Submit an Article
Become a reviewer

Search articles for by keywords:
hydrocarbon development

Economic Geology
  • Date submitted
    2024-03-18
  • Date accepted
    2024-11-07
  • Date published
    2025-04-25

Public-private partnership in the mineral resources sector of Russia: how to implement the classical model?

Article preview

A comparative financial and economic analysis is conducted of different public-private partnership (PPP) models for industrial infrastructure construction projects in an underdeveloped resource-rich region. The Stackelberg game theory-based model is used to build a parametrized family of bilevel mathematical programming models that describe an entire spectrum of partnership schemes. This approach enables a comparison of different strategies for the distribution of infrastructure investments between the government and the subsoil user and hence a scenario of transformation of Russia’s current PPP scheme into the classical partnership model, which is practiced in developed economies. To this end, a database is created on fifty polymetallic deposits in Transbaikalia, and a comparative analysis is conducted of Stackelberg equilibrium development programs that implement different PPP models. The numerical experiment results show the classical PPP model to be most effective in the case of a budget deficit. The analysis helps assess the economic consequences of a gradual transformation of the partnership institution in industrial infrastructure construction from investor support in the Russian model to government support in the classical scheme. Intermediate partnership models, which act as a transitional institution, help reduce the budget burden. These models can be implemented by clustering the deposits, developing subsoil user consortia, and practicing shared construction of necessary transport and energy infrastructure. The intensification of horizontal connections between subsoil users creates favorable conditions for additional effects from the consolidation of resources and can serve as a foundation for a practical partnership scheme within the framework of the classical model.

How to cite: Lavlinskii S.M., Panin A.A., Plyasunov A.V. Public-private partnership in the mineral resources sector of Russia: how to implement the classical model? // Journal of Mining Institute. 2025. Vol. 272 . p. 145-158. EDN VQCWOF
Economic Geology
  • Date submitted
    2024-07-28
  • Date accepted
    2024-11-26
  • Date published
    2024-12-12

From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry

Article preview

Achieving technological sovereignty implies accelerating innovation and reducing import dependence. An effective tool for addressing these challenges is local content policy (LCP). The purpose of this study is to assess the impact of LCP on innovation activity in oil and gas companies and to provide recommendations for enhancing the effectiveness of this policy in Russia. The paper analyzes the influence of LCP on innovation levels in the oil and gas sector, drawing on examples from 10 countries. A positive short-term impact of LCP on innovation was identified in Brazil, Malaysia, and Saudi Arabia, with long-term effects observed in China and South Africa. Recommendations for improving the effectiveness of LCP in Russia are supplemented with a methodology for calculating the level of technological sovereignty. A refinement of the method for solving the «responsiveness» problem, incorporating the level of localization, has been proposed.

How to cite: Zhdaneev O.V., Ovsyannikov I.R. From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry // Journal of Mining Institute. 2024. p. EDN KMCTLU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-30
  • Date accepted
    2024-10-14
  • Date published
    2024-11-12

Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths

Article preview

The possibility of discovering oil and gas occurrences at great (more than 5 km) and super-great (more than 6 km) depths is considered in two aspects. The first one is the preservation conditions of large hydrocarbon accumulations forming at depths to 4 km and caused by different geological and tectonic processes occurring at great and super-great depths with partial oil-to-gas transformation. It was ascertained that among the factors controlling preservation of liquid and gaseous hydrocarbons are the temperature, pressure, subsidence rate (rate of temperature and pressure increase), time spent under ultrahigh thermobaric conditions, and initial composition of organic matter. The possibility of existence of liquid components of oil at great and super-great depths is characteristic of sedimentary basins of China, the Gulf of Mexico, the Santos and Campos basins on the Brazilian shelf, and in the Russian Federation it is most probable for the Caspian Depression, some submontane troughs and zones of intense accumulation of young sediments. Determination of critical temperatures and pressures of phase transitions and the onset of cracking is possible using the approach considered in the article, based on estimation of organic matter transformation degree, kinetic and thermobaric models taking into account the composition of hydrocarbon fluid. The second aspect is the estimation of composition of hydrocarbons associated with rocks forming at great depths or rocks transformed under conditions of critical temperatures and pressures. This aspect of considerable science intensity can hardly be considered as practically significant. The study focuses on the investigation of the possibilities of thermodynamic modelling and the use of alternative methods for studying the transformation degree of liquid formation fluid into components of the associated gas through the example of two areas with identified oil, condensate and gas accumulations.

How to cite: Prishchepa O.M., Lutskii D.S., Kireev S.B., Sinitsa N.V. Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths // Journal of Mining Institute. 2024. Vol. 269 . p. 815-832. EDN CWLSTC
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-25
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

Specific features of kinetics of thermal transformation of organic matter in Bazhenov and Domanik source rocks based on results of pyrolysis gas chromatography

Article preview

Pyrolysis of organic matter with subsequent analysis of hydrocarbon composition of the resulting products allows obtaining multicomponent distribution spectra of the generation potential by the activation energies of reactions of kerogen transformation into hydrocarbons. Configuration of the spectra depends on the structure of kerogen and is individual for each type of organic matter. Studies of kerogen kinetics showed that the distribution of activation energies is unique for each oil source rocks. The kinetic model of thermal decomposition of kerogen of the same type, for example, marine planktonic (type II), can differ significantly in different sedimentary basins due to the multivariate relationship of chemical bonds and their reaction energy threshold. The developed method for calculating multicomponent kinetic spectra (four-component models are used) based on results of pyrolysis gas chromatography allows obtaining one of the most important elements of modelling the history of oil and gas generation in geological basins. Kinetic parameters of organic matter of oil and gas source rocks influence the onset time of generation and directly reflect differences in the composition and structure of different types of kerogens. The results of determining the kinetic parameters of two high-carbon source rocks occurring across the territory of three oil and gas basins are shown. Generation and updating of the data of kinetic models of certain oil and gas source rocks will increase the reliability of forecasting oil and gas potential using the basin modelling method.

How to cite: Mozhegova S.V., Gerasimov R.S., Paizanskaya I.L., Alferova A.A., Kravchenko E.M. Specific features of kinetics of thermal transformation of organic matter in Bazhenov and Domanik source rocks based on results of pyrolysis gas chromatography // Journal of Mining Institute. 2024. Vol. 269 . p. 765-776. EDN FIMBWV
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-22
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

On peculiarities of composition and properties of ancient hydrocarbon source rocks

Article preview

Precambrian rocks are widespread within all continents of the Earth; that said, sedimentary associations of these deposits are of special interest in search for oil and gas fields. A wide range of paleontological, lithological and geochemical methods is utilized for conducting integrated geological-geochemical analysis and evaluating the initial hydrocarbon generating potential of organic matter of Precambrian source rocks. Investigated were peculiarities of depositional environments of the organic matter, specific features of its composition in sedimentary rocks and its generation characteristics. Own research efforts were performed in combination with generalization of other authors’ publications focused on Precambrian sequences enriched in organic matter – their occurrence, isotopic and biomarker characteristics and realization schemes of the hydrocarbon generation potential of Precambrian organic matter in the process of catagenesis. Geochemical peculiarities of initial organic matter are illustrated on various examples, type of the organic matter is determined together with the character of evolution of realization of its initial generation potential.

How to cite: Bolshakova M.A., Sitar K.A., Kozhanov D.D. On peculiarities of composition and properties of ancient hydrocarbon source rocks // Journal of Mining Institute. 2024. Vol. 269 . p. 700-707. EDN MKTALQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-16
  • Date accepted
    2024-09-24
  • Date published
    2024-11-12

Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources

Article preview

The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.

How to cite: Kontorovich A.E., Burshtein L.M., Gubin I.A., Parfenova T.M., Safronov P.I. Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources // Journal of Mining Institute. 2024. Vol. 269 . p. 721-737. EDN WDBEOS
Editorial
  • Date submitted
    2024-10-29
  • Date accepted
    2024-10-29
  • Date published
    2024-11-12

Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths

Article preview

In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.

How to cite: Prishchepa O.M., Aleksandrova T.N. Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths // Journal of Mining Institute. 2024. Vol. 269 . p. 685-686.
Economic Geology
  • Date submitted
    2023-11-15
  • Date accepted
    2024-09-24
  • Date published
    2024-12-25

Development and validation of an approach to the environmental and economic assessment of decarbonization projects in the oil and gas sector

Article preview

This article addresses the problem of selecting a priority decarbonization project for an oil and gas company aiming to reduce greenhouse gas emissions. The wide range of decarbonization options and assessment methods prompted the development of a comprehensive ranking system for project selection. This system incorporates both internal and external factors of project implementation, a two-stage algorithm that filters out unsuitable projects taking into account sustainable development goals, and a quantitative evaluation approach using absolute and relative indicators. The proposed system evaluates decarbonization projects by considering not only the reduction of emissions in both absolute and relative terms, but also the broader environmental, social, and economic aspects relevant to the oil and gas company and the national economy. It includes a ranking mechanism for identifying priority projects and integrates carbon regulation incentives and green taxonomy tools into the economic assessment for more precise comparative analysis. The quantitative assessment in absolute terms involves a specialized net present value calculation, which accounts for revenue from both carbon credit sales and the potential sale of new low-carbon products, if applicable. The proposed assessment provides for targeted analysis of specific performance indicators, such as the cost per unit of emissions reduced, tax and social security contributions per unit of emissions reduced, energy efficiency improvements, and other indicators used for additional assessments of projects under otherwise equal conditions.

How to cite: Sheveleva N.A. Development and validation of an approach to the environmental and economic assessment of decarbonization projects in the oil and gas sector // Journal of Mining Institute. 2024. Vol. 270 . p. 1038-1055. EDN GAOTZW
Editorial
  • Date submitted
    2024-07-04
  • Date accepted
    2024-07-04
  • Date published
    2024-07-04

Environmental safety and sustainable development: new approaches to wastewater treatment

Article preview

In 2015, the UN member states adopted the 2030 Agenda for Sustainable Development. Despite significant progress, billions of people – one in three people – do not have access to safe, clean drinking water. Modern wastewater treatment methods include a wide range of biological, chemical and physical processes, each having its own advantages and applications. This thematic volume considers the latest achievements in wastewater treatment technologies, wastewater purification and treatment as well as their potential applications at the local level. The problem of surface water pollution is relevant for all regions of the world. One of the largest sources of pollutants is mining and processing industry. The first stage in the development of wastewater treatment technologies is monitoring of anthropogenically modified water bodies.

How to cite: Pashkevich M.A., Danilov A.S., Matveeva V.A. Environmental safety and sustainable development: new approaches to wastewater treatment // Journal of Mining Institute. 2024. Vol. 267 . p. 341-342.
Geology
  • Date submitted
    2023-05-21
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

Assessment of the influence of lithofacies conditions on the distribution of organic carbon in the Upper Devonian “Domanik” deposits of the Timan-Pechora Province

Article preview

The study of high-carbon formations was instigated both by the decreasing raw material base of oil as a result of its extraction, and by the progress in development of low-permeability shale strata, primarily in the USA, Australia, and China. The most valuable formations occur in traditional hydrocarbon production areas – the West Siberian, Volga-Ural and Timan-Pechora, North Pre-Caucasian and Lena-Tunguska oil and gas provinces. Specific features of the Late Devonian-Early Carboniferous high-carbon formation occurring in the eastern marginal part of the East European Platform are: heterogeneous section due to intense progradation of the carbonate platform from west to east; succession of lithofacies environments that determined the unevenness of the primary accumulation and secondary distribution of organic matter (OM); possible migration or preservation in the source strata during the subsidence stages of the moving parts of bitumides, which determined the prospects for oil and gas potential. The distribution pattern of the present OM content was investigated depending on lithofacies conditions and lithological composition of rocks in the “Domanik type” Upper Devonian-Tournaisian deposits in the Timan-Pechora Province (TPP), its transformation degree to bring it to the initial content of organic carbon and further estimation of the share of stored “mobile oil” in oil and gas source formation. The study was based on the analysis of the data set on organic carbon content in core samples and natural exposures in the Ukhta Region in the Domanik-Tournaisian part of the section including more than 5,000 determinations presented in reports and publications of VNIGRI and VNIGNI and supplemented by pyrolytic and bituminological analyses associated with the results of microtomographic, macro- and lithological studies and descriptions of thin sections made at the Saint Petersburg Mining University. For each tectonic zone of the TPP within the investigated high-carbon intervals, the content of total volumes of organic carbon was determined. The data obtained allow estimating the residual mass of mobile bitumoids in a low-permeability matrix of the high-carbon formation.

How to cite: Prishchepa O.M., Sinitsa N.V., Ibatullin A.K. Assessment of the influence of lithofacies conditions on the distribution of organic carbon in the Upper Devonian “Domanik” deposits of the Timan-Pechora Province // Journal of Mining Institute. 2024. Vol. 268 . p. 535-551. EDN JPUKCM
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-14
  • Date accepted
    2023-12-27
  • Date published
    2024-12-25

Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons

Article preview

In oil and gas reservoirs with significant hydrocarbon columns the dependency of the initial hydrocarbon composition on depth – the compositional gradient – is an important factor in assessing the initial amounts of components in place, the position of the gas-oil contact, and variations of fluid properties throughout the reservoir volume. Known models of the compositional gradient are based on thermodynamic relations assuming a quasi-equilibrium state of a multi-component hydrodynamically connected hydrocarbon system in the gravity field, taking into account the influence of the natural geothermal gradient. The corresponding algorithms allow for calculation of changes in pressure and hydrocarbon fluid composition with depth, including determination of the gas-oil contact (GOC) position. Above and below the GOC, the fluid state is considered single-phase. Many oil-gas-condensate reservoirs typically have a small initial fraction of the liquid hydrocarbon phase (LHC) – scattered oil – within the gas-saturated part of the reservoir. To account for this phenomenon, a special modification of the thermodynamic model has been proposed, and an algorithm for calculating the compositional gradient in a gas condensate reservoir with the presence of LHC has been implemented. Simulation cases modelling the characteristic compositions and conditions of three real oil-gas-condensate fields are considered. The results of the calculations using the proposed algorithm show peculiarities of variations of the LHC content and its impact on the distribution of gas condensate mixture composition with depth. The presence of LHC leads to an increase in the level and possible change in the type of the fluid contact. The character of the LHC fraction dependency on depth can be different and is governed by the dissolution of light components in the saturated liquid phase. The composition of the LHC in the gas condensate part of the reservoir changes with depth differently than in the oil zone, where the liquid phase is undersaturated with light hydrocarbons. The results of the study are significant for assessing initial amounts of hydrocarbon components and potential efficiency of their recovery in gas condensate and oil-gas-condensate reservoirs with large hydrocarbon columns.

How to cite: Kusochkova E.V., Indrupskii I.M., Surnachev D.V., Alekseeva Y.V., Drozdov A.N. Modelling of compositional gradient for reservoir fluid in a gas condensate deposit with account for scattered liquid hydrocarbons // Journal of Mining Institute. 2024. Vol. 270 . p. 904-918. EDN QBQQCT
Editorial
  • Date submitted
    2023-04-25
  • Date accepted
    2023-04-25
  • Date published
    2023-04-25

Ecological security and sustainability

Article preview

In 2015, UN Member States adopted the 2030 Agenda for Sustainable Development, aimed at balancing initiatives by the world community and individual countries in the environmental, social, and economic spheres. The global sustainable development goals are to promote the well-being of the world population, preserve the planet’s resources, and maintain ecological security, which is vital in the age of the rapid industrial growth and ever-increasing anthropogenic pressure on the environment. For the successful achievement of sustainability goals in the manufacturing sector, integrated measures should be undertaken for monitoring and assessing the technogenic impact of industrial facilities. Additionally, it is necessary to develop environmentally-friendly technologies in the fields of gas and water treatment, land reclamation, and waste disposal. Therefore, fundamental and applied research in these related spheres is of particular importance. Currently, environmental monitoring of all components of the environment, along with anthropogenic objects and processes, receives considerable attention, which is determined by the vector of development in science and technology. In this regard, the latest innovations in green technology in this area are becoming increasingly significant.

How to cite: Pashkevich M.A., Danilov A.S. Ecological security and sustainability // Journal of Mining Institute. 2023. Vol. 260 . p. 153-154.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-12
  • Date accepted
    2022-11-17
  • Date published
    2023-04-25

Microbiological remediation of oil-contaminated soils

Article preview

Microbiological remediation is a promising technology for the elimination of environmental contamination by oil and petroleum products, based on the use of the metabolic potential of microorganisms. The issue of environmental contamination by crude oil and its refined products is relevant in the Russian Federation since the oil industry is one of the leading sectors of the country. Mechanical and physico-chemical methods of treatment are widely used to clean oil-contaminated soils. However, the methods belonging to these groups have a number of significant drawbacks, which actualizes the development of new methods (mainly biological), since they are more environmentally friendly, cost-effective, less labor-intensive, and do not require the use of technical capacities. Various bio-based products based on strains and consortia of microorganisms have been developed that have proven effectiveness. They include certain genera of bacteria, microscopic fungi, and microalgae, substances or materials acting as sorbents of biological agents and designed to retain them in the soil and increase the efficiency of bioremediation, as well as some nutrients. Statistical data, the most effective methods, and technologies, as well as cases of using microorganisms to restore oil-contaminated soils in various climatic conditions are presented.

How to cite: Sozina I.D., Danilov A.S. Microbiological remediation of oil-contaminated soils // Journal of Mining Institute. 2023. Vol. 260 . p. 297-312. DOI: 10.31897/PMI.2023.8
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-08-20
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Comparison of the approaches to assessing the compressibility of the pore space

Article preview

Integral and differential approaches to determining the volumetric compression of rocks caused by changes in the stress state are considered. Changes in the volume of the pore space of rocks are analyzed with an increase in its all-round compression. Estimation of changes in the compressibility coefficients of reservoirs due to the development of fields is an urgent problem, since the spread in the values of compressibility factors reduces the adequacy of estimates of changes in the physical properties and subsidence of the earth's surface of developed fields and underground gas storages. This parameter is key in assessing the geodynamic consequences of the long-term development of hydrocarbon deposits and the operation of underground gas storage facilities. Approaches to the assessment differ in the use of cumulative (integral) or local (differential) changes in porosity with a change in effective pressure. It is shown that the coefficient of volumetric compressibility of pores calculated by the integral approach significantly exceeds its value calculated by the differential approach, which is due to the accumulative nature of pore compression with an increase in effective pressure. It is shown that the differential approach more accurately determines the value of the pore compressibility coefficient, since it takes into account in more detail the features of the change in effective pressure.

How to cite: Zhukov V.S., Kuzmin Y.O. Comparison of the approaches to assessing the compressibility of the pore space // Journal of Mining Institute. 2022. Vol. 258 . p. 1008-1017. DOI: 10.31897/PMI.2022.97
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-05-31
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field

Article preview

Issues related to the influence of reservoir properties uncertainty on oil field development modelling are considered. To increase the reliability of geological-hydrodynamic mathematical model in the course of multivariate matching, the influence of reservoir properties uncertainty on the design technological parameters of development was estimated, and their mutual influence was determined. The optimal conditions for the development of the deposit were determined, and multivariate forecasts were made. The described approach of history matching and calculation of the forecast of technological development indicators allows to obtain a more reliable and a less subjective history match as well as to increase the reliability of long-term and short-term forecasts.

How to cite: Kochnev A.A., Kozyrev N.D., Krivoshchekov S.N. Estimation of the influence of fracture parameters uncertainty on the dynamics of technological development indicators of the Tournaisian-Famennian oil reservoir in Sukharev oil field // Journal of Mining Institute. 2022. Vol. 258 . p. 1026-1037. DOI: 10.31897/PMI.2022.102
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-05
  • Date accepted
    2022-07-21
  • Date published
    2022-11-10

Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines)

Article preview

It is shown that the creation of the variants of resource-saving systems for the development of long-column mining is one of the main directions for improving the technological schemes for mining operations in the mines of the Kuang Nin coal basin. They provide a reduction in coal losses in the inter-column pillars and the cost of maintaining preliminary workings fixed with anchorage. The implementation of these directions is difficult (and in some cases practically impossible) when tight rocks are lying over the coal seam, prone to significant hovering in the developed space. In the Quang Ninh basin, 9-10 % of the workings are anchored, the operational losses of coal reach 30 % or more; up to 50 % of the workings are re-anchored annually. It is concluded that the real conditions for reducing coal losses and the effective use of anchor support as the main support of reusable preliminary workings are created when implementing the idea put forward at the St. Petersburg Mining University: leaving the coal pillar of increased width between the reused mine working and the developed space and its subsequent development on the same line with the stoping face simultaneously with the reclamation of the reused mine working.

How to cite: Zubov V.P., Phuc L.Q. Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines) // Journal of Mining Institute. 2022. Vol. 257 . p. 795-806. DOI: 10.31897/PMI.2022.72
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-27
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Application of resonance functions in estimating the parameters of interwell zones

Article preview

It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.

How to cite: Batalov S.А., Andreev V.Е., Mukhametshin V.V., Lobankov V.М., Kuleshova L.S. Application of resonance functions in estimating the parameters of interwell zones // Journal of Mining Institute. 2022. Vol. 257 . p. 755-763. DOI: 10.31897/PMI.2022.85
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-01-31
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Filtration studies on cores and sand packed tubes from the Urengoy field for determining the efficiency of simultaneous water and gas injection on formation when extracting condensate from low-pressure reservoirs and oil from oil rims

Article preview

Oil rims as well as gas condensate reservoirs of Russia's largest Urengoy field are developed by depletion drive without formation pressure maintenance, which has led to serious complications in production of oil, gas and condensate. In addition, field development by depletion drive results in low values of oil and condensate recovery. These problems are also relevant for other oil and gas condensate fields. One of the possible solutions is simultaneous water and gas injection. Rational values of gas content in the mixture for affecting gas condensate fields and oil rims of oil and gas condensate fields should be selected using the data of filtration studies on core models. The article presents the results of filtration experiments on displacement of condensate and oil by water, gas and water-gas mixtures when simulating the conditions of the Urengoy field. Simultaneous water and gas injection showed good results in the experiments on displacement of condensate, residual gas and oil. It has been ascertained that water-gas mixtures with low gas content (10-20 %) have a better oil-displacement ability (9.5-13.5 % higher) than water. An experiment using a composite linear reservoir model from cemented core material, as regards the main characteristics of oil displacement, gave the same results as filtration experiments with sand packed tubes and demonstrated a high efficiency of simultaneous water and gas injection as a method of increasing oil recovery at oil and gas condensate fields.

How to cite: Drozdov N.A. Filtration studies on cores and sand packed tubes from the Urengoy field for determining the efficiency of simultaneous water and gas injection on formation when extracting condensate from low-pressure reservoirs and oil from oil rims // Journal of Mining Institute. 2022. Vol. 257 . p. 783-794. DOI: 10.31897/PMI.2022.71
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-18
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Development of a hydrocarbon completion system for wells with low bottomhole temperatures for conditions of oil and gas fields in Eastern Siberia

Article preview

The paper presents the results of investigations on the influence of low bottomhole temperatures in the intervals of productive formations on the technological properties of solutions used for drilling and completion of wells in order to determine the possibility of increasing gas recovery coefficient at the field of the “Sila Sibiri” gas pipeline. The analysis of technological measures determining the quality of the productive horizon drilling-in was carried out. It was found out that the dispersion of bridging agent in the composition of the hydrocarbon-based drilling mud selected from the existing methods does not have significant influence on the change in the depth of filtrate penetration into the formation in conditions of low bottomhole temperatures. The main reason for the decrease in the near-bottomhole zone permeability was found out – the increase in plastic viscosity of the dispersion medium of the hydrocarbon-based drilling mud under the influence of low bottomhole temperatures. A destructor solution for efficient wellbore cleaning from hydrocarbon-based solution components in conditions of low bottomhole temperatures was developed. The paper presents the results of laboratory investigations of hydrocarbon-based drilling mud and the developed destructor solution, as well as its pilot field tests. The mechanism of interaction between the destructor solution and the filter cake of the hydrocarbon-based drilling mud ensuring the reduction of the skin factor in the conditions of the geological and hydrodynamic structure of Botuobinsky, Khamakinsky and Talakhsky horizons of the Chayandinskoye oil and gas condensate field has been scientifically substantiated.

How to cite: Dvoynikov M.V., Budovskaya M.E. Development of a hydrocarbon completion system for wells with low bottomhole temperatures for conditions of oil and gas fields in Eastern Siberia // Journal of Mining Institute. 2022. Vol. 253 . p. 12-22. DOI: 10.31897/PMI.2022.4
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-31
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

Experimental evaluation of compressibility coefficients for fractures and intergranular pores of an oil and gas reservoir

Article preview

The paper is devoted to studies of the volumetric response of rocks caused by changes in their stress state. Changes in the volume of fracture and intergranular components of the pore space based on measurements of the volume of pore fluid extruded from a rock sample with an increase in its all-round compression have been experimentally obtained and analyzed. Determination of the fracture and intergranular porosity components is based on the authors' earlier proposed method of their calculation using the values of longitudinal wave velocity and total porosity. The results of experimental and analytical studies of changes in porosity and its two components (intergranular and fractured) under the action of effective stresses are considered. This approach allowed the authors to estimate the magnitude of the range of changes in the volumetric compressibility of both intergranular pores and fractures in a representative collection of 37 samples of the Vendian-age sand reservoir of the Chayanda field. The method of separate estimation of the compressibility coefficients of fractures and intergranular pores is proposed, their values and dependence on the effective pressure are experimentally obtained. It is determined that the knowledge of the values of fracture and intergranular porosity volumetric compressibility will increase the reliability of estimates of changes in petrophysical parameters of oil and gas reservoirs caused by changes in the stress state during the development of hydrocarbon fields.

How to cite: Zhukov V.S., Kuzmin Y.O. Experimental evaluation of compressibility coefficients for fractures and intergranular pores of an oil and gas reservoir // Journal of Mining Institute. 2021. Vol. 251 . p. 658-666. DOI: 10.31897/PMI.2021.5.5
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-24
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

A probabilistic approach to the dynamic cut-off grade assessment

Article preview

Cut-off grade is an important conditioning parameter that determines the quantity and quality of recoverable reserves and development efficiency. Today, Russian mining companies operate with certified quality requirements. By setting permanent quality requirements, the government seeks to prevent depletion of reserves, reduced production during periods of falling prices, and decreased budget revenues, expressing the interests of all members of society. But to what extent do the permanent quality requirements protect the interests of the state? The answer to this question is ambiguous and does not lie on the surface. The State Commission for Reserves and domestic researchers are working to find a rational solution to the problem of quality requirements. One solution is dynamic quality requirements. The effectiveness of their application has been proven for individual mining companies, but it is incorrect to transfer these conclusions to the entire mineral resource base of the country. This article presents a new approach to determining the dynamic cut-off grade, which varies depending on the price of minerals. The dynamic cut-off grade is proposed to be determined based on the indicators of constant requirements to the quality of exploration work, using the maximum allowable costs in the region. The approach allows to calculate the effect of the introduction of dynamic cut-off grade in the practice of subsurface use for the state (in the form of the amount of taxes received) and for subsoil users (in the form of the amount of income). For a group of gold-bearing deposits with open-pit mining method, it was established that the development of reserves using dynamic values of the cut-off grade in periods of price changes ensures compliance with the interests of the state and subsoil users.

How to cite: Bragin V.I., Kharitonova M.Y., Matsko N.A. A probabilistic approach to the dynamic cut-off grade assessment // Journal of Mining Institute. 2021. Vol. 251 . p. 617-625. DOI: 10.31897/PMI.2021.5.1
Mining
  • Date submitted
    2021-03-30
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Integrated development of iron ore deposits based on competitive underground geotechnologies

Article preview

The article presents an analytical review of the current state of the iron ore base of the ferrous metallurgy of Russia and the world, identifies the largest iron ore provinces and iron ore producers. The promising directions of development and improvement of the quality of the iron ore base of Russia and the features of the development of new deposits of rich iron ores are identified. Effective technologies for the development of rich iron ores deposits that ensure an increase in production volumes are proposed. The geomechanical justification of rational technological parameters that are easily adapted to changes in mining and geological conditions has been performed. Based on the results of field studies, the use of an elastic-plastic model with the Coulomb – Mohr strength criterion for modeling changes in the stress-strain state of an ore rock mass during mining operations is justified and recommendations for ensuring the stability of mine workings are developed. Effective engineering and technical solutions for the complex development and deep processing of rich iron ores with the production of fractionated sinter ore, which increases the efficiency of metallurgical processes, the production of high-grade iron oxide pigments and iron ore briquettes, which increase the competitiveness of iron ore companies and the full use of the resource potential of deposits, are presented.

How to cite: Trushko V.L., Trushko O.V. Integrated development of iron ore deposits based on competitive underground geotechnologies // Journal of Mining Institute. 2021. Vol. 250 . p. 569-577. DOI: 10.31897/PMI.2021.4.10
Geoeconomics and Management
  • Date submitted
    2020-07-29
  • Date accepted
    2021-03-29
  • Date published
    2021-09-20

Critical analysis of methodological approaches to assessing sustainability of arctic oil and gas projects

Article preview

Development of hydrocarbon resources in the Arctic is one of the priority tasks for the economy of the Russian Federation; however, such projects are associated with significant risks for the environment of nearby regions. Large-scale development of hydrocarbon resources in the Arctic should be based on the principles of sustainable development, which imply a balance between socio-economic benefits and environmental risks. The purpose of this study is to analyze the gaps in scientific knowledge on the issues of assessing sustainability of Arctic oil and gas projects (OGPs) and systematize the key problematic elements of such assessments. The analysis was carried out in terms of four key elements that determine the feasibility of implementing Arctic OGPs in the context of sustainable development: economic efficiency, social effects, environmental safety and technological availability. The methodology for conducting bibliometric analysis, which included more than 15.227 sources from the Scopus database over the period of 2005-2020, was based on PRISMA recommendations for compiling systematic reviews and meta-analyses. Methodological problems of assessing sustainability of Arctic OGPs were mapped and divided into four key sectors: consideration of factors that determine sustainability; sustainability assessment; interpretation of assessment results; sustainability management. This map can serve as a basis for conducting a series of point studies, aimed at eliminating existing methodological shortcomings of the sustainable development concept with respect to Arctic OGPs.

How to cite: Cherepovitsyn A.E., Tcvetkov P.S., Evseeva O.O. Critical analysis of methodological approaches to assessing sustainability of arctic oil and gas projects // Journal of Mining Institute. 2021. Vol. 249 . p. 463-479. DOI: 10.31897/PMI.2021.3.15
Mining
  • Date submitted
    2020-05-12
  • Date accepted
    2020-09-22
  • Date published
    2020-11-24

Design features of coal mines ventilation using a room-and-pillar development system

Article preview

The safety of mining operations in coal mines for aerological factors depends on the quality of accepted and implemented ventilation design solutions. The current “Design Manual of coal mine ventilation” do not take into account the features of room-and-pillar development systems used in Russia. This increases the risk of explosions, fires, and gassing. The detailed study of foreign experience in designing ventilation for the considered development systems e of coal deposits allowed to formulate recommendations on the ventilation scheme organization for coal mines using a room-and-pillar development system and the procedure for ventilation during multi-entry gateroad development. Observations have shown that the use of the existing Russian procedure for airing mining sites with a room-and-pillar development system complicates the emergency rescue operations conduct. Low speeds and multidirectional air movement, difficult heat outflow, and the abandonment of coal pillars increase the risk of occurrence and late detection of endogenous fire. The results of numerical modeling have shown that the installation (parallel to the drifts) of ventilation structures in inter-chamber pillars will increase the reliability of ventilation by transferring the ventilation scheme from a complex diagonal to a complex parallel. It will also reduce the amount of air required for the mine site and the total aerodynamic drag. The research made it possible to formulate requirements for the design procedure for coal mines ventilation using a room-and-pillar development system, which consist in the order of working out blocks in the panel, and also the additional use of ventilation structures (light brattice clothes or blowing line brattice).

How to cite: Kobylkin S.S., Kharisov A.R. Design features of coal mines ventilation using a room-and-pillar development system // Journal of Mining Institute. 2020. Vol. 245 . p. 531-538. DOI: 10.31897/PMI.2020.5.4
Oil and gas
  • Date submitted
    2020-05-13
  • Date accepted
    2020-06-24
  • Date published
    2020-10-08

Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development

Article preview

Modern trends in the global energy market linked to the Sustainable Development Goals often lead to the adoption of political decisions with little basis in fact. Stepping up the development of renewable energy sources is an economically questionable but necessary step in terms of its social and ecological effects. However, subsequent development of hydrogen infrastructure is, at the very least, a dangerous initiative. In connection with mentioned above, an attempt to examine hydrogen by conducting an integral assessment of its characteristics has been made in this article. As a result of the research conducted, the following conclusions concerning the potential of the widespread implementation of hydrogen in the power generation sector have been made: as a chemical element, it harms steel structures, which significantly impedes the selection of suitable materials; its physical and volume characteristics decrease the general efficiency of the energy system compared to similar hydrocarbon solutions; the hydrogen economy does not have the necessary foundation in terms of both physical infrastructure and market regulation mechanisms; the emergence of widely available hydrogen poses a danger for society due to its high combustibility. Following the results of the study, it was concluded that the existing pilot hydrogen projects are positive yet not scalable solutions for the power generation sector due to the lack of available technologies to construct large-scale and geographically distributed infrastructure and adequate international system of industry regulation. Thus, under current conditions, the risks of implementing such projects considerably exceed their potential ecological benefits.

How to cite: Litvinenko V.S., Tsvetkov P.S., Dvoynikov M.V., Buslaev G.V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development // Journal of Mining Institute. 2020. Vol. 244 . p. 428-438. DOI: 10.31897/PMI.2020.4.5