Mineral composition and thermobarometry of metamorphic rocks of Western Ny Friesland, Svalbard
- 1 — Ph.D., Dr.Sci. Head of Department Empress Catherine II Saint Petersburg Mining University ▪ Orcid
- 2 — Junior Researcher Empress Catherine II Saint Petersburg Mining University ▪ Orcid
- 3 — Ph.D., Dr.Sci. Head of Department Russian Research Institute for Geology and Mineral Resources of the World Ocean named after I.S.Gramberg ▪ Orcid
Abstract
The results of the study of mineral composition and microstructure of representative metapelitic and calcic pelitic schist and amphibole-biotite gneiss, occurring in the northern part of the Western Ny Friesland anticlinorium, are reported. Mineral composition was analyzed with a JSM-6510LA scanning electron microscope with a JED-2200 (JEOL) energy dispersive spectrometer. Metamorphic conditions were assessed with various mineral geothermometers (garnet-biotite, Ti-in-biotite, Ti-in-muscovite, Ti-in-amphibole, garnet-amphibole, amphibole-plagioclase, and chlorite) and geothermobarometers (GASP, GBPQ, GRIPS, GBPQ, phengite, etc.). It has been shown that peak temperature and pressure for rocks of the Paleoproterozoic Atomfjella Series forming the western limb of the anticlinorium are consistent with those for the high-pressure part of the upper amphibolite facies (690-720 °С, 9-12 kbar), and the peak temperature and pressure for rocks of the Mossel Series occurring in the eastern limb and rest on the Atomfjella rock sequence, are consistent with the high-pressure part of the lower amphibolite facies (580-600 °С, 9-11 kbar). In addition to the high-temperature parageneses Ms-Bt-Grt-Pl (±Ky, St), Bt-Grt-Pl-Kfs-Cal (±Scp) and Bt-Hbl-Ep-Grt-Pl, the rocks of the both series display the low-temperature assemblage Ms-Chl-Ep-Ab-Prh-Ttn, which was formed upon transition from greenschist to prehnite-pumpellyite facies (260-370 °С).
References
- Ашихмин Д.С., Скублов С.Г. Неоднородность состава ксенолитов мантийных перидотитов из щелочных базальтов вулкана Сверре, архипелаг Шпицберген // Записки Горного института. 2019. Т. 239. С. 483-491. DOI: 10.31897/PMI.2019.5.483
- Корешкова М.Ю., Марин Ю.Б., Никитина Л.П. и др. Ксенолиты высокоглиноземистых пироксенитов из четвертич-ных базальтов о. Шпицберген – свидетельство деламинации континентальной коры // Доклады Академии наук. 2019. Т. 485. № 5. С. 604-608. DOI: 10.31857/s0869-56524855604-608
- Никитина Л.П., Марин Ю.Б., Корешкова М.Ю. и др. Ксенолиты высокоглиноземистых пироксенитов в базальтах вулкана Сигурд, о. Шпицберген (арх. Свальбард) как индикаторы геодинамики литосферы региона в палеозое // Геология и геофизика. 2022. Т. 63. № 10. С. 1319-1340. DOI: 10.15372/GiG2022106
- Egorov A.S., Prischepa O.M., Nefedov Y.V. et al. Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic // Journal of Marine Science and Engineering. 2021. Vol. 9. № 3. P. 1-26. DOI: 10.3390/jmse9030258
- Kirsanova N., Lenkovets O., Hafeez M. Issue of Accumulation and Redistribution of Oil and Gas Rental Income in the Context of Exhaustible Natural Resources in Arctic Zone of Russian Federation // Journal of Marine Science and Engineering. 2020. Vol. 8. Iss. 12. P. 1-19. DOI: 10.3390/jmse8121006
- Кораго Е.А., Ковалева Г.Н., Щеколдин Р.А. и др. Геологическое строение архипелага Новая Земля (запад Российской Арктики) и особенности тектоники Евразийской Арктики // Геотектоника. 2022. № 2. С. 21-57. DOI: 10.31857/S0016853X22020035
- Melnik A.E., Skublov S.G., Rubatto D. et al. Garnet and zircon geochronology of the Paleoproterozoic Kuru-Vaara eclogites, northern Belomorian Province, Fennoscandian Shield // Precambrian Research. 2021. Vol. 353. № 106014. DOI: 10.1016/j.precamres.2020.106014
- Prischepa O., Nefedov Y., Nikiforova V. Arctic Shelf Oil and Gas Prospects from Lower-Middle Paleozoic Sediments of the Timan–Pechora Oil and Gas Province Based on the Results of a Regional Study // Resources. 2022. Vol. 11. Iss. 1 № 3. DOI: 10.3390/resources11010003
- Vlasenko S.S., Sudarikov S.M. Ecological and hydrogeological state of oil and gas bearing areas of the Barents and Kara seas shelf // Caspian Journal of Environmental Sciences. 2021. Vol. 19. № 3. P. 589-595. DOI: 10.22124/cjes.2021.4954
- Гусев Е.А., Крылов А.А., Урванцев Д.М. и др. Геологическое строение северной части Карского шельфа у архипелага Северная Земля по результатам последних исследований // Записки Горного института. 2020. Т. 245. С. 505-512. DOI: 10.31897/PMI.2020.5.1
- Bazarnik J., Barker A., Majka J. et al. Wstêpna charakterystyka geochemiczna amfibolitów i skał ultramaficznych terrane West Ny-Friesland, północny Spitsbergen // Przegląd Geologiczny. 2021. Vol. 69. № 7. P. 406-410. DOI: 10.7306/2021.24
- Bazarnik J., Majka J., McClelland W.C. et al. U-Pb zircon dating of metaigneous rocks from the Nordbreen Nappe of Sval-bard’s Ny-Friesland suggests their affinity to Northeast Greenland // Terra Nova. 2019. Vol. 31. № 6. P. 518-526. DOI: 10.1111/ter.12422
- Kośmińska K., Spear F.S., Majka J. et al. Deciphering late Devonian–early Carboniferous P-T-t path of mylonitized garnet-mica schists from Prins Karls Forland, Svalbard // Journal of Metamorphic Geology. 2020. Vol. 38. P. 471-453. DOI: 10.1111/jmg.12529
- Сироткин А.Н., Евдокимов А.Н. Эндогенные режимы и эволюция регионального метаморфизма складчатых ком-плексов фундамента архипелага Шпицберген (на примере полуострова Ню Фрисланд). СПб: ВНИИОкеангеология им И.С.Грамберга, 2011. 270 с.
- Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // American Mineralogist. 2010. Vol. 95. P. 185-187. DOI: 10.2138/am.2010.3371
- Акбарпуран Хайяти С.А., Гульбин Ю.Л., Сироткин А.Н., Гембицкая И.М. Эволюция состава акцессорных минера-лов REE и Ti в метаморфических сланцах серии Атомфьелла, Западный Ню Фрисланд, Шпицберген и ее петрогенетическое значение // Записки Российского минералогического общества. 2020. Т. 149. № 5. С. 1-28. DOI: 10.31857/S0869605520050020
- Keller L.M., De Capitani C., Abart R. A Quaternary Solution Model for White Micas Based on Natural Coexisting Phengite–Paragonite Pairs // Journal of Petrology. 2005. Vol. 46. Iss. 10. P. 2129-2144. DOI: 10.1093/petrology/egi050
- Золотарев А.А., Петров Т.Г., Мошкин С.В. Особенности химического состава минералов группы скаполита // Запис-ки Российского минералогического общества. 2003. Т. 132. № 6. С. 63-84.
- Holness M.B., Cesare B., Sawyer E.W. Melted Rocks under the Microscope: Microstructures and Their Interpretation // Ele-ments. 2011. Vol. 7. № 4. P. 247-252. DOI: 10.2113/gselements.7.4.247
- Leake B.E., Woolley A.R., Arps C.E.S. et al. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Minerals Names // The Canadian Mineralogist. 1997. Vol. 35. № 1. P. 219-246.
- Holdaway M.J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer // American Mineralogist. 2000. Vol. 85. № 7-8. P. 881-892. DOI: 10.2138/am-2000-0701
- Holdaway M.J. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer // American Mineralogist. 2001. Vol. 86. № 10. P. 1117-1129. DOI: 10.2138/am-2001-1001
- Kaneko Y., Miyano T. Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers // Lithos. 2004. Vol. 73. P. 255-269. DOI: 10.1016/j.lithos.2003.12.009
- Гульбин Ю.Л. Оптимизация гранат-биотитового геотермометра. II. Калибровочные уравнения и точность оценки // Записки Российского минералогического общества. 2010. Т. 139. № 6. С. 22-38.
- Wu Chun-Ming, Zhang Jian, Ren Liu-Dong. Empirical Garnet–Biotite–Plagioclase–Quartz (GBPQ) Geobarometry in Medi-um- to High-Grade Metapelites // Journal of Petrology. 2004. Vol. 45. Iss. 9. P. 1907-1921. DOI: 10.1093/petrology/egh038
- Wu Meng-Chao, Zhao Guochun. The applicability of the GRIPS geobarometry in metapelitic assemblages // Journal of Met-amorphic Geology. 2006. Vol. 24. Iss. 4. P. 297-307. DOI: 10.1111/j.1525-1314.2006.00638.x
- Henry D.J., Guidotti C.V., Thomson J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implica-tions for geothermometry and Ti-substitution mechanisms // American Mineralogist. 2005. Vol. 90. P. 316-328. DOI: 10.2138/am.2005.1498
- Wu Chun-Ming, Chen Hong-Xu. Calibration of a Ti-in-muscovite geothermometer for ilmenite- and Al2SiO5-bearing metapelites // Lithos. 2015. Vol. 212-215. P. 122-127. DOI: 10.1016/j.lithos.2014.11.008
- Камзолкин В.А., Иванов С.Д., Конилов А.Н. Эмпирический фенгитовый геобарометр: обоснование, калибровка, при-менение // Записки Российского минералогического общества. 2015. Т. 144. № 5. С. 1-14.
- Massonne H.-J., Schreyer W. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz // Contributions to Mineralogy and Petrology. 1987. Vol. 96. P. 212-224. DOI: 10.1007/BF00375235
- Caddick M.J., Thompson A.B. Quantifying the tectono-metamorphic evolution of pelitic rocks from a wide range of tectonic settings: mineral compositions in equilibrium // Contributions to Mineralogy and Petrology. 2008. Vol. 156. P. 177-195. DOI: 10.1007/s00410-008-0280-6
- Holland T., Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry // Contributions to Mineralogy and Petrology. 1994. Vol. 116. P. 433-447. DOI: 10.1007/BF00310910
- Graham C.M., Powell R. A garnet–hornblende geothermometer: calibration, testing and application to the Pelona Schist, Southern California // Journal of Metamorphic Geology. 1984. Vol. 2. P. 31-21. DOI: 10.1111/J.1525-1314.1984.TB00282.X
- Liao Y., Wei C., Rehman H.U. Titanium in calcium amphibole: Behavior and thermometry // American Mineralogist. 2021. Vol. 106. № 2. P. 180-191. DOI: 10.2138/am-2020-7409
- Molina J.F., Moreno J.A., Castro A. et al. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning // Lithos. 2015. Vol. 232. P. 286-305. DOI: 10.1016/j.lithos.2015.06.027
- Kohn M.J., Spear F.S. Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont // Ameri-can Mineralogist. 1990. Vol. 75. P. 89-96.
- De Caritat P., Hutcheon I., Walshe J.L. Chlorite geothermometry: A review // Clays Clay Miner. 1993. Vol. 41. P. 219-239. DOI: 10.1346/CCMN.1993.0410210
- Lanari P., Wagner T., Vidal O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: applications to P-T sections and geothermometry // Contributions to Mineralogy and Petrology. 2014. Vol. 167. P. 1-19. DOI: 10.1007/s00410-014-0968-8