Submit an Article
Become a reviewer

Search articles for by keywords:
декарбонизация угольных шахт

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-11
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Assessment of the efficiency of acid mine drainage purification (using the example of copper-pyrite mines in the Middle Urals)

Article preview

According to the results of the anti-rating of regions with extreme pollution of watercourses in the Sverdlovsk region, the largest number of polluted rivers has been recorded in recent years – more than a quarter of all high and extremely high pollution. One of the sources of pollution of natural water bodies in the Middle Urals are closed and flooded copper-pyrite mines, where acidic mine drainage continue to form and unload to the surface. Several of them have organized collection and a two-stage acidic drainage purification system, including neutralization with lime milk and settling in a clarifier pond. Despite the identical schemes, different indicators of pollutants are recorded during discharge into water bodies. The aim of the work is to evaluate the effectiveness of the applied acid mine drainage purification system and identify the parameters affecting the quality of treated mine water. Laboratory studies were performed using methods of flame emission spectrometry, flame atomic absorption, atomic absorption spectrometry, mass spectrometry with ionization in inductively coupled plasma, potentiometric, etc. It has been established that the existing mine drainage purification system at the Degtyarskii mine makes it possible to significantly reduce the concentrations of most toxic components of mine waters to almost standard values. At the Levikhinskii mine, the multiplicity of exceeding the maximum permissible concentrations reaches hundreds and thousands of times. To achieve a higher degree of purification, it is necessary that the duration of passive purification is sufficient for the reactant to interact with acidic waters. However, to ensure this possibility, it will require the creation of a cascade of ponds with an area of several thousand hectares. If the current two-stage system is quite effective for the Degtyarskii mine, then for Levikhinskii it is necessary to switch to the use of more modern systems, including three stages of purification.

How to cite: Rybnikova L.S., Rybnikov P.A., Navolokina V.Y. Assessment of the efficiency of acid mine drainage purification (using the example of copper-pyrite mines in the Middle Urals) // Journal of Mining Institute. 2024. Vol. 267 . p. 388-401. EDN SBKRCK
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-03-16
  • Date accepted
    2023-12-27
  • Date published
    2024-04-25

Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks

Article preview

Operation of vertical mine shafts in complex mining and geological conditions is associated with a number of features. One of them is a radial displacement of the concrete shaft lining, caused by the influence of mining pressure on the stress-strain state of the mine workings. A rigid reinforcing system with shaft buntons fixed in the concrete lining thus experiences elastoplastic deformations, their value increases with time. It results in deviation of conductors from design parameters, weakening of bolt connections, worsening of dynamic properties of geotechnical system “vehicle – reinforcing”, increase of wear rate of reinforcing system elements, increase of risks for creating an emergency situation. The article offers a comprehensive assessment of displacements of characteristic points of the bunton system based on approximate engineering relations, numerical modeling of the deformation process of the bunton system and laser measurements of the convergence of the inner surface of the concrete shaft lining. The method was tested on the example of the reinforcing system of the skip-cage shaft of the potash mine. Displacement of the characteristic points of the reinforcing system is determined by the value of radial displacements of the surface of the concrete shaft lining. Evaluation of the radial displacements was made using monitoring measurements and profiling data. The results obtained make it possible to justify the need and timing of repair works. It is shown that the deterioration of the reinforcing system at different levels occurs at different rates, defined, among other things, by mechanical properties of the rock mass layers located at a given depth.

How to cite: Tarasov V.V., Aptukov V.N., Ivanov O.V. Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks // Journal of Mining Institute. 2024. Vol. 266 . p. 305-315. EDN TNNIZP
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-11
  • Date accepted
    2023-10-25
  • Date published
    2024-07-04

Acid mine water treatment using neutralizer with adsorbent material

Article preview

One of the biggest issues in the mining sector is due to acid mine drainage, especially in those abandoned mining operations and active ones that fail to adequately control the quality of their water discharge. The removal degree of copper, iron, lead, and zinc dissolved metals in acid mine drainage was investigated by applying different proportions of mixtures based on neutralizing reagent hydrated lime at 67 % calcium oxide (CaO), with adsorbent material – natural sodium bentonite, compared to the application of neutralizing reagent without mixing, commonly used in the neutralization of acid mining drainage. The obtained results show that the removal degree of dissolved metals in acid mine drainage when treated with a mixture of neutralizing reagent and adsorbent material in a certain proportion, reaches discharge quality, complying with the environmental standard (Maximum Permissible Limit), at a lower pH than when neutralizing material is applied without mixing, registering a net decrease in the consumption unit of neutralizing agent express on 1 kg/m3 of acid mine drainage. Furthermore, the sludge produced in the treatment with a mixture of the neutralizing reagent with adsorbent material has better characteristics than common sludge without bentonite, since it is more suitable for use as cover material, reducing the surface infiltration degree of water into the applied deposit.

How to cite: Tumialán P.E., Martinez N.T., Hinostroza C.B., Arana Ruedas D.P.R. Acid mine water treatment using neutralizer with adsorbent material // Journal of Mining Institute. 2024. Vol. 267 . p. 381-387. EDN HWRBRB
Energy industry
  • Date submitted
    2023-04-02
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Integration of renewable energy at coal mining enterprises: problems and prospects

Article preview

This article addresses the issue of developing renewable energy in coal mining enterprises in the Russian Federation. The study presents a methodology for assessing the technical and economic efficiency of introducing renewable energy sources based on simulation modeling. An analysis of the potential of solar and wind energy for coal mining regions in Russia is conducted. The authors use a custom software developed by them to simulate the power supply system for various scenarios of renewable energy integration, including solar generation, wind generation, solar generation with energy storage, wind generation together with solar generation. Based on the example of the Rostov region, a feasibility study of the considered options is presented. Additionally, the research includes a sensitivity analysis of the investment project in the conditions of uncertainty in the development of Russian renewable energy. The research findings indicate that even in market conditions with CO2 emission quotas and prices at the level of the Sakhalin experiment, renewable energy in coal mining enterprises in Russia remains unattractive and requires additional support.

How to cite: Nepsha F.S., Varnavskiy K.A., Voronin V.A., Zaslavskiy I.S., Liven A.S. Integration of renewable energy at coal mining enterprises: problems and prospects // Journal of Mining Institute. 2023. Vol. 261 . p. 455-469. EDN LNSCEY
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-11-04
  • Date accepted
    2023-03-03
  • Date published
    2023-04-25

Efficiency of acid sulphate soils reclamation in coal mining areas

Article preview

During the development of coal deposits, acid mine waters flowing to the surface cause the formation of acid sulphate soils. We study the effectiveness of soil reclamation by agrochemical and geochemical methods at the site of acid mine water discharge in the Kizel Coal Basin, carried out in 2005 using alkaline waste from soda production and activated sludge. A technosol with a stable phytocenosis was detected on the reclaimed site, and soddy-podzolic soil buried under the technogenic soil layer with no vegetation on the non-reclaimed site. The buried soddy-podzolic soil retains a strong acid рН concentration Н 2 О = 3. A high content of organic matter (8-1.5 %) is caused by carbonaceous particles; the presence of sulphide minerals reaches a depth of 40 cm. Technosol has a slightly acid pH reaction H 2 O = 5.5, the content of organic matter due to the use of activated sludge is 19-65 %, the presence of sulphide minerals reaches a depth of 20-40 cm. The total iron content in the upper layers of the technosol did not change (190-200 g/kg), the excess over the background reaches 15 times. There is no contamination with heavy metals and trace elements, single elevated concentrations of Li, Se, B and V are found.

How to cite: Mitrakova N.V., Khayrulina E.A., Blinov S.M., Perevoshchikova A.A. Efficiency of acid sulphate soils reclamation in coal mining areas // Journal of Mining Institute. 2023. Vol. 260 . p. 266-278. DOI: 10.31897/PMI.2023.31
Energy industry
  • Date submitted
    2022-08-05
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Feasibility study of using cogeneration plants at Kuzbass coal mines

Article preview

The paper considers the problem of reducing greenhouse gas emissions in the process of coal mining during the coal mine methane utilization in power supply systems. An algorithm to form recommendations for the implementation of CMM generation is presented. A simulation model for one of the Kuzbass coal mines was developed in the PowerFactory software application. The simulation model considers the uneven nature of the power consumption of mining equipment. As a result of modeling, daily power consumption profiles and voltage levels in the coal mine power supply system were determined before and after the implementation of the proposed measures. Based on the results, the technical and economic effects was estimated, which consisted in reducing the direct and indirect carbon footprint, electricity and capacity fees. It has been established that the cost of carbon dioxide emission quotas significantly affects the investment attractiveness of cogeneration projects. Based on the results, recommendations are given to stimulate the development of small generation in coal mines.

How to cite: Nepsha F.S., Voronin V.A., Liven A.S., Korneev A.S. Feasibility study of using cogeneration plants at Kuzbass coal mines // Journal of Mining Institute. 2023. Vol. 259 . p. 141-150. DOI: 10.31897/PMI.2023.2
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-07-05
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation

Article preview

A large amount of gas is emitted during underground mining processes, so mining productivity decreases and safety risks increase. Efficient methane drainage from the coal seam and surrounding rocks in underground mines not only improves safety but also leads to higher productivity. Methane drainage must be performed when the ventilation air cannot dilute the methane emissions in the mine to a level below the allowed limits. The cross-measure borehole method is one of the methane drainage methods that involves drilling boreholes from the tailgate roadway to an un-stressed zone in the roof or floor stratum of a mined seam. This is the main method used in Tabas coal mine N 1. One of the effective parameters in this method is the distance between methane drainage stations, which has a direct effect on the length of boreholes required for drainage. This study was based on the measurement of ventilation air methane by methane sensors and anemometers placed at the longwall panel as well as measuring the amount of methane drainage. Moreover, in this study, the obtained and analyzed data were used to determine the suitable distance between methane drainage stations based on the cross-measure borehole method. In a field test, three borehole arrangements with different station distances in Panel E4 of Tabas coal mine N 1 were investigated. Then, the amounts of gas drained from these arrangements were compared with each other. The highest methane drainage efficiency was achieved for distances in the range of 9-12 m between methane drainage stations.

How to cite: Hosseini A., Najafi M., Morshedy A.H. Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation // Journal of Mining Institute. 2022. Vol. 258 . p. 1050-1060. DOI: 10.31897/PMI.2022.106
Mining
  • Date submitted
    2021-06-01
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Indicator assessment of the reliability of mine ventilation and degassing systems functioning

Article preview

The gas emission control in the mines is operated by ventilation and degassing systems that ensure the aerological safety of the mines or minimize the aerological risks. The ventilation system of the mine and its individual sites includes a significant number of technical devices and equipment, and the air tubes are mainly mining workings, the condition of which determines the quality of the ventilation network (its capacity) and depends on a number of mining factors. Similarly, one of the most important elements of the degassing system, which includes its own chain of technological equipment, are wells, and in some cases, mining workings. Thus, mine ventilation and degassing systems cannot be attributed to purely technical systems, since they include mining elements characterized by high variability of the determining parameters. To assess their reliability, it is necessary to use various combined methods that include additional characteristics in relation to the mining component. At the same time, the reliability of technical devices that ensure the functioning of mine ventilation and degassing systems largely determines the efficiency (stability and reliability) of these systems and, consequently, affects the level of aerological risks. The described approach to assessing the reliability of ventilation and degassing systems of coal mines when analyzing aerological risks is based on the developed system of risk indicators for the methane factor and will allow determining the risk dynamics in automatic mode based on monitoring the parameters of the ventilation and degassing system state.

How to cite: Kaledina N.O., Malashkina V.A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning // Journal of Mining Institute. 2021. Vol. 250 . p. 553-561. DOI: 10.31897/PMI.2021.4.8
Geology
  • Date submitted
    2021-03-16
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Allocation of a deep-lying brine aquifer in the rocks of a chemogenic section based on the data of geophysical well logging and 2D seismic exploration

Article preview

Advancement in the production of potassium fertilizers is an important strategic task of Russian agricultural industry. Given annually growing production rates, the reserves of discovered potassium-magnesium salt deposits are noticeably decreasing, which creates the need to ensure stable replenishment of the resource base through both the discovery of new deposits and the exploitation of deep-lying production horizons of the deposits that are already under development. In most cases, deposits of potassium-magnesium salts are developed by underground mining. The main problem for any salt deposit is water. Dry salt workings do not require any additional reinforcement and can easily withstand rock pressure, but with an inflow of water they begin to collapse intensively – hence, special attention is paid to mine waterproofing. Determination of spatial location, physical and mechanical properties of the aquifer and water-blocking stratum in the geological section represent an important stage in the exploration of a salt deposit. The results of these studies allow to validate an optimal system of deposit development that will minimize environmental and economic risks. On the territory of Russia, there is a deposit of potassium-magnesium salts with a unique geological structure – its production horizon lies at a considerable depth and is capped by a regional aquifer, which imposes significant limitations on the development process. To estimate parameters of the studied object, we analyzed the data from CDP seismic reflection survey and a suite of methods of radioactive and acoustic well logging, supplemented with high-frequency induction logging isoparametric sounding (VIKIZ) data. As a result of performed analysis, we identified location of the water-bearing stratum, estimated average thickness of the aquifers and possible water-blocking strata. Based on research results, we proposed methods for increasing operational reliability of the main shaft in the designed mine that will minimize the risks of water breakthrough into the mine shaft.

How to cite: Danileva N.A., Danilev S.M., Bolshakova N.V. Allocation of a deep-lying brine aquifer in the rocks of a chemogenic section based on the data of geophysical well logging and 2D seismic exploration // Journal of Mining Institute. 2021. Vol. 250 . p. 501-511. DOI: 10.31897/PMI.2021.4.3
Mining
  • Date submitted
    2021-01-18
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Kuzbass mines

Article preview

The reasons for the lag of the indicators of the leading Russian coal mines engaged in the longwall mining of the flat-lying coal seams from similar foreign mines are considered. The analysis of the efficiency of the longwall face move operations at the JSC SUEK-Kuzbass mines was carried out. A significant excess of the planned deadlines for the longwall face move during the thick flat-lying seams mining, the reasons for the low efficiency of disassembling operations and the main directions for improving the technology of disassembling operations are revealed. The directions of ensuring the operational condition of the recovery room formed by the longwall face are considered. The recommended scheme of converged coal seams mining and a three-dimensional model of a rock mass to justify its parameters are presented. Numerical studies using the finite element method are performed. The results of modeling the stress-strain state of a rock mass in the vicinity of a recovery room formed under conditions of increased stresses from the boundary part of a previously mined overlying seam are shown. The main factors determining the possibility of ensuring the operational condition of the recovery rooms are established. It is shown that it is necessary to take into account the influence of the increased stresses zone when choosing timbering standards and organizing disassembling operations at a interbed thickness of 60 m or less. A sufficient distance from the gob of above- or undermined seams was determined to ensure the operational condition of the recovery room of 50 m, for the set-up room – 30 m. Recommendations are given for improving technology and organization of the longwall face move operations at the mines applied longwall mining of flat-lying coal seams with the formation of a recovery room by the longwall face.

How to cite: Meshkov А.A., Kazanin O.I., Sidorenko A.A. Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Kuzbass mines // Journal of Mining Institute. 2021. Vol. 249 . p. 342-350. DOI: 10.31897/PMI.2021.3.3
Mining
  • Date submitted
    2021-01-21
  • Date accepted
    2021-04-19
  • Date published
    2021-04-26

Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives

Article preview

Equipment with diesel engines is used in all mining enterprises. Monorail diesel transport is of great importance in coal mines, as it facilitates the heavy labor of workers when transporting materials and people, fixing mining workings, refueling and repairing equipment, which leads to an increase in the speed of tunneling operations. Reducing the concentration of harmful gases from diesel-hydraulic locomotives at the workplaces of coal mine locomotive drivers can be ensured by the use of additives to diesel fuel that reduce the volume of harmful gas emissions during the operation of diesel-hydraulic locomotives. Additive ester-based on vegetal oil in the amount of 5 mass % in a mixture with hydrotreated diesel fuel reduces the concentration of carbon monoxide by 19-60 %, nitrogen oxides by 17-98 %, depending on the operating mode of the engine, the smoke content of the exhaust gases is reduced to 71 %. There is an improvement in working conditions at the workplace of the driver of a diesel-hydraulic locomotive by the chemical factor due to the reduction of the class of working conditions from 3.1. to 2.

How to cite: Korshunov G.I., Eremeeva A.M., Drebenstedt C. Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives // Journal of Mining Institute. 2021. Vol. 247 . p. 39-47. DOI: 10.31897/PMI.2021.1.5
Electromechanics and mechanical engineering
  • Date submitted
    2020-05-18
  • Date accepted
    2020-06-16
  • Date published
    2021-04-26

Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement

Article preview

The article discusses the solution to the problem of underground railway transport slipping in dynamic modes, which occurs when there is a significant difference in the speeds of the driving and driven pairs of wheels. The state of the rail surfaces largely determines the coefficient of adhesion, therefore, using a mathematical model, the condition for the dependence of the magnitude of slipping and tractive effort is selected. For effective acceleration and deceleration of an electric locomotive, it is necessary to control the coefficient of adhesion at a certain level. A simulation model of rolling stock has been created, which for the first time takes into account a mechanical system with distributed parameters. In the structural diagram of the automatic control system of traction electric drives with frequency regulation, such factors as the volume of goods being moved, rolling friction, slope (rise) levels and the state of the rail track are taken into account. The simulation results show the features of the movement and stops of the freight train not only by the diagrams of speed and forces in the modes of acceleration-deceleration and uniform movement, but also the positions of the plungers and tractive forces on the couplings of the electric locomotive and all trolleys involved in the movement of goods. The practical application of the proposed method lies in the possibility of starting a heavily laden train from its place on the ascent section in conditions of insufficient adhesion coefficient with contaminated roads.

How to cite: Borisov S.V., Koltunova E.A., Kladiev S.N. Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement // Journal of Mining Institute. 2021. Vol. 247 . p. 114-121. DOI: 10.31897/PMI.2021.1.12
Mining
  • Date submitted
    2020-05-12
  • Date accepted
    2020-09-22
  • Date published
    2020-11-24

Design features of coal mines ventilation using a room-and-pillar development system

Article preview

The safety of mining operations in coal mines for aerological factors depends on the quality of accepted and implemented ventilation design solutions. The current “Design Manual of coal mine ventilation” do not take into account the features of room-and-pillar development systems used in Russia. This increases the risk of explosions, fires, and gassing. The detailed study of foreign experience in designing ventilation for the considered development systems e of coal deposits allowed to formulate recommendations on the ventilation scheme organization for coal mines using a room-and-pillar development system and the procedure for ventilation during multi-entry gateroad development. Observations have shown that the use of the existing Russian procedure for airing mining sites with a room-and-pillar development system complicates the emergency rescue operations conduct. Low speeds and multidirectional air movement, difficult heat outflow, and the abandonment of coal pillars increase the risk of occurrence and late detection of endogenous fire. The results of numerical modeling have shown that the installation (parallel to the drifts) of ventilation structures in inter-chamber pillars will increase the reliability of ventilation by transferring the ventilation scheme from a complex diagonal to a complex parallel. It will also reduce the amount of air required for the mine site and the total aerodynamic drag. The research made it possible to formulate requirements for the design procedure for coal mines ventilation using a room-and-pillar development system, which consist in the order of working out blocks in the panel, and also the additional use of ventilation structures (light brattice clothes or blowing line brattice).

How to cite: Kobylkin S.S., Kharisov A.R. Design features of coal mines ventilation using a room-and-pillar development system // Journal of Mining Institute. 2020. Vol. 245 . p. 531-538. DOI: 10.31897/PMI.2020.5.4
Mining
  • Date submitted
    2020-06-12
  • Date accepted
    2020-10-28
  • Date published
    2020-11-24

Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining

Article preview

The paper is devoted to the problem of increasing energy efficiency of coalmine methane utilization to provide sustainable development of geotechnologies in the context of transition to a clean resource-saving energy production. Its relevance results from the fact that the anthropogenic effect of coalmine methane emissions on the global climate change processes is 21 times higher than the impact of carbon dioxide. Suites of gassy coal seams and surrounding rocks should be classified as technogenic coal-gas deposits, while gas extracted from them should be treated as an alternative energy source. Existing practices and methods of controlling coalmine methane need to be improved, as the current “mine – longwall” concept does not fully take into account spatial and temporal specifics of production face advancement. Therefore, related issues are relevant for many areas of expertise, and especially so for green coal mining. The goal of this paper is to identify patterns that describe non-linear nature of methane release dynamics in the underground boreholes to provide sustainable development of geotechnologies due to quality improvement of the withdrawn methane-air mixture. For the first time in spatial-temporal studies (in the plane of CH 4 - S ) of methane concentration dynamics, according to the designed approach, the parameter of distance from the longwall ( L ) is introduced, which allows to create function space for the analyzed process (CH 4 of S-L ). Results of coalmine measurements are interpreted using the method of local polynomial regression (LOESS). The study is based on using non-linear variations of methane concentration in the underground boreholes and specific features of their implementation to perform vacuum pumping in the most productive areas of the undermined rock mass in order to maintain safe aerogas conditions of the extraction block during intensive mining of deep-lying gassy seams. Identification of patterns in the influence of situational geomechanical conditions of coal mining on the initiation of metastable gas-coal solution transformation and genesis of wave processes in the coal-rock mass allows to improve reliability of predicting methane release dynamics, as well as workflow manageability of mining operations. Presented results demonstrate that development of high-methane Donbass seams is associated with insufficient reliability of gas drainage system operation at distances over 40 m behind the longwall face. Obtained results confirm a working hypothesis about the presence of spatial migration of methane concentration waves in the underground gas drainage boreholes. It is necessary to continue research in the area of estimating deviation angles of “advance fracturing” zone boundaries from the face line direction. Practical significance of research results lies in the possibility to use them in the development of scientific foundation for 3D gas drainage of a man-made coal-methane reservoir, taking into account spatial and temporal advancement of the production face.

How to cite: Dzhioeva A.K., Brigida V.S. Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining // Journal of Mining Institute. 2020. Vol. 245 . p. 522-530. DOI: 10.31897/PMI.2020.5.3
Geoecology and occupational health and safety
  • Date submitted
    2020-05-07
  • Date accepted
    2020-05-24
  • Date published
    2020-06-30

Study of the technogenesis of the Degtyarsky mine by audio-magnetotelluric express sounding

Article preview

The audio-magnetotelluric express sounding was performed at four sections crossing the mine field of the currently not functioning Degtyarsky mine. Field measurements were carried out by a universal broadband receiver “OMAR-2m” with active electromagnetic field sensors developed at the Institute of Geophysics UB RAS. Based on the obtained data, deep sections of the electrophysical parameters of the medium – apparent resistivity and effective longitudinal conductivity – are drawn. The nature of the geoelectric structure of the section allows mapping of the major lithochemical contamination plume and identifying the tectonic disturbance zones that drain aggressive mine waters. The mine waters of the Degtyarsky mine are a source of dangerous technogenic pollution. Despite the neutralization of surface runoff, underground routes of acidic water migration occur along tectonic cracks, primarily in the zone of the regional Serovsko-Mauksky fault. Tectonic zones in the mine area contain contaminated fissure-vein water, which is transited at a depth of 70 to over 200 m. Discharging ascending springs of such waters can be located at a great distance from controlled hydrological objects and pollute sources of drinking and household water supply. Urban development in the western and eastern parts of Degtyarsk does not fall within the distribution zone of polluted water. The southern part of the city is located beyond the watershed of the mine water flow area, but a danger of local contamination by tectonic disturbance zones remains possible. The worst environmental situation is observed in the northern outskirts of Degtyarsk, which falls into the area of heavy pollution of underground and surface waters. Besides, acidic fumes from the flooded Kolchedanny quarry can affect the health of city residents when emitted to the atmosphere.

How to cite: Davydov V.A. Study of the technogenesis of the Degtyarsky mine by audio-magnetotelluric express sounding // Journal of Mining Institute. 2020. Vol. 243 . p. 379-387. DOI: 10.31897/PMI.2020.3.378
Mining
  • Date submitted
    2020-05-05
  • Date accepted
    2020-05-24
  • Date published
    2020-06-30

Justification of stripping and development of a modular mine site for a combined coal mining method in Kuzbass on the example Baikaimskaya mine site

Article preview

The article considers one actual method for development coal deposits in the Kuzbass by open-underground mining. The scientific and practical advantages of the proposed method due to the use of common infrastructure of coal mine and a modular mine site (subsequently transformed into a mining and technological structure operating according to the mine – longwall scheme) are presented. Currently, a development strategy for Kuzbass until 2035 has been developed. As part of the strategy, a draft program for subsoil use is being formed in the coal industry department. The program should take into account all the positive and negative aspects associated with coal mining in cities and municipal areas and also their prospects. In the Kuznetsk coal basin, 42 mines and 52 opencast mines are mining, of which 12 enterprises use partially unified infrastructure. According to the results of open-underground mining work conducted by the laboratory of the Institute of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences (Institute of Coal SB RAS), the list of sites includes favorable mining and geological conditions with incidence angles of up to 18 degrees. As open-pit coal production increases, many sites encounter such a parameter as maximum allowable (boundary) strip ratio. At the stage of preparing the feasibility study for the development of a coal deposit, this coefficient is calculated first of all, since duration of enterprise’s work and its economic component depend on it. In order to increase parameters, it is necessary to carry out transition from open works to underground. As a result, coal mine will not work at a loss, providing production with an economically disadvantageous strip ratio.

How to cite: Shishkov R.I., Fedorin V.A. Justification of stripping and development of a modular mine site for a combined coal mining method in Kuzbass on the example Baikaimskaya mine site // Journal of Mining Institute. 2020. Vol. 243 . p. 293-298. DOI: 10.31897/PMI.2020.3.293
Metallurgy and concentration
  • Date submitted
    2019-06-02
  • Date accepted
    2019-09-02
  • Date published
    2020-04-24

Sorption of nickel (II) and manganese (II) ions from aqueous solutions

Article preview

Mine water from non-ferrous metal deposits is often contaminated with nickel and manganese ions. The entry of these ions, especially nickel, into surface waters and underground aquifers is undesirable since it has a negative effect on living organisms and worsens the condition of drinking water sources. One of the promising methods for selectively extracting nickel ions and obtaining an eluate suitable for further use is sorption by weakly acid cation exchangers with chelate groups of iminodiacetic acid. As part of the study, sorption isotherms of nickel and manganese ions by Lewatit MonoPlus TP 207 cation exchanger in mono- and bicomponent systems were obtained. In monocomponent systems, the maximum static exchange capacity (SEC) of the cation exchanger for nickel ions is 952 mmol/dm 3 , and in bicomponent systems – 741 mmol/dm 3 ; for manganese ions– 71 mmol/dm 3 and 49 mmol/dm 3 , respectively. It is obvious that the studied cation exchanger has a greater capacity for nickel ions than for manganese ions. The influence of a temperature increase from 300 to 330 K on the sorption of nickel and manganese ions was established: in monocomponent systems, the maximum degree of extraction of the former increases from 65 to 77 % (SEC from 337 to 399 mmol/dm 3 ), and the latter from 21 to 35 % (SEC – from 140 to 229 mmol/dm 3 ); in bicomponent systems, the extraction of nickel ions increases from 59 to 78 % (SEC – from 307 to 429 mmol/dm 3 ), and manganese ions decreases from 20 to 17 % (SEC – from 164 to 131 mmol/dm 3 ). The predominant increase in the indicators is due to the filling of the sorption centers of the ion-exchange resins, which are energetically unfavorable for the exchange of counterions at a lower temperature. The influence of the pH of the solution on sorption was determined: the intensification of the process for nickel ions is observed in the pH range of 8.0-8.5 in a monocomponent solution and 8.0-9.0 in a bicomponent solution, for manganese ions in the range of 8.0-9.5 in both cases. The increase in the degree of extraction of ions and the exchange capacity of the ion exchanger with increasing pH is associated with the appearance of singly charged hydroxocations, dissociation of the functional groups of the sorbent and, to some extent, with the subsequent formation of insoluble forms of nickel and manganese. However, with increasing pH, a decrease in the selectivity of nickel extraction is observed: the ion separation coefficient decreases from 14.0 to 6.0 in the pH range of 6.0-11.0.

How to cite: Kurdiumov V.R., Timofeev K.L., Maltsev G.I., Lebed A.B. Sorption of nickel (II) and manganese (II) ions from aqueous solutions // Journal of Mining Institute. 2020. Vol. 242 . p. 209-217. DOI: 10.31897/PMI.2020.2.209
Electromechanics and mechanical engineering
  • Date submitted
    2018-12-25
  • Date accepted
    2019-03-08
  • Date published
    2019-06-25

Determination of the operating time and residual life of self-propelled mine cars of potassium mines on the basis of integrated monitoring data

Article preview

Statistical data on the reliability of self-propelled mine cars (SPMC), operating in the potassium mines of the Verkhnekamskoye potassium and magnesium salts deposit are analyzed. Identified the main nodes that limit the resource SPMC. It has been proven that the most common failures of self-propelled cars are the failure of wheel hubs, bevel gears and traveling electric motors. The analysis of the system of maintenance and repair of mine self-propelled cars. It is indicated that the planning and preventive system of SPMC repairs is characterized by low efficiency and high material costs: car maintenance is often carried out upon the occurrence of a failure, which leads to prolonged downtime not only of a specific haul truck, but of the entire mining complex. A method for assessing the technical condition of the electromechanical part of a mine self-propelled car by the nature of power consumption is proposed. This method allows you to control the loading of the drives of the mine self-propelled car, as well as to assess the technical condition of the drives of the delivery machines in real time. Upon expiration of the standard service life of a mine propelled car specified in the operational documentation, its further operation is prohibited and the car is subject to industrial safety expertise. As part of the examination, it is necessary to determine the operating time and calculate the service life of a mine self-propelled car outside the regulatory period. A method has been developed for determining the residual service life of mine car on the basis of instrumentation control data in the conditions of potash mines.

How to cite: Shishlyannikov D.I., Romanov V.A., Zvonarev I.E. Determination of the operating time and residual life of self-propelled mine cars of potassium mines on the basis of integrated monitoring data // Journal of Mining Institute. 2019. Vol. 237 . p. 336-343. DOI: 10.31897/PMI.2019.3.336
Mining
  • Date submitted
    2019-01-03
  • Date accepted
    2019-03-23
  • Date published
    2019-06-25

Normalization of thermal mode of extended blind workings operating at high temperatures based on mobile mine air conditioners

Article preview

Thermal working conditions in the deep mines of Donbass are the main deterrent to the development of coal mining in the region. Mining is carried out at the lower technical boundaries at a depth of almost 1,400 m with a temperature of rocks of 47.5-50.0 °C. The air temperature in the working faces significantly exceeds the permissible safety standards. The most severe climatic conditions are formed in the faces of blind development workings, where the air temperature is 38-42 °С. It is due to the adopted coal seam mining systems, the large remoteness of the working faces from the main air supply openings, the difficulty in providing blind workings with a calculated amount of air due to the lack of local ventilation fans of the required range. To ensure thermodynamic safety mine n.a. A.F.Zasyadko we accepted the development of a draft of a central cooling system with ground-based absorption refrigerating machines with a total capacity of 9 MW with the implementation of the three types of generation principle (generation of refrigeration, electrical and thermal energy). However, the long terms of design and construction and installation work necessitated the use of mobile air conditioners in blind development faces. The use of such air conditioners does not require significant capital expenditures, and the terms of their commissioning do not exceed several weeks. The use of a mobile air conditioner of the KPSh type with a cooling capacity of 130 kW made it possible to completely normalize the thermal working conditions at the bottom of the blind workings 2200 m long, carried out at a depth of 1220-1377 m at a temperature of host rocks 43.4-47.5 °С. It became possible due to the closest placement of the air conditioner to the face in combination with the use of a high-pressure local ventilation fan and ducts, which ensured the air flow produced by the calculated amount of air. The use of the air conditioner did not allow to fully normalize the thermal conditions along the entire length of the blind face but reduced the urgency of the problem of normalizing the thermal regime and ensured the commissioning of the clearing face.

How to cite: Alabyev V.R., Novikov V.V., Pashinyan L.A., Bazhina T.P. Normalization of thermal mode of extended blind workings operating at high temperatures based on mobile mine air conditioners // Journal of Mining Institute. 2019. Vol. 237 . p. 251-258. DOI: 10.31897/PMI.2019.3.251
Mining
  • Date submitted
    2019-01-11
  • Date accepted
    2019-03-17
  • Date published
    2019-06-25

Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells

Article preview

Development of mineral deposits under complex geological and hydrogeological conditions is often associated with the need to utilize specific approaches to mine shaft construction. The most reliable and universally applicable method of shaft sinking is artificial rock freezing – creation of a frozen wall around the designed mine shaft. Protected by this artificial construction, further mining operations take place. Notably, mining operations are permitted only after a closed-loop frozen section of specified thickness is formed. Beside that, on-line monitoring over the state of frozen rock mass must be organized. The practice of mine construction under complex hydrogeological conditions by means of artificial freezing demonstrates that modern technologies of point-by-point and distributed temperature measurements in test wells do not detect actual frozen wall parameters. Neither do current theoretical models and calculation methods of rock mass thermal behavior under artificial freezing provide an adequate forecast of frozen wall characteristics, if the input data has poor accuracy. The study proposes a monitoring system, which combines test measurements and theoretical calculations of frozen wall parameters. This approach allows to compare experimentally obtained and theoretically calculated rock mass temperatures in test wells and to assess the difference. Basing on this temperature difference, parameters of the mathematical model get adjusted by stating an inverse Stefan problem, its regularization and subsequent numerical solution.

How to cite: Levin L.Y., Semin M.A., Parshakov O.S. Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells // Journal of Mining Institute. 2019. Vol. 237 . p. 268-274. DOI: 10.31897/PMI.2019.3.274
Geoecology and occupational health and safety
  • Date submitted
    2018-07-15
  • Date accepted
    2018-09-07
  • Date published
    2018-12-21

Justification of rational methods for provision of air to faces of operating coal mines of Vietnam during deepening of mines

Article preview

Based on the analysis of the mining and geological conditions for developing coal deposits in Vietnam, the existing mining safety regulations, the application of methods for calculating the air supply of working and development faces using the methane factor and modern methods of mathematical modeling of the ventilation of mines threr was developed the procedure for analyzing the efficiency of air distribution management considering the proposed indicator - energy efficiency coefficient for ventilation systems, determined by the efficiency of air use and energy consumption. Relations have been obtained that determine the relationship between the aerodynamic resistance of negative regulators, the number of simultaneously developed working and development faces, the performance of main ventilation fans and the consumed electric power.

How to cite: Gendler S.G., Nguen T.K. Justification of rational methods for provision of air to faces of operating coal mines of Vietnam during deepening of mines // Journal of Mining Institute. 2018. Vol. 234 . p. 652-657. DOI: 10.31897/PMI.2018.6.652
Geoecology and occupational health and safety
  • Date submitted
    2017-11-06
  • Date accepted
    2018-01-12
  • Date published
    2018-04-24

Improvement of the procedure of recruitment of personnel for hazardous work environment

Article preview

With the purpose of the reduction of the number of the emergency and abnormal situations in the oil mines conditioned by the influence of the «human factor» an opportunity of application of the system of permit to the works with respect to the real functional state of the personnel is considered in the paper. A «human factor» may become a reason not only for the occurrence but also for the development of the emergency situation according to the unfavorable scenario.The arduous labor conditions such as heating environment, low level of lighting, high level of the dust load may result in the multiple increase of the negative influence of the factors of the real functional state on the quality and safety of the operations. Reasoning from this fact, the consideration of the factors of the functional state in the process of getting a permit to works in the oil mines is of vital importance and requires a well-reasoned and integrated assessment.

How to cite: Tskhadaya N.D., Zakharov D.Y. Improvement of the procedure of recruitment of personnel for hazardous work environment // Journal of Mining Institute. 2018. Vol. 230 . p. 204-208. DOI: 10.25515/PMI.2018.2.204
Geoecology and occupational health and safety
  • Date submitted
    2015-12-22
  • Date accepted
    2016-02-13
  • Date published
    2016-12-23

Risk of injuries among coal mine workers and its hysteresis

Article preview

The paper gives an overview of employment in coal mining, levels of extraction and injuries among the coal mine operators in Poland over a span of time from 1954 through to 2010. The injury indicators, such as the incidence rate, severity and the generalized loss index, have been assessed for a period of coal mining sector restructuring from 1993 to 2010. Diverging trends have been revealed, resulting in a need to extend the time span of the analysis. Analysis of records from 1954 to 2010 has shown a multiple cyclicity of trends of change in the values used to derive coefficients. The definition of the Injury Risk has been justified, along with a new way for its representation and its interpretation as a new method with account of the previous studies. Based on this method the injuries at the coal mines of Poland during a period of their restructuring have been investigated with analyzed database expansion to include records from 1954 to 2010.As a result a new dependency, namely the injury risk hysteresis, has been identified.

How to cite: Parkhanski Y. Risk of injuries among coal mine workers and its hysteresis // Journal of Mining Institute. 2016. Vol. 222 . p. 869-876. DOI: 10.18454/PMI.2016.6.869
Mining
  • Date submitted
    2015-10-01
  • Date accepted
    2015-12-11
  • Date published
    2016-08-22

The technology of extracting gaseous fuel based on comprehensive in situ gasification and coalbed degassing

Article preview

The study considers a comprehensive technology (designed and patented by the authors) of developing coal and methane deposits which combines in situ gasification of lower coalbeds in the suite of rock bump hazardous gassy beds, extraction of coal methane and mechanized mining of coal. The first stage of the technology consists in mining gaseous fuel that enables one to extract up to 15-20 % of total energy from the suite of coalbeds. Geodynamic zoning is used to select positions for boring wells. Using the suggested technology makes it possible to solve a number of tasks simultaneously. First of all that is extracting gaseous fuel from the suite of coalbeds without running any mining works while retaining principal coalbeds in the suite and preparing them for future processing (unloading and degassing). During the first phase the methane-coal deposit works as a gas deposit only, the gas having two sources – extracted methane (which includes its locked forms, absorbed and adsorbed) and the products of partial incineration of thin coalbeds, riders and seams from thee suite. The second stage consists in deep degassing and unloading of coal beds which sharply reduces the hazards of methane explosion and rock bumps, thus increasing the productivity of mechanized coal mining. During the second stage coal is mined in long poles with the account of degassing and unloading of coal beds, plus the data on gas dynamic structure of coal rock massif.

How to cite: Shabarov A.N., Tsirel S.V., Goncharov E.V., Zubkov V.V. The technology of extracting gaseous fuel based on comprehensive in situ gasification and coalbed degassing // Journal of Mining Institute. 2016. Vol. 220 . p. 545-550. DOI: 10.18454/PMI.2016.4.545
Geoecology and occupational health and safety
  • Date submitted
    2015-08-02
  • Date accepted
    2015-10-04
  • Date published
    2016-04-22

Development of innovative technologies of dedusting in mining and advance coal mine faces

Article preview

The article describes the results of the implementation of investment projects in the field of complex dedusting implemented in major coal producing companies in Russia. Experimental study of the processes reduce the levels of dust in the workplace in the application of modern systems of irrigation and aspiration systems. The factors that determine the mass and composition of particulate airborne dust at various ways of dust suppression. The results of the analysis of the laser dispersed composition of particles removed from the air of the working area

How to cite: Korshunov G.I., Romanchenko S.B. Development of innovative technologies of dedusting in mining and advance coal mine faces // Journal of Mining Institute. 2016. Vol. 218 . p. 339-344.