Submit an Article
Become a reviewer

Search articles for by keywords:
industrial power lines

Energy industry
  • Date submitted
    2023-10-29
  • Date accepted
    2024-04-08
  • Date published
    2025-02-25

Evaluation of the impact of the distance determination function on the results of optimization of the geographical placement of renewable energy sources-based generation using a metaheuristic algorithm

Article preview

Since the United Power System was created electrical supply of remote and hard-to-reach areas remains one of the topical issues for the power industry of Russia. Nowadays, usage of various renewable energy sources to supply electricity at remote areas has become feasible alternative to usage of diesel-based generation. It becomes more suitable with world decarbonization trends, the doctrine of energy security of Russia directives, and equipment cost decreasing for renewable energy sources-based power plants construction. Geological exploration is usually conducted at remote territories, where the centralized electrical supply can not be realized. Placement of large capacity renewable energy sources-based generation at the areas of geological expeditions looks perspective due to development of industrial clusters and residential consumers of electrical energy at those territories later on. Various metaheuristic methods are used to solve the task of optimal renewable energy sources-based generation geographical placement. The efficiency of metaheuristics depends on proper tuning of that methods hyperparameters, and high quality of big amount of meteorological and climatic data. The research of the effects of the calculation methods defining distance between agents of the algorithm on the optimization of renewable generation placement results is presented in this article. Two methods were studied: Euclidean distance and haversine distance. There were two cases considered to evaluate the effects of distance calculation method change. The first one was for a photovoltaic power plant with installed capacity of 45 MW placement at the Vagaiskii district of the Tyumen region. The second one was for a wind power plant with installed capacity of 25 MW at the Tungokochenskii district of the Trans-Baikal territory. The obtained results show low effects of distance calculation method change at average but the importance of its proper choose in case of wind power optimal placement, especially for local optima’s identification.

How to cite: Bramm A.M., Eroshenko S.A. Evaluation of the impact of the distance determination function on the results of optimization of the geographical placement of renewable energy sources-based generation using a metaheuristic algorithm // Journal of Mining Institute. 2025. Vol. 271 . p. 141-153. EDN JSNZWK
Energy industry
  • Date submitted
    2024-04-11
  • Date accepted
    2024-11-07
  • Date published
    2025-01-17

Thyristor booster device for voltage fluctuation reduction in power supply systems of ore mining enterprises

Article preview

The article is devoted to solving the problem of voltage fluctuations in the power supply systems of ore mining enterprises. The connection of high-power consumers with abruptly variable operating mode (for example, high-voltage mining excavators) causes voltage fluctuations and sags, disabling electrical equipment, communication, and automation devices in the 6-10 kV distribution network, which disrupts technological processes, etc. The use of existing solutions and methods to reduce voltage variations caused by dynamic loads is not effective. To solve the problem, booster transformers with high-speed thyristor switches can be used to work out switching the control steps towards increasing or decreasing the voltage. The authors offer a new circuitry solution for a thyristor booster device (TBD) with a pulse-phase control method. The purpose of the research is to determine the control laws of TBD, which enable to effectively reduce voltage fluctuations from dynamic load in the power supply systems of mining enterprises. The article provides a schematic diagram of the TBD and describes the principle of operation of the device. Some modes of increasing and decreasing the output voltage of the TBD, as well as the basic mode (without voltage addition) are provided. Mathematical modeling of TBD control processes was carried out and adjustment characteristics were set taking into account the load power factor. On a simulation computer model of a 6 kV electric network with a dynamic load, the verification of the adjustment characteristics of TBD obtained during mathematical modeling was carried out. Based on the research results, the laws for regulating the output voltage of TBD were established. The TBD effective control range with normal permissible limits of odd harmonics have been determined. The conducted research will make it possible to implement the device control system.

How to cite: Sosnina E.N., Asabin A.A., Bedretdinov R.S., Kryukov E.V., Gusev D.A. Thyristor booster device for voltage fluctuation reduction in power supply systems of ore mining enterprises // Journal of Mining Institute. 2025. p. EDN UIBVZK
Economic Geology
  • Date submitted
    2024-03-18
  • Date accepted
    2024-11-07
  • Date published
    2025-01-14

Public-private partnership in the mineral resources sector of Russia: how to implement the classical model?

Article preview

A comparative financial and economic analysis is conducted of different public-private partnership (PPP) models for industrial infrastructure construction projects in an underdeveloped resource-rich region. The Stackelberg game theory-based model is used to build a parametrized family of bilevel mathematical programming models that describe an entire spectrum of partnership schemes. This approach enables a comparison of different strategies for the distribution of infrastructure investments between the government and the subsoil user and hence a scenario of transformation of Russia’s current PPP scheme into the classical partnership model, which is practiced in developed economies. To this end, a database is created on fifty polymetallic deposits in Transbaikalia, and a comparative analysis is conducted of Stackelberg-equilibrium development programs that implement different PPP models. The numerical experiment results show the classical PPP model to be most effective in the case of a budget deficit. The analysis helps assess the economic consequences of a gradual transformation of the partnership institution in industrial infrastructure construction from investor support in the Russian model to government support in the classical scheme. Intermediate partnership models, which act as a transitional institution, help reduce the budget burden. These models can be implemented by clustering the deposits, developing subsoil user consortia, and practicing shared construction of necessary transport and energy infrastructure. The intensification of horizontal connections between subsoil users creates favorable conditions for additional effects from the consolidation of resources and can serve as a foundation for a practical partnership scheme within the framework of the classical model.

How to cite: Lavlinskii S.M., Panin A.A., Plyasunov A.V. Public-private partnership in the mineral resources sector of Russia: how to implement the classical model? // Journal of Mining Institute. 2025. p. EDN VQCWOF
Economic Geology
  • Date submitted
    2024-07-28
  • Date accepted
    2024-11-26
  • Date published
    2024-12-12

From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry

Article preview

Achieving technological sovereignty implies accelerating innovation and reducing import dependence. An effective tool for addressing these challenges is local content policy (LCP). The purpose of this study is to assess the impact of LCP on innovation activity in oil and gas companies and to provide recommendations for enhancing the effectiveness of this policy in Russia. The paper analyzes the influence of LCP on innovation levels in the oil and gas sector, drawing on examples from 10 countries. A positive short-term impact of LCP on innovation was identified in Brazil, Malaysia, and Saudi Arabia, with long-term effects observed in China and South Africa. Recommendations for improving the effectiveness of LCP in Russia are supplemented with a methodology for calculating the level of technological sovereignty. A refinement of the method for solving the «responsiveness» problem, incorporating the level of localization, has been proposed.

How to cite: Zhdaneev O.V., Ovsyannikov I.R. From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry // Journal of Mining Institute. 2024. p. EDN KMCTLU
Energy industry
  • Date submitted
    2023-11-10
  • Date accepted
    2024-06-03
  • Date published
    2025-02-25

Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations

Article preview

The objective of this study is to enhance user trust in electricity consumption forecasting systems for mining enterprises by applying explainable artificial intelligence methods that provide not only forecasts but also their justifications. The research object comprises a complex of mines and ore processing plants of a company purchasing electricity on the wholesale electricity and power market. Hourly electricity consumption data for two years, schedules of planned repairs and equipment shutdowns, and meteorological data were utilized. Ensemble decision trees were applied for time series forecasting, and an analysis of the impact of various factors on forecasting accuracy was conducted. An algorithm for interpreting forecast results using the SHapley Additive exPlanation method was proposed. The mean absolute percentage error was 7.84 % with consideration of meteorological factors, 7.41 % with consideration of meteorological factors and a load plan formulated by an expert, and the expert's forecast error was 9.85 %. The results indicate that the increased accuracy of electricity consumption forecasting, considering additional factors, further improves when combining machine learning methods with expert evaluation. The development of such a system is only feasible using explainable artificial intelligence models.

How to cite: Matrenin P.V., Stepanova A.I. Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations // Journal of Mining Institute. 2025. Vol. 271 . p. 154-167. EDN DEFRIP
Energy industry
  • Date submitted
    2024-06-12
  • Date accepted
    2024-07-18
  • Date published
    2024-07-26

Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities

Article preview

The issue of determining the main parameters of electric energy storage systems – power and energy intensity – is being considered, the determination of which is a fundamentally important task when introducing such devices into the power supply systems of enterprises for both technical (technological) and economic reasons. The work analyzes problems that can be solved by installing electricity storage systems at gas industry facilities. An industry-wide methodology has been developed for calculating the parameters of an electricity storage system based on traditional methods and methods aimed at minimizing the standardized cost of electricity with adaptation to the conditions of the gas industry. A distinctive feature of the presented methodology is the ability to determine the power and energy intensity of electricity storage systems when performing several functions. The methodology was tested at a typical gas industry facility – the Yarynskaya compressor station of OOO Gazprom Transgaz Ukhta, a characteristic feature of which is an autonomous power supply system. An example is given of calculating the electricity storage normalized cost using an improved LCOS indicator, which takes into account the effect of changing the fill factor of the electrical load schedule on the amount of gas consumption by a power plant for its own needs. To confirm the economic efficiency of introducing electricity storage systems calculated using the above methodology, calculations of the integral effect, net present value and efficiency index are presented.

How to cite: Tokarev I.S. Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities // Journal of Mining Institute. 2024. p. EDN UIZSOQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-04-16
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems

Article preview

The article describes an X-ray fluorescence method for quantitative analysis of sulfate and total sulfur in bottom sediments of watercourses and reservoirs located in the area of industrial enterprises impact. The quantitative determination of sulfur forms was carried out by analyzing the characteristic curves SKα1,2 and SKβ1,3, as well as the satellite line SKβ′ on X-ray emission spectra measured by an X-ray fluorescence spectrometer with wavelength dispersion. The study shows that these characteristic curves allow not only to determine the predominant form of sulfur, but also to separately conduct quantitative analyses of sulfates and total sulfur after fitting peaks and to separately analyze overlapping spectral lines. The results of quantitative analysis of the chemical state of sulfur by the proposed X-ray fluorescence method were compared with the results of inductively coupled plasma atomic emission spectroscopy and elemental analysis, as well as certified standard samples of soils and sediments. The results are in good agreement with each other.

How to cite: Sverchkov I.P., Povarov V.G. Quantitative determination of sulfur forms in bottom sediments for rapid assessment of the industrial facilities impact on aquatic ecosystems // Journal of Mining Institute. 2024. Vol. 267 . p. 372-380. EDN PUUADY
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-07
  • Date accepted
    2024-06-14
  • Date published
    2024-07-04

Anomaly detection in wastewater treatment process for cyber resilience risks evaluation

Article preview

Timely detection and prevention of violations in the technological process of wastewater treatment caused by threats of different nature is a highly relevant research problem. Modern systems are equipped with a large number of technological sensors. Data from these sensors can be used to detect anomalies in the technological process. Their timely detection, prediction and processing ensures the continuity and fault tolerance of the technological process. The aim of the research is to improve the accuracy of detection of such anomalies. We propose a methodology for the identification and subsequent assessment of cyber resilience risks of the wastewater treatment process, which includes the distinctive procedure of training dataset generation and the anomaly detection based on deep learning methods. The availability of training datasets is a necessary condition for the efficient application of the proposed technology. A distinctive feature of the anomaly detection approach is a new method of processing input sensor data, which allows the use of computationally efficient analytical models with high accuracy of anomaly detection, and outperforms the efficiency of previously published methods.

How to cite: Novikova E.S., Fedorchenko E.V., Bukhtiyarov M.A., Saenko I.B. Anomaly detection in wastewater treatment process for cyber resilience risks evaluation // Journal of Mining Institute. 2024. Vol. 267 . p. 488-500. EDN TBPPHN
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-10-13
  • Date accepted
    2023-10-11
  • Date published
    2023-10-27

An innovative approach to injury prevention in mining companies through human factor management

Article preview

This study argues that human error has an effect on occupational injury risks in mining companies. It shows through an analysis of existing approaches to occupational risk assessment that it is necessary to develop a quantitative assessment method factoring in individual psychophysiological attributes in order to analyze injury risks posed to miners. The article presents the results of a comprehensive analysis of how workers’ psychophysiological attributes influence their susceptibility to occupational injuries in underground mining conditions. By utilizing statistical data processing methods, such as discriminant and regression analysis, the study develops models to forecast personal injury risks among miners. These quantitative models underlie the proposed method for assessing miners’ susceptibility to injuries. The study outlines an algorithm for the practical application of this method and shows how the method was validated using a training sample. It provides recommendations for managing the human factor, incorporating the results of the proposed method, and emphasizes the importance of implementing a series of protective measures to mitigate the risk of occupational injuries in underground mining operations.

How to cite: Kabanov E.I., Tumanov M.V., Smetanin V.S., Romanov K.V. An innovative approach to injury prevention in mining companies through human factor management // Journal of Mining Institute. 2023. Vol. 263 . p. 774-784. EDN DRHFAN
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-08
  • Date accepted
    2022-07-21
  • Date published
    2023-12-25

Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement

Article preview

The results of the analysis of practical experience in the development of potash seams using longwall mining systems at the mines of OAO “Belaruskali” are presented. Positive changes in the technical and economic indicators of mines and an increase in the safety of mining operations were noted with the introduction of resource-saving technologies without leaving the pillars between the excavation columns or with leaving the pillars between the columns with dimensions at which they are destroyed by mining pressure in the goaf. It is noted that the use of mechanized stoping complexes characterized by high energy capacity, combined with large depths of development, is the main reason for the temperature increase in longwalls to values exceeding the maximum permissible air temperature regulated by sanitary standards. Based on production studies, it was concluded that the temperature regime along the length of the longwall face is determined by the temperature of rocks in the developed longwall space, heat emissions from the equipment of the power train, and the temperature of the rock mass ahead of the longwall. The conclusion has been drawn about the feasibility of using developed technological schemes in deep mining conditions, which provide a reduction in longwall temperature by 6-9 °C or more through isolated ventilation of longwall and power trains, as well as heat exchange between the airflow entering the longwall and the rocks in the developed space.

How to cite: Zubov V.P., Sokol D.G. Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement // Journal of Mining Institute. 2023. Vol. 264 . p. 874-885. EDN YYMIQY
Editorial
  • Date submitted
    2023-07-19
  • Date accepted
    2023-07-19
  • Date published
    2023-07-19

Energy efficiency in the mineral resources and raw materials complex

Article preview

Energy efficiency and energy saving at all times and especially at the present stage of development of industry and economy have played an extremely important role. Regardless of which countries and according to what criteria they build energy development plans, energy efficiency and energy saving are always a priority. This fully applies to the mineral resources complex, in which energy consumption as a whole makes up a large share of total consumption. The resources mined in the mineral resources complex are themselves a source of energy. The energy sector is evolving in many ways. Many scientific works, the results of which are reflected in publications, confirm the relevance of research in the energy efficiency field. But the approach to individual decisions in the mineral resource industry is specific and it is worth of separate consideration. Recently, much attention has been paid to “green energy” and renewable energy sources. However, energy efficiency in the field of traditional generation and consumption remains an urgent problem and its solution is in constant development. One of the main directions for improving energy efficiency is the development of autonomous systems for the electrical and thermal power engineering. All these problems are reflected in a special volume of the Journal of the Mining Institute, the articles are divided into four sections: energy efficiency of the electric drive in the mineral resources complex (MRC); energy efficiency of industrial plants and enterprises in MRC; power quality and renewable sources in MRC; autonomous power supply systems in MRC. The presented articles contain valuable material from the scientific and practical points of view and can form the basis for further research in the energy efficiency field.

How to cite: Shklyarskiy Y.E., Skamyin A.N., Jiménez Carrizosa M. Energy efficiency in the mineral resources and raw materials complex // Journal of Mining Institute. 2023. Vol. 261 . p. 323-324.
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Forecasting planned electricity consumption for the united power system using machine learning

Article preview

The paper presents the results of studies of the predictive models development based on retrospective data on planned electricity consumption in the region with a significant share of enterprises in the mineral resource complex. Since the energy intensity of the industry remains quite high, the task of rationalizing the consumption of electricity is relevant. One of the ways to improve control accuracy when planning energy costs is to forecast electrical loads. Despite the large number of scientific papers on the topic of electricity consumption forecasting, this problem remains relevant due to the changing requirements of the wholesale electricity and power market to the accuracy of forecasts. Therefore, the purpose of this study is to support management decisions in the process of planning the volume of electricity consumption. To realize this, it is necessary to create a predictive model and determine the prospective power consumption of the power system. For this purpose, the collection and analysis of initial data, their preprocessing, selection of features, creation of models, and their optimization were carried out. The created models are based on historical data on planned power consumption, power system performance (frequency), as well as meteorological data. The research methods were: ensemble methods of machine learning (random forest, gradient boosting algorithms, such as XGBoost and CatBoost) and a long short-term memory recurrent neural network model (LSTM). The models obtained as a result of the conducted studies allow creating short-term forecasts of power consumption with a fairly high precision (for a period from one day to a week). The use of models based on gradient boosting algorithms and neural network models made it possible to obtain a forecast with an error of less than 1 %, which makes it possible to recommend the models described in the paper for use in forecasting the planned electricity power consumption of united power systems.

How to cite: Klyuev R.V., Morgoeva A.D., Gavrina O.A., Bosikov I.I., Morgoev I.D. Forecasting planned electricity consumption for the united power system using machine learning // Journal of Mining Institute. 2023. Vol. 261 . p. 392-402. EDN FJGZTV
Energy industry
  • Date submitted
    2023-03-16
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator

Article preview

In the steady state of operation, the temperature of a mining excavator hydraulic fluid is determined by the ambient temperature, hydraulic system design, and power losses. The amount of the hydraulic system power loss depends on the hydraulic fluid physical and thermodynamic properties and the degree of wear of the mining excavator hydraulic system working elements. The main causes of power losses are pressure losses in pipelines, valves and fittings, and leaks in pumps and hydraulic motors. With an increase in the temperature of hydraulic fluid, its viscosity decreases, which leads, on the one hand, to a decrease in power losses due to pressure losses in pipelines, valves and fittings, and, on the other hand, to an increase in volumetric leaks and associated power losses. To numerically determine the level of power losses occurring in the hydraulic system on an example of the Komatsu PC750-7 mining excavator when using Shell Tellus S2 V 22, 32, 46, 68 hydraulic oils with the corresponding kinematic viscosity of 22, 32, 46, 68 cSt at 40 °C, the developed calculation technique and software algorithm in the MatLab Simulink environment was used. The power loss coefficient, obtained by comparing power losses at the optimum temperature for a given hydraulic system in the conditions under consideration with the actual ones is proposed. The use of the coefficient will make it possible to reasonably select hydraulic fluids and set the values of the main pumps limit state and other hydraulic system elements, and evaluate the actual energy efficiency of the mining hydraulic excavator. Calculations have shown that the implementation of measures that ensure operation in the interval with a deviation of 10 % from the optimal temperature value for these conditions makes it possible to reduce energy losses from 3 to 12 %.

How to cite: Rakhutin M.G., Giang K.Q., Krivenko A.E., Tran V.H. Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator // Journal of Mining Institute. 2023. Vol. 261 . p. 374-383. EDN OKWKUF
Energy industry
  • Date submitted
    2023-03-02
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Improving the efficiency of autonomous electrical complex with renewable energy sources by means of adaptive regulation of its operating modes

Article preview

Renewable energy sources are gradually becoming useful in mining industry. They are actively used in remote, sparsely populated areas to power shift settlements, geological and meteorological stations, pipeline equipment, mobile cell towers, helicopter pads lighting, etc. In comparison with diesel generators, systems with renewable sources do not require fuel transportation, have short payback periods and flexible configuration for different categories of electrical loads. The main obstacles to their spread are instability of generation and high cost of produced electricity. One of the possible ways to solve these problems is to develop new technologies, increase power density of generators and energy storage systems. The other way represents energy saving and rational use of affordable resources. The new solutions for implementation of the second method are proposed in this work. The object of the study is autonomous DC electrical complex with photovoltaic and wind power sources. In such systems the generated power from renewable sources is transferred to consumers via intermediate DC bus, the voltage level of which affects the power losses in the process of power transmission. The vast majority of complexes have a problem that their DC bus voltage is constant, while the optimum voltage level with lowest losses varies depending on the generated and consumed power. Therefore, electrical complexes potentially lose a part of the transmitted energy. To avoid this, a special algorithm was added to automatically adjust DC bus voltage to optimum level according to changes in working conditions. An additional contribution to efficiency improvement can be made by dynamic change of operating frequency in power converters depending on their load. The evaluation based on results of computer simulation showed that in a complex with rated power 10 kW active power losses during its lifetime can be reduced by 2-5 %.

How to cite: Shpenst V.A., Belsky A.A., Orel E.A. Improving the efficiency of autonomous electrical complex with renewable energy sources by means of adaptive regulation of its operating modes // Journal of Mining Institute. 2023. Vol. 261 . p. 479-492. EDN SNUKNA
Energy industry
  • Date submitted
    2023-03-12
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Increasing the energy efficiency of an autonomous power supply system of a drilling rig in case of voltage dips

Article preview

The article discusses the emergency modes of operation of an autonomous electrical complex of a drilling rig. The concept of voltage failure and its influence on the technological process of industrial enterprises is revealed. A description of the methods used in the power supply of industrial enterprises to overcome voltage dips and load surges in autonomous power systems is presented, from which it is possible to single out the accelerated lifting of critical equipment to prevent emergency conditions, as well as the use of backup storage, usually batteries. An algorithm has been developed for the interaction of the battery and the diesel generator set as backup power sources during various modes of operation of the electric motor, taking into account load surges, which allows successfully overcoming voltage dips in the system both in transient and in steady state. It is proposed to use a combined method to eliminate the voltage dip, a feature of which is the use of a combined structure of backup power sources as part of a diesel generator set and a battery, acting on the base of the proposed interaction algorithm in autonomous electrical complexes. The method makes it possible to overcome sudden load surges and voltage dips caused by a shortage of reserve power in the electrical system. The use of a rechargeable battery as a transitional element makes it possible to switch between the main and backup power sources without stopping the technological one and to expand the overload threshold of an autonomous electrical complex up to 60 %. The use of the combined method increases the energy efficiency of the autonomous complex due to a reduction in the number of emergency shutdowns of equipment, process interruptions and additional power consumption.

How to cite: Chervonchenko S.S., Frolov V.Y. Increasing the energy efficiency of an autonomous power supply system of a drilling rig in case of voltage dips // Journal of Mining Institute. 2023. Vol. 261 . p. 470-478. EDN MGAPVA
Energy industry
  • Date submitted
    2022-10-26
  • Date accepted
    2023-02-13
  • Date published
    2023-07-19

Determination of the grid impedance in power consumption modes with harmonics

Article preview

The paper investigates the harmonic impedance determination of the power supply system of a mining enterprise. This parameter is important when calculating modes with voltage distortions, since the determined parameters of harmonic currents and voltages significantly depend on its value, which allow the most accurate modeling of processes in the presence of distortions in voltage and current. The power supply system of subsurface mining is considered, which is characterized by a significant branching of the electrical network and the presence of powerful nonlinear loads leading to a decrease in the power quality at a production site. The modernization of the mining process, the integration of automated electrical drive systems, renewable energy sources, energy-saving technologies lead to an increase in the energy efficiency of production, but also to a decrease in the power quality, in particular, to an increase in the level of voltage harmonics. The problem of determining the grid harmonic impedance is solved in order to improve the quality of design and operation of power supply systems for mining enterprises, taking into account the peculiarities of their workload in the extraction of solid minerals by underground method. The paper considers the possibility of determining the grid impedance based on the measurement of non-characteristic harmonics generated by a special nonlinear load. A thyristor power controller based on phase regulation of the output voltage is considered as such a load. Simulation computer modeling and experimental studies on a laboratory test bench are used to confirm the proposed method. The recommendations for selecting load parameters and measuring device connection nodes have been developed.

How to cite: Skamyin A.N., Dobush V.S., Jopri M.H. Determination of the grid impedance in power consumption modes with harmonics // Journal of Mining Institute. 2023. Vol. 261 . p. 443-454. DOI: 10.31897/PMI.2023.25
Energy industry
  • Date submitted
    2022-08-05
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Feasibility study of using cogeneration plants at Kuzbass coal mines

Article preview

The paper considers the problem of reducing greenhouse gas emissions in the process of coal mining during the coal mine methane utilization in power supply systems. An algorithm to form recommendations for the implementation of CMM generation is presented. A simulation model for one of the Kuzbass coal mines was developed in the PowerFactory software application. The simulation model considers the uneven nature of the power consumption of mining equipment. As a result of modeling, daily power consumption profiles and voltage levels in the coal mine power supply system were determined before and after the implementation of the proposed measures. Based on the results, the technical and economic effects was estimated, which consisted in reducing the direct and indirect carbon footprint, electricity and capacity fees. It has been established that the cost of carbon dioxide emission quotas significantly affects the investment attractiveness of cogeneration projects. Based on the results, recommendations are given to stimulate the development of small generation in coal mines.

How to cite: Nepsha F.S., Voronin V.A., Liven A.S., Korneev A.S. Feasibility study of using cogeneration plants at Kuzbass coal mines // Journal of Mining Institute. 2023. Vol. 259 . p. 141-150. DOI: 10.31897/PMI.2023.2
Economic Geology
  • Date submitted
    2022-03-09
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Development of methodology for economic evaluation of land plots for the extraction and processing of solid minerals

Article preview

The Russian economy has a pronounced resource specialization; in many regions, subsoil use is a backbone or one of the main areas of the economy. In these conditions, the improvement of the methodology for the economic evaluation of lands on which mining enterprises are located is of particular relevance. On the basis of the existing experience in assessing industrial land, the authors present a developed methodology for determining the cadastral value of land plots where mining enterprises are located, taking into account their industry characteristics and the specifics of production and commercial activities. At the same time, cadastral valuation is considered as a specific form of economic valuation. Particular emphasis is placed on the importance of taking into account the cost factors that have the greatest impact on the formation of the cost of land for the extraction and processing of solid minerals, and the method of assessment depending on the characteristics of the object. To carry out theoretical research, the methods of analysis and synthesis of legal and scientific and technical literature in the field of cadastral and market valuation of land were used in the work. The practical part is based on the application of expert methods, including the method of analysis of hierarchies, system and logical analysis. The method of M.A.Svitelskaya was chosen as the basis, which presents a combination of modified methods of statistical (regression) modeling and modeling based on specific indicators of cadastral value. The use of this technique in economic practice contributes to increasing the efficiency of cadastral valuation and the objectivity of its results.

How to cite: Bykowa E.N., Khaykin М.М., Shabaeva Y.I., Beloborodova М.D. Development of methodology for economic evaluation of land plots for the extraction and processing of solid minerals // Journal of Mining Institute. 2023. Vol. 259 . p. 52-67. DOI: 10.31897/PMI.2023.6
Energy industry
  • Date submitted
    2021-03-11
  • Date accepted
    2021-04-12
  • Date published
    2022-04-29

Operation mode selection algorithm development of a wind-diesel power plant supply complex

Article preview

The power supply system is affected by external disturbances, so it should be stable and operate normally in compliance with power quality standards. The power supply system goes into abnormal modes operation when, after a short-term failure or disturbance, it does not restore normal mode. The electrical complex, which includes a wind power plant, as well as a battery and a diesel generator connected in parallel, is able to provide reliable power supply to consumers which meets the power quality indicators. The article develops an algorithm that is implemented by an automatic control system to select the operating mode depending on climatic factors (wind) and the forecast of energy consumption for the day ahead. Forecast data is selected based on the choice of the methods, which will have the smallest forecast error. It is concluded that if the energy consumption forecast data is added to the automatic control system, then it will be possible to increase the efficiency of the power supply complex. In the developed algorithm the verification of normal and abnormal modes of operation is considered based on the stability theory. The criteria for assessing the normal mode of operation are identified, as well as the indicators of the object’s load schedules for assessing the load of power supply sources and the quality standards for power supply to consumers for ranking the load by priority under critical operating conditions and restoring normal operation are considered.

How to cite: Shklyarskiy Y.E., Batueva D.E. Operation mode selection algorithm development of a wind-diesel power plant supply complex // Journal of Mining Institute. 2022. Vol. 253 . p. 115-126. DOI: 10.31897/PMI.2022.7
Oil and gas
  • Date submitted
    2021-04-30
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Methodology for testing pipeline steels for resistance to grooving corrosion

Article preview

The methodology for testing pipeline steels is suggested on the assumption that for the destruction of pipes in field oil pipelines by the mechanism of grooving corrosion the simultaneous fulfillment of such conditions as the occurrence of scratches on the lower generatrix of the pipe, eventually growing into a channel in the form of a groove, emulsion enrichment with oxygen, presence of pipe wall metal in a stressed state, presence of chlorine-ion in the oil-water emulsion is required. Tests are suggested to be carried out in 3 % aqueous solution of NaCl with continuous aeration by air on bent plates 150×15×3 mm, made of the analyzed steel, the middle part of which is under the action of residual stresses σ res , close to the level of maximum equivalent stresses σ eqv in the wall of the oil pipeline, with the presence of a cut on this part on the inner side of the plate as an initiator of additional mechanical stresses. Using the value of the modulus of normal elasticity of the analyzed steel, the degree of residual strain of the elastic-plastic body from this material, corresponding to the value σ res ≈ σ eqv is calculated, based on which the plates are bent to the required deflection angle, after which the cut is applied to them. After keeping the plates in the corrosive medium for each of them the increase in depth of the cut as a result of corrosion of the walls by the corrosive medium is analyzed, from which the rate of steel K by the mechanism of grooving corrosion is calculated taking into account the duration of tests. Corrosion rate values for two pipe steel grades determined by the suggested procedure are given. The comparison of K values obtained leads to the conclusion about the higher resistance to grooving corrosion of 09G2S steel.

How to cite: Bolobov V.I., Popov G.G. Methodology for testing pipeline steels for resistance to grooving corrosion // Journal of Mining Institute. 2021. Vol. 252 . p. 854-860. DOI: 10.31897/PMI.2021.6.7
Oil and gas
  • Date submitted
    2021-02-28
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation

Article preview

One of the development priorities in oil and gas industry is to maintain gas and oil pipeline networks and develop pipeline-connected gas and oil fields of the Arctic zone of the Russian Federation, a promising region the resource potential of which will not only meet a significant portion of internal and external demand for various types of raw materials and primary energy carriers, but will also bring great economic benefits to subsoil users and the state. The mineral and raw material centers of the Nadym-Purskiy and Pur-Tazovskskiy oil and gas bearing areas are among the most attractive regions of the Arctic zone. It is necessary to develop a scientifically substantiated approach to improve the methods of oil transportation from the field to the existing pipelines. As it is known, the task of increasing the efficiency of pipeline transportation of high-viscosity oil is inseparably connected with solving problems in the field of thermal and hydraulic calculation of pipeline system. The article presents the substantiation of dependencies for hydraulic calculation of pipelines transporting high-viscosity oil exhibiting complex rheological properties. Based on the laws of hydraulics for non-Newtonian fluids, the formulas for calculating head losses for fluids obeying Ostwald's law are proposed, their relationship to the classical equations of hydraulics is shown. The theoretical substantiation of looping installation for increasing the efficiency of pipeline transportation of high-viscosity oil taking into account the received dependences for power fluid is considered.

How to cite: Nikolaev A.K., Zaripova N.А. Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation // Journal of Mining Institute. 2021. Vol. 252 . p. 885-895. DOI: 10.31897/PMI.2021.6.10
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2020-12-24
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

Natural gas methane number and its influence on the gas engine working process efficiency

Article preview

The natural gas usage as a vehicle fuel in the mining industry is one of the priority tasks of the state. The article pays special attention to the component composition of natural gas from the point of view of its thermal efficiency during combustion in the combustion chamber of a power plant on a heavy-duty vehicle in difficult quarry conditions. For this, domestic and foreign methods for determining the main indicator characterizing the knock resistance of fuel in the combustion process – the methane number – are considered. Improvement of technical and economic indicators will be carried out by changing the composition of the gas mixture based on methane to fit the design features of the gas power plant, the methane number will be the determining indicator. A theoretical analysis of the influence of the methane number on such engine parameters as the compression ratio and the maximum speed of the flame front propagation in the second phase of combustion in the engine cylinder, expressed through the angle of rotation of the crankshaft, is presented. Based on the results of theoretical and experimental studies, the dependences of the influence of the methane number on the efficiency of the working process of the engine and its external speed characteristic were obtained.

How to cite: Didmanidze O.N., Afanasev A.S., Khakimov R.T. Natural gas methane number and its influence on the gas engine working process efficiency // Journal of Mining Institute. 2021. Vol. 251 . p. 730-737. DOI: 10.31897/PMI.2021.5.12
Electromechanics and mechanical engineering
  • Date submitted
    2021-03-30
  • Date accepted
    2021-05-26
  • Date published
    2021-09-20

Improving the efficiency of autonomous electrical complexes of oil and gas enterprises

Article preview

In accordance with the Energy Strategy until 2035, the possibility of increasing the efficiency of energy use of secondary energy resources in the form of associated oil and waste gases has been substantiated by increasing the energy efficiency of the primary energy carrier to 90-95 % by means of cogeneration plants with a binary cycle of electricity generation and trigeneration systems with using the energy of the waste gas to cool the air flow at the inlet of gas turbine plants. The conditions for maintaining the rated power of the main generator with variations in the ambient temperature are shown. An effective topology of electrical complexes in a multi-connected power supply system of oil and gas enterprises according to the reliability condition is presented, which allows increasing the availability factor by 0.6 %, mean time between failures by 33 %, the probability of failure-free operation by 15 % and reducing the mean time of system recovery by 40 %. The article considers the use of parallel active filters to improve the quality of electricity and reduce voltage drops to 0.1 s when used in autonomous electrical complexes of oil and gas enterprises. The possibility of providing uninterrupted power supply when using thyristor systems for automatic reserve input has been proven. A comparative analysis was carried out to assess the effect of parallel active filters and thyristor systems of automatic transfer of reserve on the main indicators of the reliability of power supply systems of oil and gas enterprises.

How to cite: Abramovich B.N., Bogdanov I.A. Improving the efficiency of autonomous electrical complexes of oil and gas enterprises // Journal of Mining Institute. 2021. Vol. 249 . p. 408-416. DOI: 10.31897/PMI.2021.3.10
Electromechanics and mechanical engineering
  • Date submitted
    2020-10-05
  • Date accepted
    2021-03-30
  • Date published
    2021-06-24

Improving the efficiency of relay protection at a mining and processing plant

Article preview

The paper presents the results of constructing effective relay protection in the power supply system of a mining and processing plant (MPP). A brief description of the MPP is given, the power supply and substitution circuits used to calculate the short-circuit currents are given. A statistical analysis of failures in the electric network of the MPP has been carried out, which makes it possible to draw conclusions about the nature of failures ranges. Analysis of the registered faults shows that a significant part of them are line-to-earth faults, which in most cases turn into multiphase short circuits, which are interrupted by overcurrent protection. In order to improve the efficiency and reliability of the relay protection, the power supply scheme of the MPP was refined and analyzed. The calculation of the short-circuit currents was made, which made it possible to calculate the settings of the relay protection and give recommendations on the place of its installation and adjustment in order to ensure the normal operation of electricity consumers. To reduce the number of failures to the cable insert on the line leaving the administrative and household complex (AHC), and to increase the reliability of power supply to consumers, it is advisable to divide the capacities of the existing 10 kV line into two parallel ones by laying a second line. It is recommended to install a current cut-off on the line outgoing to the AHC, the feasibility of the installation of which was shown by calculations. This will reduce the chance of failures to the cable gland. Data on the setting currents of overcurrent protection and current cut-off are given on the selectivity card.

How to cite: Klyuev R.V., Bosikov I.I., Gavrina O.A. Improving the efficiency of relay protection at a mining and processing plant // Journal of Mining Institute. 2021. Vol. 248 . p. 300-311. DOI: 10.31897/PMI.2021.2.14
Electromechanics and mechanical engineering
  • Date submitted
    2021-01-20
  • Date accepted
    2021-03-15
  • Date published
    2021-04-26

Improving the quality of electricity in the power supply systems of the mineral resource complex with hybrid filter-compensating devices

Article preview

The urgency and necessity of choosing and justifying the structures of hybrid filter-compensating devices based on series and parallel active filters to improve the quality of electricity in the power supply systems of enterprises of the mineral resource complex is shown. Mathematical models of hybrid filter compensating devices based on parallel and series active filters have been developed. Based on these mathematical models, computer simulation models of the indicated hybrid structures have been developed. The results of simulation showed the effectiveness of the correction of power quality indicators in terms of reducing the level of higher harmonics of current and voltage, as well as voltage deviations. The degree of influence of filter-compensating devices on the power quality indicators, which determine the continuity and stability of the technological process at the enterprises of the mineral resource complex, have been revealed. It has been established that a hybrid filter-compensating device based on a parallel active filter can reduce the level of higher harmonics of current and voltage by more than 90 and 70 %, respectively, and based on a series active filter, it can reduce the level of higher harmonics of voltage by more than 80 %. Based on the simulation results, the possibility of compensating for the reactive power of a hybrid structure based on parallel active and passive filters has been revealed. The possibility of integrating hybrid filter-compensating devices into more complex multifunctional electrical systems for the automated improvement of the quality of electricity is substantiated, as well as the expediency and prospects of their use in combined power supply systems based on the parallel operation of centralized and autonomous sources of distributed generation.

How to cite: Sychev Y.A., Zimin R.Y. Improving the quality of electricity in the power supply systems of the mineral resource complex with hybrid filter-compensating devices // Journal of Mining Institute. 2021. Vol. 247 . p. 132-140. DOI: 10.31897/PMI.2021.1.14