-
Date submitted2024-04-16
-
Date accepted2024-09-24
-
Date published2024-11-12
Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics, estimation of hydrocarbon resources
The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.
-
Date submitted2023-07-07
-
Date accepted2023-12-27
-
Date published2024-08-26
Landslide hazard assessment in Tinh Tuc town, Cao Bang province, Vietnam using Frequency ratio method and the combined Fractal-frequency ratio method
Landslides are one of the most frequent natural disasters that cause significant damage to property in Vietnam, which is characterized by mountainous terrain covering three-quarters of the territory. In 17 northern mountainous provinces of the country, over 500 communes are at a high to very high landslide hazard. The main goal of this study was to establish landslide hazard maps and conduct a comparative evaluation of the efficiency of the methods employed in Tinh Tuc town, Cao Bang province. The landslide hazard assessment was carried out in this study using the combined Fractal-frequency ratio (FFR) and the Frequency ratio (FR) methods. The FR method is based on the actualist principle, which assumes that future landslides may be caused by the same factors that contributed to slope failure in the past and present. The FFR method is based on the determination of the fractal dimension, which serves as a measure of the landslide filling density in the study area. Eight landslide-related factors were considered and presented in cartographic format: elevation, distance to roads, slope, geology, distance to faults, land use, slope aspect, and distance to drainage. Determining the area under the receiver operating characteristic curve (ROC-AUC) and verification index (LRclass) was performed to assess the performance of prediction models and the accuracy of the obtained maps. As a result, five zones were identified for the study area, characterized by very low, low, moderate, high, and very high landslide hazards. The analysis of the reliability of the obtained landslide hazard maps using the AUC and LRclass indices revealed that the FFR model has a higher degree of reliability (AUC = 86 %, LRclass = 86 %) compared to the FR model (AUC = 72 %, LRclass = 73 %); therefore, its use is more effective.
-
Date submitted2023-05-21
-
Date accepted2024-05-02
-
Date published2024-08-26
Assessment of the influence of lithofacies conditions on the distribution of organic carbon in the Upper Devonian “Domanik” deposits of the Timan-Pechora Province
The study of high-carbon formations was instigated both by the decreasing raw material base of oil as a result of its extraction, and by the progress in development of low-permeability shale strata, primarily in the USA, Australia, and China. The most valuable formations occur in traditional hydrocarbon production areas – the West Siberian, Volga-Ural and Timan-Pechora, North Pre-Caucasian and Lena-Tunguska oil and gas provinces. Specific features of the Late Devonian-Early Carboniferous high-carbon formation occurring in the eastern marginal part of the East European Platform are: heterogeneous section due to intense progradation of the carbonate platform from west to east; succession of lithofacies environments that determined the unevenness of the primary accumulation and secondary distribution of organic matter (OM); possible migration or preservation in the source strata during the subsidence stages of the moving parts of bitumides, which determined the prospects for oil and gas potential. The distribution pattern of the present OM content was investigated depending on lithofacies conditions and lithological composition of rocks in the “Domanik type” Upper Devonian-Tournaisian deposits in the Timan-Pechora Province (TPP), its transformation degree to bring it to the initial content of organic carbon and further estimation of the share of stored “mobile oil” in oil and gas source formation. The study was based on the analysis of the data set on organic carbon content in core samples and natural exposures in the Ukhta Region in the Domanik-Tournaisian part of the section including more than 5,000 determinations presented in reports and publications of VNIGRI and VNIGNI and supplemented by pyrolytic and bituminological analyses associated with the results of microtomographic, macro- and lithological studies and descriptions of thin sections made at the Saint Petersburg Mining University. For each tectonic zone of the TPP within the investigated high-carbon intervals, the content of total volumes of organic carbon was determined. The data obtained allow estimating the residual mass of mobile bitumoids in a low-permeability matrix of the high-carbon formation.
-
Date submitted2024-01-18
-
Date accepted2024-05-02
-
Date published2024-12-25
Industrial clusters as an organizational model for the development of Russia petrochemical industry
The article explores the challenges facing Russia petrochemical industry over the past decade and examines the reasons behind its significant lag compared to other industrialized nations. It presents a review of academic research on clusters accompanied by a comparative analysis, generalization, and consolidation of factors influencing the development of the petrochemical industry in Russia. It is argued that advancing the petrochemical industry from production plants to integrated production complexes necessitates a shift towards clustering, which will improve resource utilization efficiency, bolster product competitiveness, and reduce production costs. The article examines and consolidates key cluster concepts, encompassing definitions, characteristics, composition, and constituent elements. It also examines strategic documents guiding the development of the petrochemical sector, assesses the progress made in forming petrochemical clusters in Russia, and draws upon European and Asian experiences and government support tools in the domain of petrochemical clusters. The successful development of petrochemical clusters in Russia is argued to be strongly dependent on state initiatives and support for infrastructure development. Additionally, the presence of research organizations within clusters is crucial for fostering high-tech product innovation and forming an efficient value chain that integrates research and development with specific assets. When establishing petrochemical clusters in Russia, it is essential to consider the unique characteristics of each cluster, including the types of raw materials and resources used, the necessary infrastructure, and the specific support measures and incentives provided by the state.
-
Date submitted2023-04-06
-
Date accepted2023-12-27
-
Date published2024-04-25
Localization of sites for the development of geomechanical processes in underground workings based on the results of the transformation and classification analysis of seismic data
The paper considers an approach to localizing the intervals of development of geomechanical processes in underground structures based on the classification and transformation of seismic data. The proposed approach will make it possible to identify the intervals of fracturing, rock decompression, water inflow and other geomechanical processes when interpreting the results of seismic surveys. The technique provides for the formation of matrices of longitudinal (Vp), transverse (Vs) velocities and velocity ratios (Vs/Vp) along the research profile to perform sequential filtration. The filtration results serve as the basis for the formation of a bank of informative materials for further classification. Based on the domestic KOSKAD 3D software, four approaches have been implemented for a combined digital model of the Vp, Vs and Vs/Vp parameters. One of the key elements in the classification process is to combine grids to increase the probability of detecting intervals with heterogeneous identification features. The result of the application of this methodical approach is the construction of a comprehensive interpretative model, on which potential zones of geomechanical risks development are clearly manifested.
-
Date submitted2023-03-16
-
Date accepted2023-12-27
-
Date published2024-04-25
Comprehensive assessment of deformation of rigid reinforcing system during convergence of mine shaft lining in unstable rocks
Operation of vertical mine shafts in complex mining and geological conditions is associated with a number of features. One of them is a radial displacement of the concrete shaft lining, caused by the influence of mining pressure on the stress-strain state of the mine workings. A rigid reinforcing system with shaft buntons fixed in the concrete lining thus experiences elastoplastic deformations, their value increases with time. It results in deviation of conductors from design parameters, weakening of bolt connections, worsening of dynamic properties of geotechnical system “vehicle – reinforcing”, increase of wear rate of reinforcing system elements, increase of risks for creating an emergency situation. The article offers a comprehensive assessment of displacements of characteristic points of the bunton system based on approximate engineering relations, numerical modeling of the deformation process of the bunton system and laser measurements of the convergence of the inner surface of the concrete shaft lining. The method was tested on the example of the reinforcing system of the skip-cage shaft of the potash mine. Displacement of the characteristic points of the reinforcing system is determined by the value of radial displacements of the surface of the concrete shaft lining. Evaluation of the radial displacements was made using monitoring measurements and profiling data. The results obtained make it possible to justify the need and timing of repair works. It is shown that the deterioration of the reinforcing system at different levels occurs at different rates, defined, among other things, by mechanical properties of the rock mass layers located at a given depth.
-
Date submitted2023-02-27
-
Date accepted2023-10-25
-
Date published2024-04-25
Microstructural features of chromitites and ultramafic rocks of the Almaz-Zhemchuzhina deposit (Kempirsai massif, Kazakhstan) according to electron backscatter diffraction (EBSD) studies
Microstructural features of the main rock-forming minerals of host ultramafic rocks (olivine, orthopyroxene) and chrome spinel from ores of the Almaz-Zhemchuzhina deposit were studied using the electron backscatter diffraction method. For ultramafic rocks, statistical diagrams of the crystallographic orientation of olivine and orthopyroxene were obtained, indicating the formation of a mineral association in conditions of high-temperature subsolidus plastic flow in the upper mantle. The main mechanisms were translation gliding and syntectonic recrystallization. Olivine deformation occurred predominantly along the (010)[100] and (001)[100] systems. The textural and structural features of chromitites reflect plastic flow processes, most pronounced in lenticular-banded ores. Microstructure maps in inverse pole figure encoding show differences in the grain size composition of the ores: areas consisting of disseminated chromitites are characterized by a finer-grained structure compared to lens-shaped segregations of a massive structure. Analysis of microstructure maps shows that during the transition from disseminated to massive ores, there is a widespread development of recrystallization, adaptation of neighbouring grains to each other, resulting in homogenization of crystallographic orientation in aggregates. The data obtained develop ideas about the rheomorphic nature of chromitite segregations in ophiolite dunites. It is assumed that the coarsening of the structure of massive chromitites is critically associated with an increase in the concentration of ore grains during solid-phase segregation within a plastic flow, when individual chrome spinel grains, initially separated by silicate material, begin to come into direct contact with each other.
-
Date submitted2021-05-12
-
Date accepted2022-05-11
-
Date published2023-07-19
Application of the cybernetic approach to price-dependent demand response for underground mining enterprise electricity consumption
The article considers a cybernetic model for the price-dependent demand response (DR) consumed by an underground mining enterprise (UGME), in particular, the main fan unit (MFU). A scheme of the model for managing the energy consumption of a MFU in the DR mode and the implementation of the cybernetic approach to the DR based on the IoT platform are proposed. The main functional requirements and the algorithm of the platform operation are described, the interaction of the platform with the UGME digital model simulator, on which the processes associated with the implementation of the technological process of ventilation and electricity demand response will be simulated in advance, is shown. The results of modeling the reduction in the load on the MFU of a mining enterprise for the day ahead are given. The presented solution makes it possible to determine in advance the necessary power consumption for the operation of the main power supply unit, manage its operation in an energy-saving mode and take into account the predicted changes in the planned one (e.g., when men hoisting along an air shaft) and unscheduled (e.g., when changing outdoor air parameters) modes. The results of the study can be used to reduce the cost of UGME without compromising the safety of technological processes, both through the implementation of energy-saving technical, technological or other measures, and with the participation of enterprises in the DR market. The proposed model ensures a guaranteed receipt of financial compensation for the UGME due to a reasonable change in the power consumption profile of the MFU during the hours of high demand for electricity, set by the system operator of the Unified Energy System.
-
Date submitted2022-04-07
-
Date accepted2023-04-21
-
Date published2023-08-28
Development of a new assessment system for the applicability of digital projects in the oil and gas sector
Digital transformation is one of the global trends that has covered most sectors of the economy and industry. For oil and gas companies, the introduction of digital technologies has become not just a trend, but one of the factors for ensuring competitiveness and maintaining a stable position in the market in a rapidly changing macro environment. At the same time, despite the positive effects achieved, digital transformation is a complex process from the point of view of implementation and is associated with high technological, financial, and economic risks. The work aims to develop and test a new system for evaluating the applicability of digital projects in the oil and gas sector. The research methodology includes the application of the Gartner curve, methods of expert assessments, and tools for assessing the economic efficiency of investment projects. The developed assessment system is based on a comprehensive accounting of four components: the level of digital maturity of the company; compliance of the implemented technology with the goals and objectives of the organization; the level of reliability of the implemented technology; the level of innovation of the implemented project. Particular attention is paid to the practical testing of the proposed methodology based on the evaluation of a digital project implemented by a Russian oil and gas company.
-
Date submitted2022-10-29
-
Date accepted2023-02-13
-
Date published2023-04-25
The use of unmanned aerial photography for interpreting the technogenic transformation of the natural environment during the oilfield operation
The traditional approach to monitoring observations of the technogenic processes development in oilfields, which consists in determining the concentration of marker pollutants in various natural environments, does not provide the necessary completeness of information and the efficiency of its receipt. The paper considers an example of expanding the range of observations due to unmanned aerial photography and a number of other methods. Interpretation signs (for panchromatic survey) were determined that register such consequences of technogenic transformation of the natural environment as mechanogenesis, bitumization, and halogenesis. Technogenic mechanogenesis is understood as a physical violation of the integrity of ecosystems, the movement of soils and grounds. Bitumization is expressed in the migration of petroleum hydrocarbons through soils, ground, surface, subsurface, and underground waters, and their destruction. Salt migration in these media is defined as halogenesis. The most reliable indicators are linearly elongated areas of dead forests, dark red spots in drying microdepressions and reservoirs. It was found out that the oilfield impact on the raised bog leads to anthropogenic eutrophication, the introduction of plant species, uncharacteristic coenotic groups, the replacement of subshrubs with grasses, and morphometric changes in forest pine. In the peat deposits of the disturbed area, an unusual interlayer of whitish, undecomposed moss was recorded. The moment of the beginning of a pronounced technogenic transformation was registered in the course of work with the archive of multispectral space images. Continuous remote sensing with the help of unmanned aerial photography and interpretation by sedimentological, geobotanical methods significantly expand the possibilities of studying the technogenic transformation of the natural environment. To ensure environmental safety, it is advisable to develop remote methods and technologies to include them in the environmental monitoring system.
-
Date submitted2022-04-15
-
Date accepted2022-11-17
-
Date published2023-04-25
Uranium in man-made carbonates on the territory of Ufa
The paper presents the results of analyzing uranium content in man-made carbonates (scale crusts) on the territory of Ufa based on examination of 42 samples. The median uranium content in the investigated samples stands at 1.44 mg/kg, which is significantly lower than the background values (scales from the Lake Baikal water, a clarke of sedimentary carbonate rocks) and data on other settlements of the Republic of Bashkortostan. Low values of uranium content are probably associated with the effects of the three leading factors, i.e. specific subsurface geology of the territory (gypsum, limestone); types of water supply; water treatment processes for the centralized type of water supply. Spatial distribution of uranium in man-made carbonates is characterized with uniformity, which is disturbed in two cases, i.e. a change of the water supply type (from centralized to individual); and material of the vessels used for boiling the water. No significant differences were detected when comparing samples of man-made carbonates associated with different sources of water supply (the bucket and infiltration types of water intake) and the types of household filters.
-
Date submitted2022-06-20
-
Date accepted2022-10-07
-
Date published2022-11-03
Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading
One of the most reliable methods for assessing the physical and mechanical properties of rocks as a result of their destruction are laboratory tests using hard or servo-driven test presses. They allow to obtain reliable information about changes in these properties beyond the limit of compressive strength. The results of laboratory tests of rich sulfide ore samples are presented, which made it possible to obtain graphs of their extreme deformation. Both monolithic samples and samples with stress concentrators in the form of circular holes with a diameter of 3, 5 and 10 mm were tested. It was revealed that during the destruction of the samples, the modules of elasticity and deformation decrease by 1.5-2 times, and in the zone of residual strength – by 5-7 times.
-
Date submitted2022-05-04
-
Date accepted2022-06-15
-
Date published2022-07-26
Prospecting models of primary diamond deposits of the north of the East European Platform
As a result of a comprehensive study of the geological structure and diamond presense of the northern part of the East European Platform, generalization of the data accumulated by various organizations in the USSR, the Russian Federation, and other states, three main prospecting models of primary diamond deposits have been identified and characterized: Karelian, Finnish, and Arkhangelsk. Geological, structural, mineralogical, and petrographic criteria of local prediction, as well as the features of the response of kimberlite and lamproite bodies in dispersion haloes and geophysical fields, are considered using known examples, including data on the developed M.V.Lomonosov and V.P.Grib mines. It is shown that the most complicated prospecting environments occur in the covered areas of the Russian Plate, where, in some cases, the primary diamond-bearing rocks are similar in their petrophysical properties to the host formations. The buried dispersion haloes of kimberlite minerals in the continental Carboniferous and Quaternary deposits are traced at a short distance from the sources. Differences in the prospecting features of magnesian (Lomonosov mine) and ferromagnesian (Grib mine) kimberlites are also shown. Conclusions about the diamond potential of the model objects of various types are given in this paper.
-
Date submitted2022-02-26
-
Date accepted2022-04-27
-
Date published2022-07-26
Type intrusive series of the Far East belt of lithium-fluoric granites and its ore content
- Authors:
- Viktor I. Alekseev
The evolution and ore content of granitoid magmatism in the Far East belt of lithium-fluoric granites lying in the Russian sector of the Pacific ore belt have been studied. Correlation of intrusive series in the Novosibirsk-Chukotka, Yana-Kolyma and Sikhote-Alin granitoid provinces of the studied region allowed to establish the unity of composition, evolution, and ore content of the Late Mesozoic granitoid magmatism. On this basis, a model of the type potentially ore-bearing intrusive series of the Far East belt of lithium-fluoric granites has been developed: complexes of diorite-granodiorite and granite formations → complexes of monzonite-syenite and granite-granosyenite formations → complexes of leucogranite and alaskite formations → complexes of rare-metal lithium-fluoric granite formation. The main petrological trend in granitoid evolution is increasing silicic acidity, alkalinity, and rare-metal-tin specialization along with decreasing size and number of intrusions. At the end of the intrusive series, small complexes of rare-metal lithium-fluoric granites form. The main metallogenic trend in granitoid evolution is an increasing ore-generating potential of intrusive complexes with their growing differentiation. Ore-bearing rare-metal-granite magmatism of the Russian Far East developed in the Late Cretaceous and determined the formation of large tungsten-tin deposits with associated rare metals: Ta, Nb, Li, Cs, Rb, In in areas with completed intrusive series. Incompleteness of granitoid series of the Pacific ore belt should be considered as a potential sign of blind rare-metal-tin mineralization. The Far East belt of lithium-fluoric granites extends to the Chinese and Alaskan sectors of the Pacific belt, which allows the model of the type ore-bearing intrusive series to be used in the territories adjacent to Russia.
-
Date submitted2021-09-29
-
Date accepted2022-05-11
-
Date published2022-07-13
Tensor compaction of porous rocks: theory and experimental verification
Compaction in sedimentary basins has been traditionally regarded as a one-dimensional process that ignores inelastic deformation in directions orthogonal to the active load. This study presents new experiments with sandstone demonstrating the role of three-dimensional inelastic compaction in cyclic true triaxial compression. The experiments were carried out on the basis of a triaxial independent loading test system in the Laboratory of Geomechanics of the Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Science. The elastic moduli of the material were estimated from the stress-strain curves and the elastic deformations of the sample in each of the three directions were determined. Subtracting the elastic component from the total deformation allowed to show that inelastic compaction of the sandstone is observed in the direction of active loading, whereas in the orthogonal directions there is a expansion of the material. To describe the three-dimensional nature of the compaction, a generalization of Athy law to the tensor case is proposed, taking into account the role of the stress deviator. The compaction tensor and the kinetic equation to describe the evolution of inelastic deformation, starting from the moment of the load application are introduced. On the basis of experiments on cyclic multiaxial compression of sandstone, the identification and verification of the constructed model of tensor compaction were carried out. The possibility of not only qualitative, but also quantitative description of changes in inelastic deformation under complex cyclic triaxial compression is shown.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-07-13
Mullite production: phase transformations of kaolinite, thermodynamics of the process
The growing demand for mullite raw materials, which meet industrial requirements originates the search for new and alternative sources, as well as efficient technologies for obtaining the target products (nanocomposites). The article suggests a method for obtaining mullite from kaolinite experimentally (Vezhayu-Vorykvinsky deposit, Russia). Structural kaolinite transformations (Al-Si-O-Me system), mineral phases transformations, and thermodynamics of the process have been studied. Based on the estimation of the thermodynamics of the reactions, the preferable reaction of mullite formation was determined. The article shows, that formation of the target product, mullite nanocomposite, has several intermediate phases (metakaolinite, pseudomullite). The transformations of the initial kaolinite structure include the removal of structural water and separation of the silica-oxygen tetrahedral and alumina-oxygen octahedral layers, the decomposition into free oxides, breaking of bonds between the silica-oxygen tetrahedrons and the partial increase in the coordination number of aluminium ions, the formation of mullite and cristobalite from free oxides. The proposed approach controls the ratio of Al 2 O 3 and SiO 2 phases at certain stages, which will further improve the mechanical and other properties of the matrix of the obtained raw materials for the target prototypes of industrial products.
-
Date submitted2021-12-16
-
Date accepted2022-04-07
-
Date published2022-07-13
The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis
- Authors:
- Regina E. Dashko
- Georgiy A. Lokhmatikov
The article reviews the issues concerned with correctness of the engineering-geological and hydrogeological assessment of the Upper Kotlin clays, which serve as the foundation or host medium for facilities of various applications. It is claimed that the Upper Kotlin clays should be regarded as a fissured-block medium and, consequently, their assessment as an absolutely impermeablestratum should be totally excluded. Presence of a high-pressure Vendian aquifer in the lower part of the geological profile of the Vendian sediments causes inflow of these saline waters through the fissured clay strata, which promotes upheaval of tunnels as well as corrosion of their lining. The nature of the corrosion processes is defined not only by the chemical composition and physical and chemical features of these waters, but also by the biochemical factor, i.e. the availability of a rich microbial community. For the first time ever, the effect of saline water inflow into the Vendian complex on negative transformation of the clay blocks was studied. Experimental results revealed a decrease in the clay shear resistance caused by transformation of the structural bonds and microbial activity with the clay’s physical state being unchanged. Typification of the Upper Kotlin clay section has been performed for the region of Saint Petersburg in terms of the complexity of surface and underground building conditions. Fissuring of the bedclays, the possibility of confined groundwater inflow through the fissured strata and the consequent reduction of the block strength as well as the active corrosion of underground load-bearing structures must be taken into account in designing unique and typical surface and underground facilities and have to be incorporated into the normative documents.
-
Date submitted2021-10-14
-
Date accepted2022-04-07
-
Date published2022-04-29
The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow
The results of the analysis of statistical data on accidents at Russian mines caused by explosions in the workings space have shown that explosions of methane-dust-air mixtures at underground coal mines are the most severe accidents in terms of consequences. A detailed analysis of literature sources showed that in the total number of explosions prevails total share of hybrid mixtures, i.e. with the simultaneous participation of gas (methane) and coal dust, as well as explosions with the possible or partial involvement of coal dust. The main causes contributing to the occurrence and development of dust-air mixture explosions, including irregular monitoring of by mine engineers and technicians of the schedule of dust explosion protective measures; unreliable assessment of the dust situation, etc., are given. The main problem in this case was the difficulty of determining the location and volume of dust deposition zones in not extinguished and difficult to access for instrumental control workings. Determination of the class-shape of coal dust particles is a necessary condition for constructing a model of the dust situation reflecting the aerosol distribution in the workings space. The morphological composition of coal mine dust fractions with dispersion less than 0.1 has been studied. Particle studies conducted using an LEICA DM 4000 optical microscope and IMAGE SCOPE M software made it possible to establish the different class-shapes of dust particles found in operating mines. It was found that the coal dust particles presented in the samples correspond to the parallelepiped shape to the greatest extent. The mathematical model based on the specialized ANSYS FLUENT complex, in which this class-form is incorporated, is used for predicting the distribution of explosive and combustible coal dust in the workings space. The use of the obtained model in production conditions will allow to determine the possible places of dust deposition and to develop measures to prevent the transition of coal dust from the aerogel state to the aerosol state and thereby prevent the formation of an explosive dust-air mixture.
-
Date submitted2021-03-18
-
Date accepted2021-11-30
-
Date published2021-12-27
Deformations assessment during subway escalator tunnels construction by the method of artificial freezing of soil for the stage of ice wall formation
- Authors:
- Evgenii M. Volokhov
- Diana Z. Mukminova
The work is devoted to the study of the processes of displacement and deformation of the surface during the escalator tunnels construction of the subway by the method of artificial freezing of soils. The features of the construction and freezing technology, the rocks characteristics in which the escalator tunnels made are considered. The data of specially organized, full-scale surveying observations of deformations on the earth surface are presented. The main factors influencing deformation processes in the frozen strata of a layered inhomogeneous rock mass with inclined tunneling are determined, the complexity of the predictive task and the need to simplify the design scheme are shown. The work is focused on the assessment of the least studied geomechanical processes of soil heaving-uplifts and deformations during the periods of active and passive freezing stages. When studying the displacements processes of the earth surface and rock mass, the finite element method and analysis of the obtained data using field observations of displacements were used. A simplified calculation scheme is proposed for modeling, which allows taking into account the uneven influence of frozen rocks of an inhomogeneous layered rock mass with a large inclined tunneling. The satisfactory convergence of the data of field surveying observations on the earth surface and the results of modeling geomechanical processes for the period of active and passive freezing stages is shown. The proposed calculation scheme is recommended for the prediction of deformation at the stages of underground construction, characterized by the development of the most dangerous tensile deformations of buildings and structures on the surface.
-
Date submitted2021-01-20
-
Date accepted2021-03-29
-
Date published2021-09-20
Analysis of the causes of engineering structures deformations at gas industry facilities in the permafrost zone
Construction of oil and gas infrastructure facilities on permafrost soils is the most important task of increasing the raw material base of the entire fuel and energy industry in Russia. Permafrost soil is a complex, multicomponent system, state of which depends on many factors. Buildings and structures built under such conditions, on the one hand, have a complex thermal effect on permafrost soils, and on the other hand, they perceive the consequences of changes in the characteristics of such soils. This situation leads to the fact that buildings and structures on permafrost soil during their life cycle are subject to complex and poorly predictable deformations. Article presents the results of a study for various degradation processes of permafrost soils that can be implemented at construction sites of industrial facilities. Analysis of the deformations causes for engineering structures at the gas industry in the permafrost zone is carried out. Series of reasons causing such deformations have been investigated. Comprehensive criterion for assessing changes in permafrost-geological conditions of industrial sites is proposed. It is suggested to apply the method of calculating the individual characteristics for the temperature regime of the territory to monitor and assess the conditions of heat exchange and predict changes in the geocryological conditions of permafrost soil.
-
Date submitted2020-09-10
-
Date accepted2020-11-25
-
Date published2021-06-24
Formation conditions of noble metal mineralization in sulfide cobalt-copper-nickel ores of Kamchatka (on the example of Annabergitovaya Schel ore occurrence)
The authors present research results, the purpose of which is to study the specifics of noble metal mineralization and its genesis in sulfide cobalt-copper-nickel ores of the Kamchatka nickel-bearing province. The paper is dedicated to one of its many ore occurrences called Annabergitovaya Schel (Annabergite Gap). The material composition of platinoid, silver, gold, bismuth and tellurium minerals, as well as sulfarsenides in the ores of this occurrence was investigated. Based on the data of mineral formation sequence and the use of geosensors, conclusions were drawn regarding the genesis of noble metal mineralization. Formation of platinoid minerals, silver and gold at the Annabergitovaya Schel ore occurrence is mainly associated with the epigenetic effect of post-ore granitoids on ore-bearing intrusion rocks of the Dukuk complex of the cortlandite-norite formation and on syngenetic ores. An early association of noble metal minerals is represented by sperrylite, irarsite, and rare unnamed phases of Pt + Ir + Te. Irarsite and Pt + Ir + Te phases were formed at the contact-metasomatic stage. Sperrylite can be assumed to be of magmatic origin. Silver sulfides and tellurides, silver and palladium bismuth tellurides, and native gold were formed at the late, hydrothermal-metasomatic, stage. The occurrence conditions of mineral parageneses, associated with noble metal mineralization, correspond to the formation of shallow-depth metasomatic rocks (≤5 km). Sub-developed quartz-feldspar metasomatites, associated with the formation of early platinoid arsenides and sulfarsenides, are in equilibrium with circumneutral solutions (pH of 4.5-6.5) at temperatures of 350-600 °C. Late hydrothermal association with Pd, Ag and Au minerals is close to propylites and was formed at pH values of 4.5-6.5 and temperature of 150-350 °C.
-
Date submitted2020-07-30
-
Date accepted2021-03-02
-
Date published2021-04-26
Experimental study of thermomechanical effects in water-saturated limestones during their deformation
Stability control of elements of stone constructions of various structures is a prerequisite for their safe operation. The use of modern methods of non-destructive diagnostics of the stress-strain state of such constructions is an effective, and in many cases the only way to control it. Studies of thermal radiation accompanying the processes of solid bodies deformation allowed to justify and develop a method that allows to obtain non-contact information about changes in the stress-strain state in various types of geomaterials, including limestones. However, studies of the water saturation influence of rocks on the thermal radiation parameters recorded in this way are currently superficial. Taking into account the water saturation degree of rocks is necessary when monitoring the mechanical condition of stone structures that are in direct contact with water. The main purpose of this work is to study the dependences of changes in the intensity of thermal radiation from the surface of limestone samples with different humidity under conditions of uniaxial compression. The obtained results showed the expected significant decrease in the mechanical properties (uniaxial compressive strength and elastic modulus) of water-saturated samples in comparison with dry ones. At the same time, a significant increase in the intensity of thermal radiation of limestone samples subjected to compression with an increase in their water saturation was recorded, which makes it necessary to take into account the revealed regularity when identifying changes in the stress state of stone structures established according to non-contact IR diagnostics in real conditions.
-
Date submitted2020-05-16
-
Date accepted2020-07-30
-
Date published2020-12-29
Results of the study of kinetic parameters of spontaneous combustion of coal dust
The article is devoted to the study of the problem of spontaneous combustion of energy grades of coal not only during storage, but also during transportation. As the main samples for the study, the energy grades of SS and Zh coals were selected. The main task of the scientific research was to study the rate of cooling and heating of coal depending on their thermophysical parameters and environmental parameters. To solve this problem, the authors used both the author's installations designed to study the thermophysical parameters of the spontaneous combustion process (the Ya.S.Kiselev method), and the NETZSCH STA 449 F3 Jupiter synchronous thermal analysis device, the NETZSCH Proteus Termal Analysis software package. On the basis of a complex study of the spontaneous combustion process, the authors of the article obtained the kinetic characteristics of the spontaneous heating process (activation energy and pre-exponential multiplier). Nomograms of the permissible size of coal density of different types and shapes of accumulation depending on the ambient temperature are presented, practical recommendations for the prevention (avoidance) of spontaneous combustion of coal fuel are given.
-
Date submitted2020-05-06
-
Date accepted2020-05-24
-
Date published2020-06-30
Revisiting the evolution of deformation zones under platform conditions in the case study of the Kungur Ice Cave (Cis-Urals)
- Authors:
- Nataliya V. Lavrova
Observations in mining tunnels and caves allow to identify composition and development specifics of fault structures under subsurface conditions at various stages of geological history. Basing on the existing formation model of Kungur Ice Cave karst system, author examines the transformations of deformation zones, occurring in the mass of interlaid sulfate and carbonate rocks under platform conditions. Morphologic specifics of vertical structures – organ pipes, developed within one of the gypsum-anhydrite units, are defined by evolution stages of disjunctive faults, penetrating the entire rock mass of the Ice Cave. Point infiltration of surface waters and formation of a single channel, where rock softening and taluses from overlapping deposits gradually occur, are currently considered to be the initiators of pipe formation. At a later stage a sink forms on the surface, increasing the amount of water coming to the karsting mass. However, the size of debris in the talus, incommensurate with the pipe head, rounded arches of separate pipes, fragments of feeder channels, characteristic for artesian conditions of underground water circulation, faceted rock debris from overlapping deposits, specifics of wall structure all define the priority of pipe formation over grottos and cave galleries. Plastic properties of gypsum sediments and processes of their hydration define secondary modifications of pipe walls up to complete filling of the voids and formation of secondary pillars with subsequent renewed formation of vertical channels – significantly smaller in diameter and formed by infiltration waters when subject to corrosion.
-
Date submitted2019-07-29
-
Date accepted2020-01-10
-
Date published2020-04-24
Petrographic structures and Hardy – Weinberg equilibrium
- Authors:
- Yury L. Voytekhovsky
- Alena A. Zakharova
The article is devoted to the most narrative side of modern petrography – the definition, classification and nomenclature of petrographic structures. We suggest a mathematical formalism using the theory of quadratic forms (with a promising extension to algebraic forms of the third and fourth orders) and statistics of binary (ternary and quaternary, respectively) intergranular contacts in a polymineralic rock. It allows constructing a complete classification of petrographic structures with boundaries corresponding to Hardy – Weinberg equilibria. The algebraic expression of the petrographic structure is the canonical diagonal form of the symmetric probability matrix of binary intergranular contacts in the rock. Each petrographic structure is uniquely associated with a structural indicatrix – the central quadratic surface in n-dimensional space, where n is the number of minerals composing the rock. Structural indicatrix is an analogue of the conoscopic figure used for optical recognition of minerals. We show that the continuity of changes in the organization of rocks (i.e., the probabilities of various intergranular contacts) does not contradict a dramatic change in the structure of the rocks, neighboring within the classification. This solved the problem, which seemed insoluble to A.Harker and E.S.Fedorov. The technique was used to describe the granite structures of the Salminsky pluton (Karelia) and the Akzhailau massif (Kazakhstan) and is potentially applicable for the monotonous strata differentiation, section correlation, or wherever an unambiguous, reproducible determination of petrographic structures is needed. An important promising task of the method is to extract rocks' genetic information from the obtained data.