Submit an Article
Become a reviewer

Search articles for by keywords:
electric submersible vane pumps

Energy industry
  • Date submitted
    2023-11-10
  • Date accepted
    2024-06-03
  • Date published
    2025-02-25

Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations

Article preview

The objective of this study is to enhance user trust in electricity consumption forecasting systems for mining enterprises by applying explainable artificial intelligence methods that provide not only forecasts but also their justifications. The research object comprises a complex of mines and ore processing plants of a company purchasing electricity on the wholesale electricity and power market. Hourly electricity consumption data for two years, schedules of planned repairs and equipment shutdowns, and meteorological data were utilized. Ensemble decision trees were applied for time series forecasting, and an analysis of the impact of various factors on forecasting accuracy was conducted. An algorithm for interpreting forecast results using the SHapley Additive exPlanation method was proposed. The mean absolute percentage error was 7.84 % with consideration of meteorological factors, 7.41 % with consideration of meteorological factors and a load plan formulated by an expert, and the expert's forecast error was 9.85 %. The results indicate that the increased accuracy of electricity consumption forecasting, considering additional factors, further improves when combining machine learning methods with expert evaluation. The development of such a system is only feasible using explainable artificial intelligence models.

How to cite: Matrenin P.V., Stepanova A.I. Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations // Journal of Mining Institute. 2025. Vol. 271. p. 154-167. EDN DEFRIP
Energy industry
  • Date submitted
    2024-06-12
  • Date accepted
    2024-07-18
  • Date published
    2024-07-26

Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities

Article preview

The issue of determining the main parameters of electric energy storage systems – power and energy intensity – is being considered, the determination of which is a fundamentally important task when introducing such devices into the power supply systems of enterprises for both technical (technological) and economic reasons. The work analyzes problems that can be solved by installing electricity storage systems at gas industry facilities. An industry-wide methodology has been developed for calculating the parameters of an electricity storage system based on traditional methods and methods aimed at minimizing the standardized cost of electricity with adaptation to the conditions of the gas industry. A distinctive feature of the presented methodology is the ability to determine the power and energy intensity of electricity storage systems when performing several functions. The methodology was tested at a typical gas industry facility – the Yarynskaya compressor station of OOO Gazprom Transgaz Ukhta, a characteristic feature of which is an autonomous power supply system. An example is given of calculating the electricity storage normalized cost using an improved LCOS indicator, which takes into account the effect of changing the fill factor of the electrical load schedule on the amount of gas consumption by a power plant for its own needs. To confirm the economic efficiency of introducing electricity storage systems calculated using the above methodology, calculations of the integral effect, net present value and efficiency index are presented.

How to cite: Tokarev I.S. Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities // Journal of Mining Institute. 2024. p. EDN UIZSOQ
Energy industry
  • Date submitted
    2022-07-10
  • Date accepted
    2023-06-20
  • Date published
    2024-02-29

Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline

Article preview

A mathematical model of the in-line control of the insulation resistance state for cathodically polarized main pipelines according to electrometry data is considered. The relevance of the work is caused by the opportunity to create in-line internal isolation defects indicators of the main pipelines for transported liquids that are good conductors and expand the functionality of monitoring and controlling cathodic protection systems of the main pipelines. Features of the mathematical model are: consideration of the electric conductivity of transported liquid influence on electric field distribution; consideration of the influence of external and internal insulating coating resistance; use of the electric field of an in-line diagnostic probe for quality control of internal insulation. Practical significance consists in the development of modeling methods for control subsystems of main pipeline protection against corrosion and the development of special mathematical and algorithmic support systems for monitoring and controlling the operating modes of the cathodic protection station of main pipelines.

How to cite: Krizskii V.N., Kosarev O.V., Aleksandrov P.N., Luntovskaya Y.A. Mathematical modeling of the electric field of an in-line diagnostic probe of a cathode-polarized pipeline // Journal of Mining Institute. 2024. Vol. 265. p. 156-164. EDN XRDQFW
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-01-20
  • Date accepted
    2022-07-21
  • Date published
    2023-12-25

Tribodynamic aspects of the resource of electric submersible vane pumps for oil production

Article preview

The operation of electric submersible vane pumps for oil production is accompanied by the presence of solid particles, corrosive substances, asphalt-resin-paraffin deposits in the reservoir fluid, leading to changes in performance characteristics and equipment failures. The reduction of the resource as a result of this is accompanied by an increase in the costs of repair and replacement of equipment. The main processes that negatively affect the failure are the wear of the seals of the working stages, the pump plain bearings and vibration, the level of which can significantly exceed the initial level. A test bench and methodology for testing pump sections for wear in water with an abrasive and simultaneous registration of vibration characteristics have been developed. Two main forms of wear of radial seals have been identified – one-sided and equal-dimensional. The one-sided form of sleeve wear is caused by synchronous shaft precession, whereas the equal-dimensional one is an asynchronous precession, and the vibration level increases with increasing wear. The wear distribution of radial seals along the length of the pump correlates with the shape of the elastic shaft line. The wear of the axial seals does not significantly increase the vibration level. During wear the frequency spectrum of vibrations changes; there occurs a frequency that can serve as a diagnostic sign of ultimate wear of the pump. The calculated dependence of the vibration velocity on the wear of the radial seals of the working stages is obtained, which makes it possible to predict the onset of a failure of functioning.

How to cite: Smirnov N.I., Drozdov A.N., Smirnov N.N. Tribodynamic aspects of the resource of electric submersible vane pumps for oil production // Journal of Mining Institute. 2023. Vol. 264. p. 962-970. EDN QNNAGA
Editorial
  • Date submitted
    2023-07-19
  • Date accepted
    2023-07-19
  • Date published
    2023-07-19

Energy efficiency in the mineral resources and raw materials complex

Article preview

Energy efficiency and energy saving at all times and especially at the present stage of development of industry and economy have played an extremely important role. Regardless of which countries and according to what criteria they build energy development plans, energy efficiency and energy saving are always a priority. This fully applies to the mineral resources complex, in which energy consumption as a whole makes up a large share of total consumption. The resources mined in the mineral resources complex are themselves a source of energy. The energy sector is evolving in many ways. Many scientific works, the results of which are reflected in publications, confirm the relevance of research in the energy efficiency field. But the approach to individual decisions in the mineral resource industry is specific and it is worth of separate consideration. Recently, much attention has been paid to “green energy” and renewable energy sources. However, energy efficiency in the field of traditional generation and consumption remains an urgent problem and its solution is in constant development. One of the main directions for improving energy efficiency is the development of autonomous systems for the electrical and thermal power engineering. All these problems are reflected in a special volume of the Journal of the Mining Institute, the articles are divided into four sections: energy efficiency of the electric drive in the mineral resources complex (MRC); energy efficiency of industrial plants and enterprises in MRC; power quality and renewable sources in MRC; autonomous power supply systems in MRC. The presented articles contain valuable material from the scientific and practical points of view and can form the basis for further research in the energy efficiency field.

How to cite: Shklyarskiy Y.E., Skamyin A.N., Jiménez Carrizosa M. Energy efficiency in the mineral resources and raw materials complex // Journal of Mining Institute. 2023. Vol. 261. p. 323-324.
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

The wireless charging system for mining electric locomotives

Article preview

The electric vehicles development has a high potential for energy saving: an energy-saving traffic control can reduce energy resource consumption, and integration with the power grid provides the ability of daily load pattern adjustment. These features are also relevant for underground mining. The critical element of vehicle-to-grid integration is the charging infrastructure, where wireless charging is promising to develop. The implementation of such systems in underground mining is associated with energy efficiency issues and explosion safety. The article discusses the development and research of a wireless charging system for mining electric locomotive A-5.5-600-U5. The analytic hierarchy process is used for justification of the circuitry and design solution by a comparison of different technical solutions based on energy efficiency and safety criteria. A complex computer model of the wireless charging system has been developed that gives the transients in the electrical circuit of a wireless charging system and the high-frequency field density distribution near the transmitting and receiving coils in a 3D setting. An approach to ignition risk evaluation based on the analysis of high-frequency field density in the charging area between the coils of the wireless charging system is proposed. The approach using a complex computer model is applied to the developed system. The study showed that the wireless charging system for mining electric locomotives operating in the gaseous-and-dusty mine is technically feasible and there are designs in which it is explosion safe.

How to cite: Zavyalov V.M., Semykina I.Y., Dubkov E.A., Velilyaev A.- han S. The wireless charging system for mining electric locomotives // Journal of Mining Institute. 2023. Vol. 261. p. 428-442. EDN JSNTAQ
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Forecasting planned electricity consumption for the united power system using machine learning

Article preview

The paper presents the results of studies of the predictive models development based on retrospective data on planned electricity consumption in the region with a significant share of enterprises in the mineral resource complex. Since the energy intensity of the industry remains quite high, the task of rationalizing the consumption of electricity is relevant. One of the ways to improve control accuracy when planning energy costs is to forecast electrical loads. Despite the large number of scientific papers on the topic of electricity consumption forecasting, this problem remains relevant due to the changing requirements of the wholesale electricity and power market to the accuracy of forecasts. Therefore, the purpose of this study is to support management decisions in the process of planning the volume of electricity consumption. To realize this, it is necessary to create a predictive model and determine the prospective power consumption of the power system. For this purpose, the collection and analysis of initial data, their preprocessing, selection of features, creation of models, and their optimization were carried out. The created models are based on historical data on planned power consumption, power system performance (frequency), as well as meteorological data. The research methods were: ensemble methods of machine learning (random forest, gradient boosting algorithms, such as XGBoost and CatBoost) and a long short-term memory recurrent neural network model (LSTM). The models obtained as a result of the conducted studies allow creating short-term forecasts of power consumption with a fairly high precision (for a period from one day to a week). The use of models based on gradient boosting algorithms and neural network models made it possible to obtain a forecast with an error of less than 1 %, which makes it possible to recommend the models described in the paper for use in forecasting the planned electricity power consumption of united power systems.

How to cite: Klyuev R.V., Morgoeva A.D., Gavrina O.A., Bosikov I.I., Morgoev I.D. Forecasting planned electricity consumption for the united power system using machine learning // Journal of Mining Institute. 2023. Vol. 261. p. 392-402. EDN FJGZTV
Energy industry
  • Date submitted
    2022-10-26
  • Date accepted
    2023-02-13
  • Date published
    2023-07-19

Determination of the grid impedance in power consumption modes with harmonics

Article preview

The paper investigates the harmonic impedance determination of the power supply system of a mining enterprise. This parameter is important when calculating modes with voltage distortions, since the determined parameters of harmonic currents and voltages significantly depend on its value, which allow the most accurate modeling of processes in the presence of distortions in voltage and current. The power supply system of subsurface mining is considered, which is characterized by a significant branching of the electrical network and the presence of powerful nonlinear loads leading to a decrease in the power quality at a production site. The modernization of the mining process, the integration of automated electrical drive systems, renewable energy sources, energy-saving technologies lead to an increase in the energy efficiency of production, but also to a decrease in the power quality, in particular, to an increase in the level of voltage harmonics. The problem of determining the grid harmonic impedance is solved in order to improve the quality of design and operation of power supply systems for mining enterprises, taking into account the peculiarities of their workload in the extraction of solid minerals by underground method. The paper considers the possibility of determining the grid impedance based on the measurement of non-characteristic harmonics generated by a special nonlinear load. A thyristor power controller based on phase regulation of the output voltage is considered as such a load. Simulation computer modeling and experimental studies on a laboratory test bench are used to confirm the proposed method. The recommendations for selecting load parameters and measuring device connection nodes have been developed.

How to cite: Skamyin A.N., Dobush V.S., Jopri M.H. Determination of the grid impedance in power consumption modes with harmonics // Journal of Mining Institute. 2023. Vol. 261. p. 443-454. DOI: 10.31897/PMI.2023.25
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-19
  • Date accepted
    2023-02-14
  • Date published
    2023-04-25

Electric steelmaking dust as a raw material for coagulant production

Article preview

The paper describes the issues associated with waste generated during steel production and processing, in particular the dust from electric arc furnaces (EAF). An effective solution for the disposal of such waste is its involvement in processing to obtain valuable products. This paper studies the physical and chemical properties of EAF dust produced during the smelting of metallized pellets and captured by the dust and gas cleaning system of the steel-smelting shop at the Oskol Electrometallurgical Combine, Belgorod Region. The results obtained in the study of the chemical and disperse compositions of dust, the microstructure of the surface made it possible to propose the use of dust as a raw material for coagulant production. The conditions of acid-thermal treatment of dust are determined, contributing to the partial dissolution of iron (II), (III), and aluminium compounds, which ensure the coagulation processes during wastewater treatment. Model solutions show high efficiency (> 95 %) of water treatment from heavy metal ions by modified EAF dust.

How to cite: Sverguzova S.V., Sapronova Z.A., Zubkova O.S., Svyatchenko A.V., Shaikhieva K.I., Voronina Y.S. Electric steelmaking dust as a raw material for coagulant production // Journal of Mining Institute. 2023. Vol. 260. p. 279-288. DOI: 10.31897/PMI.2023.23
Energy industry
  • Date submitted
    2022-10-13
  • Date accepted
    2022-12-13
  • Date published
    2023-07-19

A complex model of a drilling rig rotor with adjustable electric drive

Article preview

A modified mathematical model of an asynchronous electric drive of the rotor – a drill string – a bit – a rock is considered and implemented, which develops and generalizes the results of previously performed studies. The model includes the following subsystems: a model of an asynchronous drive with vector control; a model of formation of the resistance moment at the bottom of the bit, taking into account the peculiarities of the interaction between the bit and the rock; a model of a multi-mass mechanical part that takes into account the deformation of the drill string; subsystem for the drilling rig energy-technological parameters formation. The integrated model makes it possible to calculate and evaluate the selected drilling modes, taking into account their electro-mechanical, energy and technological efficiency and the dynamics of drilling processes. The performed computer simulation of drilling modes confirmed the possibility of a stick-slip effect accompanied by high-frequency vibrations during bit stops, which may change the direction of rotation of the bit, its accelerated wear and unscrewing of the drilling tool. Long bit stops lead to a significant decrease in the average bit rotation speed, which can explain the decrease in the ROP and increase in energy consumption when drilling in the zone of unstable bit rotation. The model can be used as a base for further improvement of rotary drilling control systems.

How to cite: Ershov M.S., Komkov А.N., Feoktistov E.A. A complex model of a drilling rig rotor with adjustable electric drive // Journal of Mining Institute. 2023. Vol. 261. p. 339-348. DOI: 10.31897/PMI.2023.20
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-10
  • Date published
    2022-11-03

Monitoring of grinding condition in drum mills based on resulting shaft torque

Article preview

Grinding is the most energy-intensive process among all stages of raw material preparation and determines the course of subsequent ore beneficiation stages. Level of electricity consumption is determined in accordance with load characteristics forming as a result of ore destruction in the mill. Mill drum speed is one of process variables due to which it is possible to control ore destruction mechanisms when choosing speed operation mode of adjustable electric mill drive. This study on increasing energy efficiency due to using mill electric drive is based on integrated modelling of process equipment – grinding process and electromechanic equipment – electric drive of grinding process. Evaluating load torque by means of its decomposition into a spectrum, mill condition is identified by changing signs of frequency components of torque spectrum; and when studying electromagnetic torque of electric drive, grinding process is monitored. Evaluation and selection of efficient operation mode of electric drive is based on the obtained spectrum of electromagnetic torque. Research results showed that with increasing mill drum speed – increasing impact energy, load torque values are comparable for the assigned simulation parameters. From the spectra obtained, it is possible to identify mill load condition – speed and fill level. This approach allows evaluating the impact of changes in process variables of grinding process on parameters of electromechanical system. Changing speed operation mode will increase grinding productivity by reducing the time of ore grinding and will not lead to growth of energy consumption. Integration of digital models of the technological process and automated electric drive system allows forming the basis for developing integrated methods of monitoring and evaluation of energy efficiency of the entire technological chain of ore beneficiation.

How to cite: Zhukovskiy Y.L., Korolev N.A., Malkova Y.M. Monitoring of grinding condition in drum mills based on resulting shaft torque // Journal of Mining Institute. 2022. Vol. 256. p. 686-700. DOI: 10.31897/PMI.2022.91
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-03-17
  • Date accepted
    2022-10-04
  • Date published
    2022-11-10

Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data

Article preview

Landslides are among the most dangerous geological processes, posing a threat to all engineering structures. In order to assess the stability of slopes, complex engineering surveys are used, the results of which are necessary to perform computations of the stability of soil masses and assess the risks of landslide development. The results of integ-rated geological and geophysical studies of a typical landslide slope in the North-Western Caucasus spurs, composed of clayey soils, are presented. The purpose of the work is to increase the reliability of assessing the stability of a landslide mass by constructing a 3D model of the slope, including its main structural elements, identified using modern methods of engineering geophysics. Accounting for geophysical data in the formation of the computed 3D model of the slope made it possible to identify important structural elements of the landslide, which significantly affected the correct computation of its stability.

How to cite: Glazunov V.V., Burlutsky S.B., Shuvalova R.A., Zhdanov S.V. Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data // Journal of Mining Institute. 2022. Vol. 257. p. 771-782. DOI: 10.31897/PMI.2022.86
Geoecology and occupational health and safety
  • Date submitted
    2021-04-27
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Regularities of electrochemical cleaning of oil-contaminated soils

Article preview

Electrochemical cleaning of oil-contaminated soils is a promising area of environmental safety, as it can be easily organized even in locations remote from settlements. For this purpose, a power source and a system of electrodes are necessary as equipment. It is possible to use an electric generator if there are no power supply lines nearby. The material of electrodes affects the features of redox processes, which can affect the energy consumption and the degree of soil cleansing from oil or oil products. Therefore, the correct choice of electrode materials is one of the important tasks in the field of engineering electrochemical methods of purification. Changes in the main parameters (humidity, temperature, degree of acidity) in an oil-contaminated model soil, similar in composition to one of the oil fields, were investigated. Measurements of parameters when using graphite and metal electrodes were carried out at several fixed sections of the interelectrode space depending on the treatment time. The established patterns of parameter changes in the purification of oil-contaminated soils allow us to draw conclusions about the stages of the electrochemical process, its speed, and energy efficiency. The results obtained form a basis for designing industrial facilities for soil treatment.

How to cite: Shulaev N.S., Pryanichnikova V.V., Kadyrov R.R. Regularities of electrochemical cleaning of oil-contaminated soils // Journal of Mining Institute. 2021. Vol. 252. p. 937-946. DOI: 10.31897/PMI.2021.6.15
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-20
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

Thermal protection implementation of the contact overheadline based on bay controllers of electric transport traction substations in the mining industry

Article preview

The article presents the principle of thermal protection of the contact overheadlineand substantiates the possibility of practical implementation of this principle for rail electric transport in the mining industry. The algorithm for the implementation of modern digital protection of the contact overhead line as one of the functions of the controller is described. A mathematical model of thermal protection is proposed, which follows from the solution of the heat balance equation. The model takes into account the coefficient of the electrical networktopology, as well as the coefficient of consumption of the current-carrying core of the cable, which determines the reduction in the conducting section from contact erosion and the growth of oxide films. Corrections for air flows are introduced when receiving data from an external anemometer, via telemechanics protocol. The mathematical model was tested by writing a real thermal protection program in the C programming language for the bay controller, based on the circuitry of which is the STM32F407IGT6 microcontroller for the microcontroller unit. Verification tests were carried out on a serial bay controller in 2020. The graphs for comparing the calculated and actual values of temperatures, with different flow rates of the current-carrying conductor of the DC cable, are given. To obtain data, telemechanics protocols IEC 60870-104 and Modbus TCP, PLC Segnetics SMH4 were used.

How to cite: Lantsev D.Y., Frolov V.Y., Zverev S.G., Uhrlandt D., Valenta J. Thermal protection implementation of the contact overheadline based on bay controllers of electric transport traction substations in the mining industry // Journal of Mining Institute. 2021. Vol. 251. p. 738-744. DOI: 10.31897/PMI.2021.5.13
Geology
  • Date submitted
    2020-05-28
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

On the applicability of electromagnetic monitoring of hydraulic fracturing

Article preview

The purpose of this work is to assess the possibilities of using electromagnetic monitoring to study the development of a fracture system generated by hydraulic fracturing (HF) with a specified position of the controlled source. The option with the source (a vertical electric dipole) located in the interval of the oil-bearing formation and ground-based measurements was chosen as the most promising monitoring plan. We have built a geoelectric model equivalent to the system of hydraulic fractures, divided into 11 zones corresponding to HF stages. For the selected model, mathematical simulation was performed by solving the direct problem considering the impact of the steel casing, the presence of which reduced the effect. Despite this fact, no strong distortion of electromagnetic field anomaly was observed above the HF zone. Analysis of the simulation results at different HF stages showed that as new hydraulic fractures appeared and were filled with electrically conductive proppant, the total effect increased. The data on electric field anomaly demonstrated maximum deviation from the background level of more than 2 %. Provided that the studied formation is characterized by sufficient electrical conductivity, its magnetic field also becomes informative.

How to cite: Grigorev G.S., Salishchev M.V., Senchina N.P. On the applicability of electromagnetic monitoring of hydraulic fracturing // Journal of Mining Institute. 2021. Vol. 250. p. 492-500. DOI: 10.31897/PMI.2021.4.2
Electromechanics and mechanical engineering
  • Date submitted
    2021-03-11
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

The influence of solar energy on the development of the mining industry in the Republic of Cuba

Article preview

Cuba is traditionally considered a country with an underdeveloped industry. The share of the mining and metallurgical industries in the gross industrial production of the republic is small – about 3 % of GDP. The development of deposits and the extraction of nickel ores is an important sector of the economy of the Republic of Cuba, since the largest reserves of nickel and cobalt on the North American continent are located on the territory of the country. The development of the country energy system can serve as a growth factor in this sector of the economy. Due to climatic features and impossibility of integrating new capacities into the energy system through the construction of hydroelectric power plants, solar energy is a promising direction. Determining the feasibility of using solar tracking systems to increase the generation of electricity from solar power plants is one of the main challenges faced by engineers and renewable energy specialists. Currently, there are no solar tracking systems in Cuba that can provide information to assess the effectiveness of this technology in the country. The lack of the necessary technologies, as well as the high cost of developing solar power plants with tracking systems, limit the widespread introduction of such complexes. Hence follows the task of creating an inexpensive experimental model that allows assessing the effectiveness of tracking systems in specific weather conditions of the Republic of Cuba. This model will allow in future to increase the efficiency of electrical complexes with solar power plants, which provide power supply to the objects of the mineral resource complex and other regions.

How to cite: Shklyarskiy Y.E., Guerra D.D., Iakovleva E.V., Rassõlkin A. The influence of solar energy on the development of the mining industry in the Republic of Cuba // Journal of Mining Institute. 2021. Vol. 249. p. 427-440. DOI: 10.31897/PMI.2021.3.12
Mining
  • Date submitted
    2020-05-19
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Results of Comprehensive Geophysical Studies on the Search for Crypts on the Territory of Suburban Necropolis of Tauric Chersonese in the Karantinnaya Balka

Article preview

The article presents the results of comprehensive studies carried out by the research team of Saint Petersburg Mining University in cooperation with the specialists from the State Museum-Preserve "Tauric Chersonese" in 2019. The purpose of the work was to discover and map antique and medieval crypts (ancient burial structures) on the territory of suburban necropolis of Tauric Chersonese in the Karantinnaya balka. The complex of geophysical methods included continuous ground penetrating radar sounding at two center frequencies of 350 and 500 MHz and contactless electrical tomography. To minimize spatial errors in the process of studies, topographic and geodetic works were carried out. For the first time wave electromagnetic effects were identified, which indicated the positions of hidden underground crypts. Geological factors were established that are favorable for cutting crypts in the layered thickness of Sarmatian limestones. The obtained results allowed to justify the feasibility of continuing geophysical works at the necropolis in order to study interior space of the discovered crypts and to determine the boundaries of archaeological heritage.

How to cite: Glazunov V.V., Ageev A.S., Gorelik G.D., Sarapulkina T.V. Results of Comprehensive Geophysical Studies on the Search for Crypts on the Territory of Suburban Necropolis of Tauric Chersonese in the Karantinnaya Balka // Journal of Mining Institute. 2021. Vol. 247. p. 12-19. DOI: 10.31897/PMI.2021.1.2
Electromechanics and mechanical engineering
  • Date submitted
    2020-05-18
  • Date accepted
    2020-06-16
  • Date published
    2021-04-26

Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement

Article preview

The article discusses the solution to the problem of underground railway transport slipping in dynamic modes, which occurs when there is a significant difference in the speeds of the driving and driven pairs of wheels. The state of the rail surfaces largely determines the coefficient of adhesion, therefore, using a mathematical model, the condition for the dependence of the magnitude of slipping and tractive effort is selected. For effective acceleration and deceleration of an electric locomotive, it is necessary to control the coefficient of adhesion at a certain level. A simulation model of rolling stock has been created, which for the first time takes into account a mechanical system with distributed parameters. In the structural diagram of the automatic control system of traction electric drives with frequency regulation, such factors as the volume of goods being moved, rolling friction, slope (rise) levels and the state of the rail track are taken into account. The simulation results show the features of the movement and stops of the freight train not only by the diagrams of speed and forces in the modes of acceleration-deceleration and uniform movement, but also the positions of the plungers and tractive forces on the couplings of the electric locomotive and all trolleys involved in the movement of goods. The practical application of the proposed method lies in the possibility of starting a heavily laden train from its place on the ascent section in conditions of insufficient adhesion coefficient with contaminated roads.

How to cite: Borisov S.V., Koltunova E.A., Kladiev S.N. Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement // Journal of Mining Institute. 2021. Vol. 247. p. 114-121. DOI: 10.31897/PMI.2021.1.12
Electromechanics and mechanical engineering
  • Date submitted
    2020-07-22
  • Date accepted
    2020-11-12
  • Date published
    2020-12-29

Simulation of the electric drive of the shearer to assess the energy efficiency indicators of the power supply system

Article preview

This paper considers the problem of electric drive of shearers simulation to assess the indicators of power supply system (PSS) energy efficiency in the context of the introduction of modern devices for controlling the flow of electricity and power. The block diagram of the shearer electric drive simulation model is presented. To take into account fluctuations in the level of consumption of active and reactive power, a model of the executive body of the shearer was used in the work, including a model of the moment of resistance on the auger when cutting. As a result, in the MATLAB Simulink environment, a simulation model of the electric drive of the UKD300 shearer was developed, suitable for assessing the energy efficiency of the electrical complex of mining areas and the feasibility of using modern devices for controlling the flow of electricity and power. As a result of the simulation, it was found that a significant irregularity in the graph of reactive power consumption, caused by repeated short-term operation, makes the use of capacitor units ineffective to compensate for reactive power.

How to cite: Voronin V.A., Nepsha F.S. Simulation of the electric drive of the shearer to assess the energy efficiency indicators of the power supply system // Journal of Mining Institute. 2020. Vol. 246. p. 633-639. DOI: 10.31897/PMI.2020.6.5
Oil and gas
  • Date submitted
    2020-05-21
  • Date accepted
    2020-10-05
  • Date published
    2020-11-24

Method of calculating pneumatic compensators for plunger pumps with submersible drive

Article preview

One of the most promising ways to improve the efficiency of mechanized oil production is a plunger pump with a submersible drive, which allows obtaining harmonic reciprocating movement of the plunger. In the pumping process of well products by plunger pumps, oscillations in the velocity and pressure of the liquid in the lifting pipes occur, which lead to an increase in cyclic variable loads on the plunger, a decrease in the drive life period and the efficiency of the pumping unit. To eliminate the pulsation characteristics of the plunger pump and increase the reliability indicators of the pumping unit (in particular, the overhaul period), pneumatic compensators can be used. A method for calculating the optimal technological parameters of a system of deep pneumatic compensators for plunger pumping units with a submersible drive, based on mathematical modeling of hydrodynamic processes in pipes, has been developed. Calculations of the forming flow velocity and pressure in the lifting pipes of submersible plunger units equipped with pneumatic compensators (PC) have been carried out. Influence of the PC technological parameters on the efficiency of smoothing the oscillations of velocity and pressure in the pipes has been analyzed. Non-linear influence of the charging pressure and PC total volume on the efficiency of their work has been established. Optimal pressure of PC charging, corresponding to the minimum pressure in the tubing during the pumping cycle for the considered section of the tubing, is substantiated. Two ultimate options of PC system placement along the lifting pipes are considered. In the first option, PC are placed sequentially directly at the outlet of the plunger pump, in the second - evenly along the lift. It is shown that the first option provides the minimum amplitude of pressure oscillations at the lower end of the tubing and, accordingly, variable loads on the pump plunger. Nature of the pressure and flow velocity oscillations in the tubing at the wellhead for both options of PC placement has similar values .

How to cite: Timashev E.O. Method of calculating pneumatic compensators for plunger pumps with submersible drive // Journal of Mining Institute. 2020. Vol. 245. p. 582-590. DOI: 10.31897/PMI.2020.5.10
Electromechanics and mechanical engineering
  • Date submitted
    2020-06-22
  • Date accepted
    2020-07-24
  • Date published
    2020-06-30

Methods for assessing the technical compatibility of heterogeneous elements within a technical system

Article preview

The article provides methods for assessing the compatibility of elements in the design of complex technical systems. The compatibility of the elements is considered as the main indicator that determines the quality of systems including heterogeneous elements. The presented methods make it possible at the design stage to choose a technical solution that is most suitable for the project objectives, taking into account the operating conditions of the system. The methods make it possible to evaluate compatibility by a single and complex indicator. The choice of indicator depends on the purpose of the assessment. An example of methods implementation in the design of systems including an electric drive and pipeline shutoff valves is considered. It has been experimentally proved that in systems with low values ​​of the compatibility level, the actual power characteristics exceed the required values, which leads to additional voltages in the system elements and their breakdowns. The results of the assessment of typical systems allowed to identify the shortcomings of existing structures and propose alternative solutions to problems. The compatibility of elements within the framework of a technical system makes it possible to increase the functional efficiency of systems with minimum weight and size and power characteristics, to optimize the price-quality ratio, and to increase the competitiveness of the final product.

How to cite: Vasin S.A., Vasilev A.S., Plahotnikova E.V. Methods for assessing the technical compatibility of heterogeneous elements within a technical system // Journal of Mining Institute. 2020. Vol. 243. p. 329-336. DOI: 10.31897/PMI.2020.3.329
Mining
  • Date submitted
    2019-05-30
  • Date accepted
    2019-09-04
  • Date published
    2020-02-25

Prospects for industrial methane production in the mine n.a. V.M.Bazhanov using vertical surface wells

Article preview

The estimated methane resources in the coal stratum of Donbass are 798.5 billion m 3 , including 119.5 billion m 3 in the Donetsk-Makeevsky area. Such significant potential implies that methane can be used not only for industrial production and energy purposes but also as a commodity for the chemical industry. However, in practice, commercial production of methane from coal seams, as is done in the fields of the USA, Canada, India, and China, is not carried out, and methane, obtained as a by-product, is utilized for ensuring the safety of the main technological processes for coal mining. The main reasons for this are the difficult mining and geological conditions of bedding, low thickness and permeability, which does not allow to separate methane production into an independent type of activity due to its low profitability, especially with the use of new technologies based on hydraulic fracturing of coal seams. The assessment of the possibility of industrial methane production in the mine n.a. V.M.Bazhanov in the Donetsk-Makeevsky area of Donbass, which reserves equal to 23.7 billion m 3 , showed that a significant part of the methane reserves is concentrated in coal seams and interlayers with a gas content of 18.5-20.7 m 3 /m 3 . Moreover, in the host rocks, methane is practically in a liberated state. This circumstance makes possible the commercial production of methane for its utilization from the unloaded rock mass by wells drilled from the surface, without the use of hydraulic fracturing technology. The paper discusses the technology of methane extraction by a degassing well drilled from the surface into a coal-bearing stratum unloaded from rock pressure in a mining field of the 4th eastern face of the m 3 seam of the mine n.a. V.M.Bazhanov and its subsequent use as the fuel of an electric generator. It is shown that over the entire period of operation of the pilot well, the volume of actually produced methane exceeded the design value by 23 %, and the cost of the gas produced amounted to 1535 rubles per 1000 m 3 , which is more than 3 times lower than the market price for natural gas for consumers in the Russian Federation. This made it possible to make a conclusion about the possibility of industrial extraction of mine methane using vertical surface wells for its subsequent utilization in power plants, which does not imply the usage of hydraulic fracturing technology.

How to cite: Alabev V.R., Ashihmin V.D., Plaksienko O.V., Tishin R.A. Prospects for industrial methane production in the mine n.a. V.M.Bazhanov using vertical surface wells // Journal of Mining Institute. 2020. Vol. 241. p. 3-9. DOI: 10.31897/PMI.2020.1.3
Electromechanics and mechanical engineering
  • Date submitted
    2019-03-13
  • Date accepted
    2019-09-19
  • Date published
    2020-02-25

Specifying the technical state limit value of the pump pulp without disassembling

Article preview

The northern part of the territory of the Republic of Sakha (Yakutia) is rich in vast deposits of diamonds. These deposits are developed by the mining company “Almazy Anabara”, which is engaged in the extraction of diamonds at seasonal processing plants using various technological equipment. One of the key types of equipment is the pulp pump of a foreign company “KETO”. The work of pulp pumps of this company in the enrichment of diamond-containing raw materials is accompanied by intensive hydroabrasive wear of their impellers, the service life of which usually does not exceed three months. In practice, untimely replacement of a worn impeller can lead to emergency breakdowns of sealing elements and bearings, which is explained by super-permissible deflections of the shaft of pumping equipment arising from a significant unbalance of the rotor. The main cause of breakdown of slurry pumps at “Almazy Anabara” seasonal processing plants is the inability to quickly identify their ultimate technical condition, the key sign of which is the maximum wear of the impeller. The seasonal beneficiation plants of “Almazy Anabara” currently need a simple and at the same time reliable diagnostic sign of pulp pumps reaching their ultimate technical state, the identification of which can be quickly performed without disassembling and using complex equipment, which is very important when operating pumping equipment in short wash season on the Far North.

How to cite: Ovchinnikov N.P., Portnyagina V.V., Dambuev B.I. Specifying the technical state limit value of the pump pulp without disassembling // Journal of Mining Institute. 2020. Vol. 241. p. 53-57. DOI: 10.31897/PMI.2020.1.53
Electromechanics and mechanical engineering
  • Date submitted
    2019-05-05
  • Date accepted
    2019-07-03
  • Date published
    2019-10-23

Scraper Face Conveyors Dynamic Load Control

Article preview

The task of controlling the dynamic loading of scraper face conveyors (SC) is considered and the unsatisfactory state of loading of mechanical and electrical components of the SC is recorded. The possibility of the appearance of a self-oscillatory nature of the entire system load due to the peculiarities of the movement of the traction chain along the lattice frame of the SC is indicated. The property of the system is noted – the cyclic nature of the loading of the circuit during movement, which causes energy exchange processes between the mechanical and electromotive components of the conveyor (when using the head and tail electric drives) through the common cable network of the power supply system of the SC. A high level of dynamic loading of the electromechanical system causes the problem of eliminating the self-oscillating operating mode of the SC that generates it which is proposed to be solved by changing the angular rotation speeds of the SC drive sprockets. Angular speeds can be changed by applying frequency control of asynchronous electric motors. The efficiency of setting the frequency of electric motor stator currents of the head and tail drives of the conveyor is established in proportion to the frequency of rotors rotation to eliminate self- oscillating modes of operation in the main operating mode. The possibility of reducing the starting shock values of the electromagnetic moments of electric motors is considered. The results of the calculation of the start-up and liquidation of the self-oscillating operating mode are presented on the example of the scraper face conveyor Anzhera-34. The results of calculations of the start-up modes and the main operational transportation of coal in an uncontrolled mode of operation and after the introduction of control are compared, based on which it is concluded that it is advisable to use active control of the dynamic loading ofSC.

How to cite: Eshchin E.K. Scraper Face Conveyors Dynamic Load Control // Journal of Mining Institute. 2019. Vol. 239. p. 570-575. DOI: 10.31897/PMI.2019.5.570
Electromechanics and mechanical engineering
  • Date submitted
    2018-12-25
  • Date accepted
    2019-03-02
  • Date published
    2019-06-25

Non-linear electrical load location identification

Article preview

The article discusses the issues of identifying the location of non-linear loads in electrical networks which makes the main contribution to the distortion of the non-sinusoidal voltage and current in the distribution network of an industrial enterprise, including mining enterprises. The existing methods for determining the location of the source of higher harmonic components in voltage and current are considered, their advantages and disadvantages are revealed. The main disadvantages of the methods used include the low accuracy and incorrectness of their use in existing enterprises. When developing a new method, the authors were faced with the task of simplicity of its use in the conditions of industrial operation of electrical equipment and the absolute correctness of the results obtained. The proposed method of identifying the source of higher harmonics is based on the variation of the parameters of the power system, in particular, the change in resistance of power transformers taking into account their transformation ratio. It is shown that by varying the transformation ratio during regulation under load, the total coefficient of the harmonic components of the voltage changes. Based on the constructed dependencies, the variation of the derivative of this function with different variations of the parameters of sources of higher harmonics is analyzed and a method is developed that allows determining the share contribution of consumers to the total harmonic component of the voltage.

How to cite: Pirog S., Shklyarskiy Y.E., Skamyin A.N. Non-linear electrical load location identification // Journal of Mining Institute. 2019. Vol. 237. p. 317-321. DOI: 10.31897/PMI.2019.3.317