-
Date submitted2024-05-02
-
Date accepted2024-11-07
-
Date published2025-04-29
Mineralogy and thermobarometry of the Kalevian volcano-plutonic complex of the Kaskama block (Inari Terrane, Kola-Norwegian Region, Fennoscandian Shield)
The petrogenesis and evolution of metamorphic rocks of the volcano-plutonic units of the Kaskama block of the Inari Terrane in northwestern Russia were studied. A petrographic and mineral study and modeling of igneous and metamorphic mineral formation were performed. PT -conditions of rocks, along with previously known data, including geochronological ones, do not allow us to correlate the studied units with rocks of the Belomorian complex, as previously thought. Modeling of igneous and metamorphic mineral shows good convergence with the fields of stability of mineral parageneses and quantitive ratio of minerals with those observed in the real samples. The early mineral parageneses of the magmatic stage corresponds to the crystallization of rock-forming and accessory minerals from the komatiite melt, and mineral parageneses of progressive and regressive metamorphism stages are superimposed on them. Relic igneous minerals (olivine, clinopyroxene, orthopyroxene, magnetite-spinel) in metaperidotites make it possible to estimate their liquidus temperatures in the range of 1,480-950 °С. The progressive stage of metamorphism is characterized by the development of mineral parageneses: garnet + amphibole + plagioclase + quartz ± biotite, amphibole + plagioclase + quartz. The late low-temperature regressive stage of metamorphism is characterized by the development of epidote-, zoisite-, actinolite-containing associations and a number of other low-temperature minerals. Peak parameters of progressive metamorphism are estimated as Т = 600-700 °С, Р = 5-9 kbar and for the regressive stage as Т = 400-500 °С, Р = 3-5 kbar. The identified thermodynamic conditions for the Kaskama block should be considered when determining whether the studied volcano-plutonic and metasedimentary units belong to the Paleoproterozoic terranes of the Kola-Norwegian Region of the Fennoscandian Shield.
-
Date submitted2024-03-11
-
Date accepted2024-11-07
-
Date published2025-04-25
Geochemical characteristics of weathering crusts on the Dzhezhimparma Ridge and the Nemskaya Upland (South Timan)
Numerous local varieties of weathering crusts are known in the South Timan. They differ in their position in the section, type of weathering products, substrates, and occurrence. The aim of the research is to identify patterns in the distribution of rock-forming, rare and rare earth elements and the composition of clay minerals in clay formations of the weathering crusts. The main task is to describe the occurrence and geochemical features that enable determining the genetic type and formation conditions of weathering crusts. The paper presents the results of a study of the distribution of petrogenic, rare earth, rare elements, and clay minerals in weathering crust of different ages, genetic types and occurrence conditions on the Dzhezhimparma Ridge and the Nemskaya Upland in the South Timan. We found that hydromica-kaolinite-type weathering crust is developed after the Late Riphean Dzhezhim Fm. rocks in the basement-cover contact zone on the Dzhezhimparma Upland, and the layer of fine-grained rock at the base of the Devonian section previously considered a weathering crust was formed as a result of mechanical destruction of the Devonian sandstones during movement in the thrust zone. In the Vadyavozh quarry located on the Nemskaya Upland, we studied and described the formations of Mesozoic-Cenozoic areal and linear weathering crusts after the Late Riphean Dzhezhim Fm. rocks. We found that micaceous siltstones in the siltstone-sandstone strata of the Dzhezhim Fm. are associated with the Riphean stage of crust formation and are composed of weathering crust material redeposited in the epicontinental basin.
-
Date submitted2023-07-05
-
Date accepted2024-06-03
-
Date published2024-12-25
Complete extraction of conditioned ores from complex-structured blocks due to partial admixture of substandard ores
- Authors:
- Bayan R. Rakishev
The paper presents mining-technological substantiation of complete extraction of conditioned ores from complex-structured blocks of benches by mixing a layer of substandard ores of certain sizes. The relevance of the work consists in the development of innovative methods of establishing the parameters of the substandard layer of ores to be added to the conditioned ores. The main problem is to ensure complete extraction of useful components into concentrate from shipped ore with acceptable deviations from the required ones. A new typification of complex-structured ore blocks of the bench has been carried out. Analytical dependences of mining and geological characteristics of complex-structured ore blocks were obtained. Theoretical dependences for determining the main indicators of mineral processing are derived. Analytical dependences for determination of the content of useful component in shipped ore α' – mixture of conditioned ore with the content of useful component α and admixed layer of substandard ore with the content of useful component α'' are offered. For the first time in mining science, a new approach of complete extraction of conditioned ores from complex-structured blocks of benches by grabbing a certain part of substandard ores during excavation, increasing the volume of extracted ore and expanding the extraction of useful components in the concentrate has been substantiated. The increment of useful components can reach 10-15 % of the total volume of extraction, which allows predicting a significant increase in the completeness of mineral extraction from the Earth's interior.
-
Date submitted2022-10-04
-
Date accepted2024-03-05
-
Date published2024-08-26
Localization and involvement in development of residual recoverable reserves of a multilayer oil field
During waterflooding of a multilayer oil field there is a constant deterioration of the structure and composition of residual reserves due to geological and technological reasons. The largest share of residual reserves is localized in pillars, which arise from uneven development of the production facility and are undrained or poorly drained zones. The results of a quantitative assessment of the distribution of residual oil reserves in the Middle and Upper Devonian deposits of the Romashkinskoe oil field of the Republic of Tatarstan are presented. A retrospective method is proposed to identify reserves by analyzing and summarizing historical exploration data and the long history of reservoir development, and a calculation algorithm is proposed to quantify them. It has been established that residual oil reserves are localized in rows of dividing and injection wells, as well as in the central rows of producing wells in a three-line drive, in abandoned and piezometric wells, in the areas adjacent to the zones of reservoir confluence, pinch-out, oil-bearing contours, distribution of reservoirs with deteriorated porosity and permeability properties. Depending on geological conditions, algorithms for selecting geological and technical measures to include localized reserves in development and forecasting production profiles were proposed. According to the proposed method, residual recoverable reserves were identified and a number of wells were recommended for experimental works on their additional recovery: in well 16 (hereinafter in the text, conventional well numbers are used) after isolation of overlying high-water-cut formations, the additional perforation was carried out and oil flow was obtained. Additional perforation in well 6 resulted in oil recovery during development as well. Thus, the developed approaches to identifying residual recoverable reserves and patterns of their spatial distribution can be recommended in other multilayer oil fields with a long history of development.
-
Date submitted2023-07-27
-
Date accepted2024-06-03
-
Date published2024-12-25
Normalized impulse response testing in underground constructions monitoring
Impulse Response testing is a widespread geophysical technique of monolithic plate-like structures (foundation slabs, tunnel lining, and supports for vertical, inclined and horizontal mine shafts, retaining walls) contact state and grouting quality evaluation. Novel approach to data processing based on normalized response attributes analysis is presented. It is proposed to use the energy of the normalized signal calculated in the time domain and the normalized spectrum area and the average-weighted frequency calculated in the frequency domain as informative parameters of the signal. The proposed technique allows users a rapid and robust evaluation of underground structure’s grouting or contact state quality. The advantage of this approach is the possibility of using geophysical equipment designed for low strain impact testing of piles length and integrity to collect data. Experimental study has been carried out on the application of the technique in examining a tunnel lining physical model with a known position of the loose contact area. As examples of the application of the methodology, the results of the several monolitic structures of operating municipal and transport infrastructure underground structures survey are presented. The applicability of the technique for examining the grouting of the tunnel lining and the control of injection under the foundation slabs is confirmed. For data interpretation the modified three-sigma criteria and the joint analysis of the attribute’s behavior were successfully used. The features of the field work methodology, data collection and analysis are discussed in detail. Approaches to the techniques' development and its application in the framework of underground constructions monitoring are outlined. The issues arising during acoustic examination of reinforced concrete plate-like structures are outlined.
-
Date submitted2023-07-04
-
Date accepted2023-09-20
-
Date published2023-10-27
Structure maintenance experience and the need to control the soils thermal regime in permafrost areas
- Authors:
- Anatolii V. Brushkov
- Andrei G. Alekseev
- Svetlana V. Badina
- Dmitrii S. Drozdov
- Vladimir A. Dubrovin
- Oleg V. Zhdaneev
- Mikhail N. Zheleznyak
- Vladimir P. Melnikov
- Sergei N. Okunev
- Aleksei B. Osokin
- Nikolai A. Ostarkov
- Marat R. Sadurtinov
- Dmitrii O. Sergeev
- Roman Yu. Fedorov
- Konstantin N. Frolov
The risks of reducing the stability of buildings and structures are increasing in conditions of climate change and the active development of the territories under the influence of natural and anthropogenic factors. The main causes include: loss of the bearing capacity of frozen soils, various geocryological processes, errors at the stages of design, construction and operation of facilities. Main actual task when conducting research and industrial operations in the cryolithozone is monitoring and, if necessary, managing thermal processes in the permafrost layers interacting with facilities. In this article the obtained positive experience of various technologies applying at various stages of the life cycle of civil and industrial facilities was analyzed. It helps to eliminate or prevent the structure deformation or destruction under the influence of climate change. The methods of permafrost stabilization used in the oil and gas industry in process of industrial infrastructure development of the fields have been studied – freezing (cooling) of foundation soils during construction on heterogeneous foundations. The solution to the problems of minimizing accidents when locating production wells in the permafrost zone of the Yamal Peninsula is considered using the example of an oil and gas condensate field and restoring of the temperature regime of perennial unfrozen soils in areas of valve units of main gas pipelines. An assessment of methods used to maintain the industrial and residential infrastructure within the northern municipalities that ensure the functioning of the fuel and energy complex of the Russian Federation in the Arctic was made. The systems of thermal stabilization in the foundations of buildings and industrial facilities built and operated on permafrost soils allow to fully use the high strength and low deformability of frozen grounds. It ensures the state's long-term plans of the industrial development in the Arctic.
-
Date submitted2023-03-30
-
Date accepted2023-09-21
-
Date published2023-10-27
Mineral composition and thermobarometry of metamorphic rocks of Western Ny Friesland, Svalbard
The results of the study of mineral composition and microstructure of representative metapelitic and calcic pelitic schist and amphibole-biotite gneiss, occurring in the northern part of the Western Ny Friesland anticlinorium, are reported. Mineral composition was analyzed with a JSM-6510LA scanning electron microscope with a JED-2200 (JEOL) energy dispersive spectrometer. Metamorphic conditions were assessed with various mineral geothermometers (garnet-biotite, Ti-in-biotite, Ti-in-muscovite, Ti-in-amphibole, garnet-amphibole, amphibole-plagioclase, and chlorite) and geothermobarometers (GASP, GBPQ, GRIPS, GBPQ, phengite, etc.). It has been shown that peak temperature and pressure for rocks of the Paleoproterozoic Atomfjella Series forming the western limb of the anticlinorium are consistent with those for the high-pressure part of the upper amphibolite facies (690-720 °С, 9-12 kbar), and the peak temperature and pressure for rocks of the Mossel Series occurring in the eastern limb and rest on the Atomfjella rock sequence, are consistent with the high-pressure part of the lower amphibolite facies (580-600 °С, 9-11 kbar). In addition to the high-temperature parageneses Ms-Bt-Grt-Pl (±Ky, St), Bt-Grt-Pl-Kfs-Cal (±Scp) and Bt-Hbl-Ep-Grt-Pl, the rocks of the both series display the low-temperature assemblage Ms-Chl-Ep-Ab-Prh-Ttn, which was formed upon transition from greenschist to prehnite-pumpellyite facies (260-370 °С).
-
Date submitted2023-03-14
-
Date accepted2023-06-20
-
Date published2023-07-19
Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions
The necessity of improving the drives of the sucker-rod hydraulic pump units (SRHP), operated in conditions of marginal and complicated wells, is substantiated. For complicated oil production conditions, it is promising to use the SRHP drive, which makes it possible to select and set rational operating modes for downhole equipment. The results of comparative tests of conventional mechanical and hydraulic actuators SRHP with pneumatic and electrodynamic balancing types are presented. A generalized indicator for evaluating the effectiveness of the advanced SRHP drives functioning, the energy efficiency coefficient, is proposed. It has been experimentally proven that the use of the SRHP drive with pneumatic balancing is characterized by low energy efficiency of the well fluid production process. The use of the tested SRHP hydraulic drive made it possible to successfully eliminate asphalt, resin, and paraffin deposits and minimize the well downtime. The results of the tests of the traditional SRHP mechanical drive and the hydraulic drive with electrodynamic balancing showed a satisfactory energy efficiency of the latter. The advantage of the SRHP drive with electrodynamic balancing is the simplicity of the design of the hydraulic part. The process of energy regeneration during the drive control system operation causes an increase in the reactive power component in the oil field network and the appearance of harmonic interference that adversely affects the consumers operation. Technical solutions aimed at improving the operation energy efficiency and increasing the operating time of SRHP drives in the conditions of marginal and complicated wells are proposed. The methodological bases for assessing the economic efficiency of the introduction of the advanced SRHP drives are given.
-
Date submitted2022-04-03
-
Date accepted2023-03-02
-
Date published2023-12-25
Specifics of geotechnical risk control in the design of underground structures
The underground space development is associated with the emergence of complex and dangerous situations, often leading to accidents. The condition for their development is the potential geotechnical risks. High-quality execution and analysis of design work at all the stages of design, starting from the early stages, is one of the effective ways to control risks. Clarification of the characteristics and features of the rock mass adjacent to the projected underground structure makes it possible to identify the potential cause of the occurrence of an adverse event with a certain probability during the construction and operation of an underground structure. The purpose of a qualitative risk analysis is to identify risk factors in underground construction. The value of the total geotechnical risk, expressed by the sum of each of the possible risks, should be numerically estimated at the design stage of a specific underground facility. At the same time, it is extremely important to develop a methodology for managing geotechnical risks, which would make it possible to assess their probability of development at an early stage of project preparation and propose measures to reduce or prevent them. This technique is given in the article. The results of the study conducted in accordance with the presented methodology showed that geotechnical risk control proved an effective method in preventing accidents during underground construction.
-
Date submitted2022-08-10
-
Date accepted2023-02-28
-
Date published2024-02-29
Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors
The task of sludge removal to the surface during construction of directional and horizontal wells and strongly curved radial channels is relevant. For stable operation of technical system “Perfobore”, it is proposed to use a circulating sub that ensures efficient cleaning of channel wellbore from the drilled rock. Two schemes of technical system “Perfobore” are considered, consisting of two seven-meter coiled tubing, a positive displacement motor, a bit and one circulating sub in the first scheme and two subs in the second scheme. For each of the schemes CFD modeling was implemented to determine values of pressure and speed. It was found out that the use of two circulating subs in the assembly is more efficient. In order to confirm the numerical experiment, bench tests were carried out. It was determined that the designed circulating sub can eject up to 25 % of pumped drilling fluid. The bench tests of full-size technical system “Perfobore” for drilling 14-meter channels with two circulating subs showed that the axial load on positive displacement motor produced by hydraulic loader was 3000 N and pressure drop depending on flow rate was 1.5-2.0 MPa. This allows the motor to operate at maximum power.
-
Date submitted2022-05-25
-
Date accepted2023-02-02
-
Date published2023-08-28
Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors
Experimental data on the relationship of the residual shear strength of rocks in closed cracks with the functional characteristics of intact rocks – the tensile and compressive components of adhesion, the roughness of the crack surfaces, and the level of normal stresses are presented. A unified integrated approach determines the shear strength of intact and destroyed rocks, the residual shear strength of closed rough cracks has been developed. The approach provides for the selection of stress intervals corresponding to different types of fracture, for each of which a strength criterion is proposed, expressed in terms of functional characteristics of intact rock. An express method for estimating the residual shear strength of rocks by cracks with a rough surface has been developed, in which an improved method of loading samples with spherical indentors is used as a basic test method. The express method implements the transition from the data of mechanical tests of samples with spherical indentors to the shear strength indicators for cracks in the rock mass, taking into account the level of normal stresses and the roughness of the crack surfaces measured in field conditions. In this case the roughness scale developed by Barton is used. The express method is informative and available in the fieldwork.
-
Date submitted2022-09-30
-
Date accepted2023-02-13
-
Date published2023-04-25
Hydrogeoecological conditions of technogenic groundwater in waste disposal sites
The specific hydrogeoecological conditions of aquifers of some technogenic formations, mainly iron ore skarn-magnetite and titanium-magnetite formations, are considered. The resulting wastes, which are stored in waste disposal sites during development of deposits, due to the impact of a number of factors (natural and technogenic) form technogenic waters. Waste disposal facilities are complex engineering structures (dumps and sludge storages), which in turn create their own hydrogeoecological conditions, which must be investigated in order to prevent and minimize environmental and economic damage caused by these objects to the aquatic environment. The paper presents long-term field and laboratory studies of the aquatic environment under the influence of a waste disposal facility in the Middle Urals – one of the largest tailings, representing a potential environmental and man-made hazard. This tailing dump contains tens of tons of waste – enrichment tailings and creates specific hydrogeoecological conditions on the territory. Based on many years of monitoring studies, an analysis of these conditions was carried out – the quality of groundwater affected by the tailings was assessed. It is shown that groundwater is of technogenic nature, i.e. are man-made waters that have a significant impact on the surface and underground hydrospheres of the territory.
-
Date submitted2022-06-09
-
Date accepted2022-11-17
-
Date published2022-12-29
Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields
Scientific and technological progress over the last century has led to an enormous increase in the consumption of minerals, including energy resources. Most of the exploited oil and gas fields are already considerably depleted, so it is necessary to search for new hydrocarbon resources, particularly at great depths. Deep drilling plays a special role in solving this problem. The article considers the world and Russian experience of ultra-deep wells drilling. The methods and technologies used in the construction of wells, as well as complications and accidents occurring during their drilling were analyzed. The analysis revealed that the existing limitations for drilling parameters of deep and ultra-deep wells are caused by the technical characteristics of surface and bottomhole drilling equipment, which do not meet the extreme drilling conditions. The directions for development of deep and ultra-deep well drilling machinery and technologies are suggested. The notion of extreme rock and geological drilling conditions is introduced, which describes drilling in conditions of hydrostatic pressure of flushing fluid column and high bottomhole temperature both at stable and unstable wellbore conditions, coming close to the upper limit of operating technical characteristics of bottomhole assembly, the drill string and flushing fluid.
-
Date submitted2021-03-31
-
Date accepted2021-09-29
-
Date published2021-10-21
Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials
- Authors:
- Boris Yu. Zuev
The research purpose is to develop a methodology that increases the reliability of reproduction and research on models made of equivalent materials of complex nonlinear processes of deformation and destruction of structured rock masses under the influence of underground mining operations to provide a more accurate prediction of the occurrence of dangerous phenomena and assessment of their consequences. New approaches to similarity criterion based on the fundamental laws of thermodynamics; new types of equivalent materials that meet these criteria; systems for the formation of various initial and boundary conditions regulated by specially developed computer programs; new technical means for more reliable determination of stresses in models; new methods for solving inverse geomechanical problems in the absence of the necessary initial field data have been developed. Using the developed methodology, a number of complex nonlinear problems have been solved related to estimates of the oscillatory nature of changes in the bearing pressure during dynamic roof collapse processes; ranges of changes in the frequency of processes during deformation and destruction of rock mass elements, ranges of changes in their accelerations; parameters of shifts with a violation of the continuity of the rock mass under the influence of mining: secant cracks, delaminations, gaping voids, accounting for which is necessary to assess the danger of the formation of continuous water supply canals in the water-protection layer.
-
Date submitted2020-10-26
-
Date accepted2021-07-28
-
Date published2021-10-21
Investigation of the influence of the geodynamic position of coal-bearing dumps on their endogenous fire hazard
The paper investigates the hypothesis according to which one of the factors influencing the spontaneous combustion of coal-bearing dumps is its geodynamic position, i.e. its location in the geodynamically dangerous zone (GDZ) at the boundary of the Earth crust blocks. This hypothesis is put forward on the basis of scientific ideas about the block structure of the Earth crust and the available statistical data on the location of burning dumps and is studied using computer modeling. A dump located in the area of Eastern Donbass was chosen as the object of research. The simulation results show that the penetration of air into the dump body from the mine through the GDZ, which crosses the mining zone, is possible at an excess pressure of 1000 Pa created by the main ventilation fans. The fire source appearance in the dump body causes an increase in the temperature of the dump mass and becomes a kind of trigger that "turns on" the aerodynamic connection between the dump and the environment, carried out through the GDZ. It is concluded that the establishment of an aerodynamic connection between the mine workings and the dump through the GDZ can be an important factor contributing to the endogenous fire hazard of coal-bearing dumps. The simulation results can be used in the development of projects for monitoring coal-bearing dumps and measures to combat their spontaneous combustion.
-
Date submitted2020-09-10
-
Date accepted2020-11-25
-
Date published2021-06-24
Formation conditions of noble metal mineralization in sulfide cobalt-copper-nickel ores of Kamchatka (on the example of Annabergitovaya Schel ore occurrence)
The authors present research results, the purpose of which is to study the specifics of noble metal mineralization and its genesis in sulfide cobalt-copper-nickel ores of the Kamchatka nickel-bearing province. The paper is dedicated to one of its many ore occurrences called Annabergitovaya Schel (Annabergite Gap). The material composition of platinoid, silver, gold, bismuth and tellurium minerals, as well as sulfarsenides in the ores of this occurrence was investigated. Based on the data of mineral formation sequence and the use of geosensors, conclusions were drawn regarding the genesis of noble metal mineralization. Formation of platinoid minerals, silver and gold at the Annabergitovaya Schel ore occurrence is mainly associated with the epigenetic effect of post-ore granitoids on ore-bearing intrusion rocks of the Dukuk complex of the cortlandite-norite formation and on syngenetic ores. An early association of noble metal minerals is represented by sperrylite, irarsite, and rare unnamed phases of Pt + Ir + Te. Irarsite and Pt + Ir + Te phases were formed at the contact-metasomatic stage. Sperrylite can be assumed to be of magmatic origin. Silver sulfides and tellurides, silver and palladium bismuth tellurides, and native gold were formed at the late, hydrothermal-metasomatic, stage. The occurrence conditions of mineral parageneses, associated with noble metal mineralization, correspond to the formation of shallow-depth metasomatic rocks (≤5 km). Sub-developed quartz-feldspar metasomatites, associated with the formation of early platinoid arsenides and sulfarsenides, are in equilibrium with circumneutral solutions (pH of 4.5-6.5) at temperatures of 350-600 °C. Late hydrothermal association with Pd, Ag and Au minerals is close to propylites and was formed at pH values of 4.5-6.5 and temperature of 150-350 °C.
-
Date submitted2021-02-05
-
Date accepted2021-03-30
-
Date published2021-04-26
Assessment of negative infrastructural externalities when determining the land value
- Authors:
- Elena N. Bykova
The work forms and substantiates the concept of land value, based on a new institutional theory. The infrastructural component of the cost of land in the presented concept determines, on the one hand, the efficiency of the use of natural resources, properties, demand for land on the market, on the other hand, the costs, which are determined not only by capital investments in construction of engineering infrastructure, but also by losses associated with restrictions on activities within zones with special conditions for territory use, creation of unfavorable conditions for economic activity, small contours, irregularities and others on a specific land plot, which are external negative infrastructural externalities that create losses of rights holders of land plots that are not compensated by the market, falling within the boundaries of these zones. Methods for assessing the impact of such negative infrastructural externalities on the cost of land encumbered by zones in different conditions of land market activity have been developed and tested, based on an expert-analytical approach (depressed market); the ratio of market values of land plots encumbered and unencumbered by a specific zone, and qualimetric modeling (inactive market); modeling by introducing into the model the factor of presence of zones with special conditions for territory use, based on the grouping of zones according to similar regulations for use, or by introducing the parameters of this factor (active market). Methods for taking into account spatial deficiencies and compensating for restrictions and prohibitions on activities on the territory of land plots with an individual market assessment are proposed.
-
Date submitted2020-06-16
-
Date accepted2020-11-09
-
Date published2020-12-29
Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology
To solve the problems accompanying the development of forecasting methods, a probabilistic method of data analysis is proposed. Using a carbonate object as an example, the application of a probabilistic technique for predicting the effectiveness of proppant hydraulic fracturing (HF) technology is considered. Forecast of the increase in the oil production of wells was made using probabilistic analysis of geological and technological data in different periods of HF implementation. With the help of this method, the dimensional indicators were transferred into a single probabilistic space, which allowed performing a comparison and construct individual probabilistic models. An assessment of the influence degree for each indicator on the HF efficiency was carried out. Probabilistic analysis of indicators in different periods of HF implementation allowed identifying universal statistically significant dependencies. These dependencies do not change their parameters and can be used for forecasting in different periods of time. Criteria for the application of HF technology on a carbonate object have been determined. Using individual probabilistic models, integrated indicators were calculated, on the basis of which regression equations were constructed. Equations were used to predict the HF efficiency on forecast samples of wells. For each of the samples, correlation coefficients were calculated. Forecast results correlate well with the actual increase (values of the correlation coefficient r = 0.58-0.67 for the examined samples). Probabilistic method, unlike others, is simple and transparent. With its use and with careful selection of wells for the application of HF technology, the probability of obtaining high efficiency increases significantly.
-
Date submitted2019-12-20
-
Date accepted2020-09-01
-
Date published2020-10-08
Features of the underground storages construction in depleted oil and gas condensate fields
The paper considers the features of the underground storages (US) construction in depleted oil and gas condensate fields (DOGCFs). The requirements for the structure of the formation, corresponding to the parameters of the object for possible US creation are presented. The influence of geological, hydrogeological, mining and technical rock formation conditions on the reliability and tightness of underground storages, including underground gas storages, has been evaluated. The necessary conditions for the US design are analyzed at the example of the Ach-Su oil and gas condensate field, in the presence of a well-explored trap with acceptable parameters for the construction of an underground storage. An important aspect is the geological conditions that meet the criteria for selecting the object: the required structure, the absence of fracturing faults, high reservoir properties of the formation, a sufficient volume of the deposit for the storage. Geological conditions lay the basis for determining the individual characteristics of the US construction technology at each DOGCF. The refined results for the current gas-saturated pore volume and the rate of pressure drop in the formation are presented, which makes it possible to select improved technological indicators in the course of operation of the created US. In order to select the optimal option for the design and construction of the US, the results of economic and geological scenarios analysis were studied concurrently with the capabilities of the technological operation of the object and transport system, which can ensure the maximum daily production of the storage.
-
Date submitted2020-06-22
-
Date accepted2020-07-24
-
Date published2020-06-30
Methods for assessing the technical compatibility of heterogeneous elements within a technical system
The article provides methods for assessing the compatibility of elements in the design of complex technical systems. The compatibility of the elements is considered as the main indicator that determines the quality of systems including heterogeneous elements. The presented methods make it possible at the design stage to choose a technical solution that is most suitable for the project objectives, taking into account the operating conditions of the system. The methods make it possible to evaluate compatibility by a single and complex indicator. The choice of indicator depends on the purpose of the assessment. An example of methods implementation in the design of systems including an electric drive and pipeline shutoff valves is considered. It has been experimentally proved that in systems with low values of the compatibility level, the actual power characteristics exceed the required values, which leads to additional voltages in the system elements and their breakdowns. The results of the assessment of typical systems allowed to identify the shortcomings of existing structures and propose alternative solutions to problems. The compatibility of elements within the framework of a technical system makes it possible to increase the functional efficiency of systems with minimum weight and size and power characteristics, to optimize the price-quality ratio, and to increase the competitiveness of the final product.
-
Date submitted2019-07-09
-
Date accepted2019-09-07
-
Date published2020-04-24
Promising model range career excavators operating time assessment in real operating conditions
The development prospects of the mining industry are closely related to the state and development of modern mining machinery and equipment that meet the technical and quality requirements of mining enterprises. Enterprises are focused on a quantitative assessment – the volume of mineral extraction, depending on the functioning efficiency of a promising series of mining machines, which include modern mining excavators. Downtime and unplanned shutdowns of mining excavators directly depend on the operating conditions of the mining machine, which has negative influence on the machine as a whole and its technical condition, which entails a decrease in the efficiency of using expensive mining equipment and economic losses of the mining enterprise. The rationale for external factors that affect the operating time and technical condition of mining excavators is given. For a more detailed assessment of the influence of external influences on the efficiency of operation of mining machines, the influencing factors are divided into two groups: ergatic, directly related to human participation, and factors of a natural-technogenic nature, where human participation is minimized. It was revealed that factors of a natural-technogenic nature have the greatest influence. An algorithm is proposed for a comprehensive assessment of the technical condition and forecasting of operating time both in nominal and in real operating conditions, taking into account factors of a natural and technogenic nature. It is proposed, based on the developed program for planning and evaluating the life of a mining excavator, to adjust the schedules for maintenance and repair (MOT and R) in order to minimize the number of unplanned downtime of a mining excavator and maintain it in good condition.
-
Date submitted2019-04-27
-
Date accepted2019-07-10
-
Date published2019-10-23
Estimation of Rock Mass Strength in Open-Pit Mining
The paper presents results of an experimental study on strength characteristics of the rock mass as applied to the assessment of open-pit slope stability. Formulas have been obtained that describe a correlation between ultimate and residual strength of rock samples and residual shear strength along the weakening surface. A new method has been developed to calculate residual interface strength of the rock mass basing on data from the examination of small-scale monolith samples with opposing spherical indentors. A method has been proposed to estimate strength characteristics (structural weakening coefficients and internal friction angles) of the fractured near-slope rock mass. The method relies on test data from shattering small-scale monolith samples with spherical indentors, taking into ac- count contact conditions along the weakening surface, and can be applied in the field conditions. It is acceptable to use irregular-shaped samples in thetests.
-
Date submitted2019-03-11
-
Date accepted2019-05-11
-
Date published2019-08-23
Estimate of Radial Drilling Technology Efficiency for the Bashkir Operational Oilfields Objects of Perm Krai
- Authors:
- S. V. Galkin
- A. A. Kochnev
- V. I. Zotikov
The radial drilling technology efficiency for carbonate bashkir deposits of Perm Krai is considered. The geological structure of a productive part of bashkir layer is characterized by high degree of heterogeneity that promotes while drilling radial channels involvement in development additional interlayers that earlier was not drained. During the analysis the main geological process parameters affecting drilling technology efficiency were revealed. According to the dynamics of average daily oil production growth, palettes were built to forecast additional oil production as a result of radial drilling activities. Using the pallets, it is possible to predict the total additional oil production, well operating time with the effect of radial drilling and average daily oil production growth for each year. It was found that hydrochloric acid treatments performed on wells prior to radial drilling significantly reduce the effectiveness of radial drilling technology. For such wells, the value of the correction is statistically substantiated, which reduces the predictive estimate of the increase in oil production. A model was built to assess the increase in oil production in the first year after the event and an algorithm for calculating the total additional oil production was developed using linear discriminant analysis. For the resulting model, errors are calculated that are compared with the forecast efficiency of standard methods for oil-producing enterprises. This model shows a much more accurate correspondence of forecast results to actual technology application results. The probability of the event high efficiency increases significantly with a more detailed approach to the selection of wells for radial drilling. According to the forecast methodology, the technology’s efficiency was calculated and recommendations for its implementation for the wells of the Bashkir production objects were made in the interests of an oil-producing enterprise.
-
Date submitted2018-12-25
-
Date accepted2019-03-08
-
Date published2019-06-25
Determination of the operating time and residual life of self-propelled mine cars of potassium mines on the basis of integrated monitoring data
Statistical data on the reliability of self-propelled mine cars (SPMC), operating in the potassium mines of the Verkhnekamskoye potassium and magnesium salts deposit are analyzed. Identified the main nodes that limit the resource SPMC. It has been proven that the most common failures of self-propelled cars are the failure of wheel hubs, bevel gears and traveling electric motors. The analysis of the system of maintenance and repair of mine self-propelled cars. It is indicated that the planning and preventive system of SPMC repairs is characterized by low efficiency and high material costs: car maintenance is often carried out upon the occurrence of a failure, which leads to prolonged downtime not only of a specific haul truck, but of the entire mining complex. A method for assessing the technical condition of the electromechanical part of a mine self-propelled car by the nature of power consumption is proposed. This method allows you to control the loading of the drives of the mine self-propelled car, as well as to assess the technical condition of the drives of the delivery machines in real time. Upon expiration of the standard service life of a mine propelled car specified in the operational documentation, its further operation is prohibited and the car is subject to industrial safety expertise. As part of the examination, it is necessary to determine the operating time and calculate the service life of a mine self-propelled car outside the regulatory period. A method has been developed for determining the residual service life of mine car on the basis of instrumentation control data in the conditions of potash mines.
-
Date submitted2019-01-17
-
Date accepted2019-03-20
-
Date published2019-06-25
Improving methodological approach to measures planning for hydraulic fracturing in oil fields
Goal of the research is development of an integrated approach to the planning of hydraulic fracturing (HF) treatment taking into account geo-technical, hydrodynamic, technological and economic criteria for the selection of wells for inclusion in the programs of HF with increasing importance of economic criteria. Stages of formation of the program for HF of the oil company are selected, systematized and analyzed. It is shown that high potential effectiveness of enhanced oil recovery method in fields with hard-to-recover reserves, on the one hand, and the complexity and high cost of application, on the other, determine the need to optimize the parameters of this business process at all stages of implementation and improve its planning methods. The priority directions for improving the hydraulic fracturing planning were justified: a clear definition of the criterion for the payback period of hydraulic fracturing activities, taking into account their technological features, improving the procedure for calculating the costs of implementing this technology and improving the reasonableness of selecting candidate wells for inclusion in the hydraulic fracturing program. Feasibility of using an additional criterion in the formation of hydraulic fracturing programs – marginal minimum cost-effective wall capacity – has been shown and a method for calculating it has been developed. The use of this criterion will allow to take into account not only technological limitations, but also limits of economic efficiency of conducting hydraulic fracturing at each specific well and, at the preliminary selection of candidate wells, exclude a priori unprofitable measures.