI: 10.31897/PMI.2020.5.10
Geoecology and occupational health and safety
  • Date submitted
    2020-03-20
  • Date accepted
    2020-05-24
  • Date published
    2020-06-30

Landscape monitoring studies of the North Caucasian geochemical province

Article preview

The data on the geochemical features of the bedrocks and soils of the province are given. Considerable attention is paid to regional abundances, as well as enrichment and dispersion factors of the chemical elements in landscapes. Using the example of the North Caucasus, it is shown that for such indicators as phytomass, geological, geomorphological, and geobotanical features, it is possible to make a preliminary outlining of regional structures corresponding to geochemical provinces. At the same time, a subsequent geochemical study of these structures remains mandatory. Upon determining certain geochemical associations, geochemical provinces can be basically distinguished; to a large extent, geochemical properties of these accumulated and scattered associations of elements contribute to the regional soil geochemistry. The results of long-term monitoring studies of the North Caucasus geochemical province have shown that the key features of the regional landscapes are due to the composition of bedrock and the presence of a large number of ore deposits and occurrences. The data obtained are the basis for assessing the state of the environment in conditions of increasing anthropogenic impact, and the established regional abundances can be used to assess the degree of pollution in agricultural, residential, and mining landscapes.

How to cite: Alekseenko V.A., Shvydkaya N.V., Puzanov A.V., Nastavkin A.V. Landscape monitoring studies of the North Caucasian geochemical province // Journal of Mining Institute. 2020. Vol. 243 . p. 371-378. DOI: 10.31897/PMI.2020.3.371
Geoecology and occupational health and safety
  • Date submitted
    2020-06-14
  • Date accepted
    2020-06-14
  • Date published
    2020-06-30

Geochemical approach in assessing the technogenic impact on soils

Article preview

The soil assessment was carried out in the technogenically-affected area of Irkutsk Oblast with the geochemical approach as a key geoecological method using physical and chemical techniques of analysis and ecodiagnostics. Diagnostic signs of the disturbed natural properties of the soil were revealed up to a depth of 40 cm in the profile based on macro- and micromorphometric parameters. The content of heavy metals (HM) – Pb, Zn, Hg, and Cu with an excess of standards was determined, and empirical HM – pH correlations were obtained by statistical clustering of the data array. The contributions of additional factors affecting the chemical element distribution in the soil layer were investigated. Significant soil contamination with sulfates and the possibility of implementing the ion-exchange of HM andfor element immobilization were revealed. It was shown that reactions with sulfates and the influence of pH, HM exchange processes involving mobile K and P can determine the nature of the described chemical element distribution in the multi-factor-contaminated technogenic soil. However, the effectiveness of such types of interaction is different for each metal and also depends on the quantitative ratio of substances and soil characteristics, even under a minor change in pH. Two-parameter correlations of HM distribution in sulfate-contaminated soils confirmed the different degrees of involvement of chemical elements in these types of interactions. The results obtained and the identified factors are of applied significance and can be used as the basis for geoecological differentiation of the contaminated soil, as well as for determining local geochemical fields in the technogenesis zone. Areas of advanced research are related to three-dimensional modeling for a more complete study of the cause-and-effect relationships of geochemical parameters.

How to cite: Sarapulova G.I. Geochemical approach in assessing the technogenic impact on soils // Journal of Mining Institute. 2020. Vol. 243 . p. 388-392. DOI: 10.31897/PMI.2020.3.388
Oil and gas
  • Date submitted
    2020-05-26
  • Date accepted
    2020-06-10
  • Date published
    2020-06-30

Theoretical analysis of frozen wall dynamics during transition to ice holding stage

Article preview

Series of calculations for the artificial freezing of the rock mass during construction of mineshafts for the conditions of a potash mine in development was carried out. Numerical solution was obtained through the finite element method using ANSYS software package. Numerical dependencies of frozen wall thickness on time in the ice growing stage and ice holding stage are obtained for two layers of the rock mass with different thermophysical properties. External and internal ice wall boundaries were calculated in two ways: by the actual freezing temperature of pore water and by the temperature of –8 °С, at which laboratory measurements of frozen rocks' strength were carried out. Normal operation mode of the freezing station, as well as the emergency mode, associated with the failure of one of the freezing columns, are considered. Dependence of a decrease in frozen wall thickness in the ice holding stage on the duration of the ice growing stage was studied. It was determined that in emergency operation mode of the freezing system, frozen wall thickness by the –8 °C isotherm can decrease by more than 1.5 m. In this case frozen wall thickness by the isotherm of actual freezing of water almost always maintains positive dynamics. It is shown that when analyzing frozen wall thickness using the isotherm of actual freezing of pore water, it is not possible to assess the danger of emergency situations associated with the failure of freezing columns.

How to cite: Semin M.A., Bogomyagkov A.V., Levin L.Y. Theoretical analysis of frozen wall dynamics during transition to ice holding stage // Journal of Mining Institute. 2020. Vol. 243 . p. 319-328. DOI: 10.31897/PMI.2020.3.319
Geoecology and occupational health and safety
  • Date submitted
    2020-01-10
  • Date accepted
    2020-01-14
  • Date published
    2020-02-25

Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg

Article preview

Soils and plants of Saint Petersburg are under the constant technogenic stress caused by human activity in industrial, residential, and recreational landscapes of the city. To assess the transformed landscapes of various functional zones, we studied utility, housing, and park districts with a total area of over 7,000 hectares in the southern part of the city during the summer seasons of 2016-2018. Throughout the fieldwork period, 796 individual pairs of soil and plant samples were collected.A complex of consequent laboratory studies performed in an accredited laboratory allowed the characterization of key biogeochemical patterns of urban regolith specimens and herbage samples of various grasses. Chemical analyses provided information on the concentrations of polluting metals in soils and plants of different land use zones.Data interpretation and calculation of element accumulation factors revealed areas with the most unfavorable environmental conditions. We believe that a high pollution level in southern city districts has led to a significant degree of physical, chemical, and biological degradation of the soil and vegetation cover. As of today, approximately 10 % of the Technosols in the study area have completely lost the ability to biological self-revitalization, which results in ecosystem malfunction and the urgent need for land remediation.

How to cite: Pashkevich M.A., Bech J., Matveeva V.A., Alekseenko A.V. Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg // Journal of Mining Institute. 2020. Vol. 241 . p. 125-130. DOI: 10.31897/PMI.2020.1.125
Metallurgy and concentration
  • Date submitted
    2018-01-02
  • Date accepted
    2018-03-08
  • Date published
    2018-06-22

Noncontact laser control of electric-physical parameters of semiconductor layers

Article preview

Non-contact non-destructive laser-interferometric methods for measuring several electrophysical parameters of semiconductor and dielectric layers are proposed. They are the lifetime of charge carriers for electrons and holes separately; parameters of recombination centers, namely their concentration and capture cross-sections; bulk volume lifetime and rate of surface recombination, as well as the diffusion length of charge carriers. The methods are based on the interference-absorption interaction in a semiconductor of two laser radiations with different wavelengths. Short-wave injection radiation generates additional charge carriers in the material, which leads to a change in its optical constants at the wavelength of the other – long-wavelength probing laser radiation – and to modulation of this radiation as it passes through the sample of the studied material. The means for implementing the proposed methods and methods for processing the modulation signal for determining the parameters of the investigated samples are developed. The methods have been successfully tested on samples of such materials as germanium, silicon, indium antimonide and cadmium-mercury-tellurium alloy. It is shown that the methods can be used both in scientific research and electronic industry.

How to cite: Fedortsov A.B., Ivanov A.S. Noncontact laser control of electric-physical parameters of semiconductor layers // Journal of Mining Institute. 2018. Vol. 231 . p. 299-306. DOI: 10.25515/PMI.2018.3.299
Geoecology and occupational health and safety
  • Date submitted
    2017-12-27
  • Date accepted
    2018-03-22
  • Date published
    2018-06-22

Mathematical model of heat exchange processes for heat ptotective cooling suit of a rescuer

Article preview

Fires are followed by the range of factors hazardous for human health; a radiant thermal stream accompanied by the high temperature of the environment is one of these factors. For protection of firemen special protective clothing from heat impact and the insulation type clothing are used. The paper demonstrates that the concept of action of such clothing is based on the passive heat protection owing to the use of materials with low conducting capacity or high specific heat. The time of effective protection of a suit is not considerable which reduces the duration of work under the unfavorable climatic conditions drastically, increases the work labor input, leads to the hyperthermia. One of the ways focused on the improvement of the heat protective clothing is a design of suits with cooling, which is stated in the paper. The paper shows that the developed heat protective suits on the basis of water-ice cooling elements are not widely used due to considerable costs. A more reasonable idea refers to the design of heat protective suits with cooling by using running water as the most available coolant circulating along polyvinylchloride pipes arranged between the layers of a suit.

How to cite: Alabev V.R., Zavyalov G.V. Mathematical model of heat exchange processes for heat ptotective cooling suit of a rescuer // Journal of Mining Institute. 2018. Vol. 231 . p. 326-332. DOI: 10.25515/PMI.2018.3.326
Mining
  • Date submitted
    2015-12-27
  • Date accepted
    2016-02-26
  • Date published
    2016-12-23

Simulation of rock deformation behavior

Article preview

A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

How to cite: Rudaev Y.I., Kitaeva D.A., Mamadalieva M.A. Simulation of rock deformation behavior // Journal of Mining Institute. 2016. Vol. 222 . p. 816-822. DOI: 10.18454/PMI.2016.6.816
Mining
  • Date submitted
    2014-12-10
  • Date accepted
    2015-02-20
  • Date published
    2015-12-25

Opencast mine parameters sensitivity analysis at preliminary study of a mining project

Article preview

The article describes sensitivity analysis, aimed at variables dependence detection: to what extent open cast mine ultimate efficiency or performance will be affected when one of the key input variables is changed. The stronger the dependence effect, the higher the project implementation risk. The sensitivity analysis objective is demonstrated – principle factors identification – critical variables, capable of having a serious influence on the project implementation results, and impact verification of progressive (single) factorial changes. Sensitivity analysis in its content is a single-factor analysis. Output, as a basic performance indicator of an open cast mine, characterizes mine development intensity and is determined by mining-engineering and economic factors. It is proved that the impact degree from various parameters on the open cast mine output is characterized by elasticity ratio. The project indicators sensitivity analysis, which was carried out, allowed to establish the impact degree that various parameters have on the open cast mine output, which takes place in a high-angle ore deposit, characterized by elasticity ratio.

How to cite: Fomin S.I., Bazarova E.I. Opencast mine parameters sensitivity analysis at preliminary study of a mining project // Journal of Mining Institute. 2015. Vol. 216 . p. 76-81.
Geology
  • Date submitted
    2014-09-02
  • Date accepted
    2014-11-25
  • Date published
    2015-06-26

Forecasting changes in the chemical composition of reservoir waters in the course of oil production according to the results of thermodynamic modelling

Article preview

The article deals with hydrogeochemical processes in the productive strata in the course of oil field development. The impact of flooding on the change of the chemical composition of reservoir water and the possibility of salification are analyzed. Computer thermodynamic modelling of physico-chemical processes is used for prediction of salification in oil fields.

How to cite: Sudarikov S.M., Leont’eva E.N. Forecasting changes in the chemical composition of reservoir waters in the course of oil production according to the results of thermodynamic modelling // Journal of Mining Institute. 2015. Vol. 213 . p. 5-8.
Geotechnology for development of solid mining fields
  • Date submitted
    2013-07-13
  • Date accepted
    2013-09-03
  • Date published
    2014-03-17

Technology options for the preparation of new horizons

Article preview

The paper considers the advantages and disadvantages of technological options for the training of new horizons in the fields of mineral resources with large water production using excavators such as direct and backhoes.

How to cite: Kholodnyakov G.A., Ligotskii D.N. Technology options for the preparation of new horizons // Journal of Mining Institute. 2014. Vol. 207 . p. 81-83.
Geotechnology for development of solid mining fields
  • Date submitted
    2013-07-27
  • Date accepted
    2013-09-30
  • Date published
    2014-03-17

Influence of disjunctive dislocations on parameters of secure zones on flat-lying adjacent coal seams

Article preview

The article focuses influence of disjunctive dislocations on parameters of secure zones on flat-lying adjacent coal seams is considered.

How to cite: Zubov V.P., Kovalskii E.R., Nikiforov A.V. Influence of disjunctive dislocations on parameters of secure zones on flat-lying adjacent coal seams // Journal of Mining Institute. 2014. Vol. 207 . p. 22-25.