-
Date submitted2023-06-01
-
Date accepted2024-03-05
-
Date published2024-08-26
Analyzing friction bolts load bearing capacity in varying rock masses: an experimental study in Anti Atlas Imiter silver mining region, Morocco
This study analyzes how key factors impact friction rock bolt capacity using standard pull-out tests, focusing on 39 mm diameter, 180 cm long split-tube bolts. We investigate bolt performance dependence on rock mass rating (RMR), time after installation, schistosity orientation, surface roughness, and installation quality. The aim is optimizing bolt design and implementation for enhanced underground stability and safety. Results show RMR strongly exponentially correlates with pull-out resistance; higher quality rock masses increase capacity. Anchorage capacity significantly rises over time, especially for RMR above 70. Increasing angle between bolt axis and rock foliation from 0 to 90° boosts pull-out response. Reducing borehole diameter below bolt diameter grows bolt-ground friction. Empirical models estimate load capacity based on RMR, time, orientation, diameter, roughness and installation quality. These reliably predict bolt performance from site conditions, significantly improving on basic RMR methods. Experiments provide practical friction bolt behavior insights for typical rock masses. The data-driven analysis ensures models are applicable to actual underground scenarios. This enables tailored optimization of bolting configurations and supports. Methodologies presented should improve safety, efficiency and cost-effectiveness of reinforced mining and tunneling. Overall, this study fundamentally furthers friction bolt performance understanding, enabling superior underground support design.
-
Date submitted2022-06-27
-
Date accepted2023-06-20
-
Date published2023-12-25
Analysis of the problems of high-quality drinking water extraction from underground water intakes on Vysotsky Island in the Vyborg district of the Leningrad region
This article presents the results of drilling, experimental filtration work and laboratory studies aimed at assessing the resources and quality of groundwater in the licensed area of Vysotsky Island located in the Leningrad region, in the Gulf of Finland in accordance with the requirements of regulatory documents. Analysis of the results of hydrochemical studies and their comparison with data on water intakes in adjacent areas gives the right to conclude that it is possible to classify a hydrogeological unit as a different type of resource formation than those located in the surrounding areas. Groundwater in this area is confined to an unexplored deep fractured regional high-pressure zone. According to the received data, the explored water intake can be attributed to a unique groundwater deposit, which has an uncharacteristic composition of groundwater in the north of the Leningrad region, which may be due to the mixing of modern sediments and relict waters of the Baltic glacial lake. The stability of groundwater characteristics is confirmed by long-term monitoring.
-
Date submitted2022-08-20
-
Date accepted2022-11-17
-
Date published2022-12-29
Comparison of the approaches to assessing the compressibility of the pore space
- Authors:
- Vitaly S. Zhukov
- Yuri O. Kuzmin
Integral and differential approaches to determining the volumetric compression of rocks caused by changes in the stress state are considered. Changes in the volume of the pore space of rocks are analyzed with an increase in its all-round compression. Estimation of changes in the compressibility coefficients of reservoirs due to the development of fields is an urgent problem, since the spread in the values of compressibility factors reduces the adequacy of estimates of changes in the physical properties and subsidence of the earth's surface of developed fields and underground gas storages. This parameter is key in assessing the geodynamic consequences of the long-term development of hydrocarbon deposits and the operation of underground gas storage facilities. Approaches to the assessment differ in the use of cumulative (integral) or local (differential) changes in porosity with a change in effective pressure. It is shown that the coefficient of volumetric compressibility of pores calculated by the integral approach significantly exceeds its value calculated by the differential approach, which is due to the accumulative nature of pore compression with an increase in effective pressure. It is shown that the differential approach more accurately determines the value of the pore compressibility coefficient, since it takes into account in more detail the features of the change in effective pressure.
-
Date submitted2022-02-24
-
Date accepted2022-05-25
-
Date published2022-07-26
Litsa uranium ore occurrence (Arctic zone of the Fennoscandian Shield): new results of petrophysical and geochemical studies
Mineralogical, petrophysical and geochemical studies have been carried out to determine the sequence and formation conditions of uranium mineralization within the Litsa ore occurrence (Kola Region). Mineralogical studies show the following formation sequence of ore minerals: uraninite – sulfides – uranophane, coffinite, pitchblende. Two stages of uranium mineralization are distinguished: Th-U (1.85-1.75 Ga) and U (400-300 Ma). The distribution of physical properties of rocks in the area is consistent with the presence of two temporal stages in the formation of mineralization with different distribution and form of uranium occurrence in rocks. The factors that reduce rock anisotropy are the processes of migmatization and hydrothermal ore mineralization, which heal pores and cracks. Fluid inclusions in quartz studied by microthermometry and Raman spectroscopy contain gas, gas-liquid and aqueous inclusions of different salinity (1.7-18.4 wt.% NaCl-eq.). According to homogenization temperatures of inclusions in liquid phase, the temperature of the Paleoproterozoic and Paleozoic stages of uranium mineralization at the Litsa ore occurrence is ~ 300 and 200 °С, respectively. Correlations of the spatial distribution of elastic anisotropy index with an elevated radioactive background allow using this petrophysical feature as one of the prognostic criteria for uranium and complex uranium mineralization when carrying out uranium predictive work.
-
Date submitted2021-12-16
-
Date accepted2022-04-07
-
Date published2022-07-13
The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis
- Authors:
- Regina E. Dashko
- Georgiy A. Lokhmatikov
The article reviews the issues concerned with correctness of the engineering-geological and hydrogeological assessment of the Upper Kotlin clays, which serve as the foundation or host medium for facilities of various applications. It is claimed that the Upper Kotlin clays should be regarded as a fissured-block medium and, consequently, their assessment as an absolutely impermeablestratum should be totally excluded. Presence of a high-pressure Vendian aquifer in the lower part of the geological profile of the Vendian sediments causes inflow of these saline waters through the fissured clay strata, which promotes upheaval of tunnels as well as corrosion of their lining. The nature of the corrosion processes is defined not only by the chemical composition and physical and chemical features of these waters, but also by the biochemical factor, i.e. the availability of a rich microbial community. For the first time ever, the effect of saline water inflow into the Vendian complex on negative transformation of the clay blocks was studied. Experimental results revealed a decrease in the clay shear resistance caused by transformation of the structural bonds and microbial activity with the clay’s physical state being unchanged. Typification of the Upper Kotlin clay section has been performed for the region of Saint Petersburg in terms of the complexity of surface and underground building conditions. Fissuring of the bedclays, the possibility of confined groundwater inflow through the fissured strata and the consequent reduction of the block strength as well as the active corrosion of underground load-bearing structures must be taken into account in designing unique and typical surface and underground facilities and have to be incorporated into the normative documents.
-
Date submitted2021-10-27
-
Date accepted2022-01-24
-
Date published2022-04-29
Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing
The technogenic impact of mining on the environment is analyzed and the transition to geotechnology with stowing to reduce the impact of mining operations is proposed. The results of the research work devoted to the justification of parameters of the development of salt deposits with stowing and the definition of the influence of stowing on the dynamics of deformation of the underworked rock massif are presented. The relevance of research aimed at creating a safe and efficient technology for the transition from systems with natural maintenance of stoping space to systems with stowing has been substantiated. The results of studies on qualitative and quantitative assessment of the state of the rock massif (by the finite element method using FLAC3D software), worked out by combines, are given and the dynamics of the impact of mining operations on the rock mass and the change in the maximum stresses during the hardening of the stowing in the chambers are revealed. The numerical modeling method is used to analyze the conditions of change in the state of the underworked rock mass, to establish the mechanisms of its deformation at various stages of development. It is recommended to use this approach for geotechnical assessment of the rock mass state in conditions of using development systems of different classes.
-
Date submitted2021-06-08
-
Date accepted2021-11-30
-
Date published2021-12-27
Management of groundwater resources in transboundary territories (on the example of the Russian Federation and the Republic of Estonia)
Groundwater, as a source of water supply, the most important mineral and geopolitical resource, , is often the only source of high-quality drinking water that is protected from pollution under conditions of increasing deterioration of surface water quality. Transboundary groundwaters are the focus of hydrogeological researchers for a number of reasons, including the reduction and pollution of water resources as a result of economic activities. The increased controversy between states over transboundary water issues has necessitated the development of international legal documents on issues related to water conflict prevention and the sustainable use of fresh water. As part of the analysis of the problem of legal regulation of groundwater extraction from transboundary aquifers and complexes, it is proposed to consider this aspect on the example of Russia. The problems of regulation of rational use and protection of fresh water in the bilateral treaties of the Russian Federation were revealed; a methodology for the management of groundwater extraction in the territory of the transboundary aquifer was developed, the size, parameters, and factors influencing the formation of the transboundary zone have been determined (based on research and analysis of water intake activities in the border areas of the Russian Federation and the Republic of Estonia) were determined.
-
Date submitted2021-05-31
-
Date accepted2021-10-18
-
Date published2021-12-16
Experimental evaluation of compressibility coefficients for fractures and intergranular pores of an oil and gas reservoir
- Authors:
- Vitaly S. Zhukov
- Yuri O. Kuzmin
The paper is devoted to studies of the volumetric response of rocks caused by changes in their stress state. Changes in the volume of fracture and intergranular components of the pore space based on measurements of the volume of pore fluid extruded from a rock sample with an increase in its all-round compression have been experimentally obtained and analyzed. Determination of the fracture and intergranular porosity components is based on the authors' earlier proposed method of their calculation using the values of longitudinal wave velocity and total porosity. The results of experimental and analytical studies of changes in porosity and its two components (intergranular and fractured) under the action of effective stresses are considered. This approach allowed the authors to estimate the magnitude of the range of changes in the volumetric compressibility of both intergranular pores and fractures in a representative collection of 37 samples of the Vendian-age sand reservoir of the Chayanda field. The method of separate estimation of the compressibility coefficients of fractures and intergranular pores is proposed, their values and dependence on the effective pressure are experimentally obtained. It is determined that the knowledge of the values of fracture and intergranular porosity volumetric compressibility will increase the reliability of estimates of changes in petrophysical parameters of oil and gas reservoirs caused by changes in the stress state during the development of hydrocarbon fields.
-
Date submitted2020-07-04
-
Date accepted2021-03-29
-
Date published2021-09-20
Transition between relieved and unrelieved modes when cutting rocks with conical picks
In the modern theory of rock cutting in production conditions, it is customary to distinguish two large classes of achievable cutting modes – relieved and unrelieved. The kinematics of rock-breaking machines in most cases determines the operation of the cutting tool in both modes in one cycle of the cutting tool. The currently available calculation methods have been developed for a stable, usually unrelieved cutting mode. In this article, the task is set to determine the conditions for the transition between cutting modes and the modernization of the calculation method for determining the forces on the cutting tool. The problem is solved by applying methods of algebraic analysis based on the search for the extremum of the force function on the cutter, depending on the ratio of the real cut spacing to the optimal spacing for the current chip thickness. As a result of solving the problem, an expression is obtained for determining the chip thickness, for which, at the specified parameters, the transition between the relieved and unrelieved cutting modes is provided. The obtained result made it possible to improve the method of calculating the forces on the cutting tool in the areas of the cutter movement with relieved cutting.
-
Date submitted2020-11-16
-
Date accepted2021-03-02
-
Date published2021-04-26
Determination and verification of the calculated model parameters of salt rocks taking into account softening and plastic flow
The article suggests using a combination of the modified Burgers model and the Mohr – Coulomb model with the degradation of the adhesion coefficient and the increase in the friction coefficient to determine the parameters of salt rocks. A comparative analysis of long-term laboratory tests and field observations in underground mine workings with the results obtained using a calculated model with certain parameters is carried out. The parameters of the Mohr – Coulomb model with the degradation of the adhesion coefficient and the increase in the friction coefficient were obtained from the statistically processed data of laboratory tests, and the parameters of the modified Burgers model were determined. Using numerical methods, virtual (computer) axisymmetric triaxial tests, both instantaneous and long-term, were performed on the basis of the proposed model with selected parameters. A model problem is solved for comparing the behavior of the model with the data of observation stations in underground mine workings obtained from borehole rod extensometers and contour deformation marks. The analytically obtained coefficients of the nonlinear viscous element of the modified Burgers model for all the analyzed salt rocks did not need to be corrected based on the monitoring results. At the same time, optimization was required for the viscoelastic element coefficients for all the considered rocks. The analysis of the model studies showed a satisfactory convergence with the data on the observation stations. The comparative analysis carried out on the models based on laboratory tests and observations in the workings indicates the correct determination of the parameters for salt rocks and the verification of the model in general.
-
Date submitted2020-07-02
-
Date accepted2021-02-16
-
Date published2021-04-26
Development of viscoelastic systems and technologies for isolating water-bearing horizons with abnormal formation pressures during oil and gas wells drilling
Article provides a brief overview of the complications arising during the construction of oil and gas wells in conditions of abnormally high and abnormally low formation pressures. Technological properties of the solutions used to eliminate emergency situations when drilling wells in the intervals of catastrophic absorption and influx of formation fluid have been investigated. A technology for isolating water influx in intervals of excess formation pressure has been developed. The technology is based on the use of a special device that provides control of the hydrodynamic pressure in the annular space of the well. An experiment was carried out to determine the injection time of a viscoelastic system depending on its rheology, rock properties and technological parameters of the isolation process. A mathematical model based on the use of a special device is presented. The model allows determining the penetration depth of a viscoelastic system to block water-bearing horizons to prevent interformation crossflows and water breakthrough into production wells.
-
Date submitted2019-04-27
-
Date accepted2019-07-10
-
Date published2019-10-23
Estimation of Rock Mass Strength in Open-Pit Mining
The paper presents results of an experimental study on strength characteristics of the rock mass as applied to the assessment of open-pit slope stability. Formulas have been obtained that describe a correlation between ultimate and residual strength of rock samples and residual shear strength along the weakening surface. A new method has been developed to calculate residual interface strength of the rock mass basing on data from the examination of small-scale monolith samples with opposing spherical indentors. A method has been proposed to estimate strength characteristics (structural weakening coefficients and internal friction angles) of the fractured near-slope rock mass. The method relies on test data from shattering small-scale monolith samples with spherical indentors, taking into ac- count contact conditions along the weakening surface, and can be applied in the field conditions. It is acceptable to use irregular-shaped samples in thetests.
-
Date submitted2018-11-09
-
Date accepted2019-01-22
-
Date published2019-04-23
Determining the stability of the borehole walls at drilling intervals of loosely coupled rocks considering zenith angle
- Authors:
- P. A. Blinov
During development of drilling projects, a whole array of data is needed considering the properties of rocks and the conditions of their bedding. Accounting for geomechanical processes occurring in the near-wellbore zone allows avoiding many complications associated with the violation of the wellbore walls stability at all stages of its construction and operation. Technological and technical factors such as vibration and rotation of the drilling string, formation of launders during the descent and ascent of the assembly, pressure pulsation during the start and stop of pumps, hydrostatic and hydrodynamic pressure of the drilling fluid, its composition and properties, have a great influence on the stress-strain state of the medium opened by the well. The washing fluid circulating in the well should provide backpressure to the reservoir, not interact with the rocks chemically, colmatage channels in porous and fractured rocks, preventing penetration of the mud into the medium, by creating an impermeable barrier at drilling clay seams that are prone to swelling, cracking, etc. The article discusses the method for determining the stability of the directed well walls, taking into account the penetration of drilling mud into the pores and fractures of rocks. The technique will allow adjusting the zenith angle of the well during the workout of an unstable interval at the design stage, or selecting a drilling fluid composition to ensure fail-safe drilling.
-
Date submitted2018-01-04
-
Date accepted2018-03-08
-
Date published2018-06-22
Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores
- Authors:
- M. N. Overchenko
- S. A. Tolstunov
- S. P. Mozer
The paper presents the results of borehole stability research and considers possible causes of emergencies. The features of the blast hole drilling process are analyzed taking into account the properties of the rock. Based on the distribution of speed of drill fines removal from the well, an algorithm for selecting drilling modes is proposed. The nature of change in the size of the holess over time has been analyzed. This paper investigates the influence of rock fracturing and its water content on borehole stability. Possible options for eliminating the man-made impact on the massif near holes and options for fixing the hole walls with soft shells are suggested. The experimental data on the installation of shells for the conditions of open mining of apatite-nepheline ores are given. The operability and effectiveness of the technology is proved.
-
Date submitted2017-11-22
-
Date accepted2018-01-04
-
Date published2018-04-24
Justification of a methodical approach of aerologic evaluation of methane hazard in development workings at mines of Vietnam
- Authors:
- V. V. Smirnyakov
- Nguen Min' Fen
The methods of evaluation of the aerological conditions to be performed for the purpose of normalization of mining conditions are provided in the present review; the location of possible accumulations of explosive gases during the drift of the development workings are taken into account. To increase the safety of the development working regarding the gas factor, a complex evaluation of a working was developed with respect to the dynamics of methane emission and air coursing along the working which is strongly affected by the character of the leakages from the ventilation ducting. Thereby, there occurs a necessity of the enhancement of a methodical approach of calculation of ventilation of a working which consists in taking into consideration a total aerodynamic resistance of the booster fan including the local resistances of the zones of the working. An integer simulation of the gas-air flows realized on the basis of a software package FLowVision allows to evaluate a change in the methane concentration in the zones of local accumulations.
-
Date submitted2015-07-11
-
Date accepted2015-09-17
-
Date published2016-02-24
The mechanism of rock burst leading to ground destruction of mine openings
- Authors:
- M. G. Mustafin
The article deals with the main issues of studying of one type of rock bursts which lead to gound destruction of coal mine openings. The research is focused on rock burst prediction. Some cases of rock bursts are analised. The paper points out factors affecting this kind of rock failure. It also presents some simulation models and numerical examples. The results of the research show that it is possible to plan safe mining operations under different mining and geological conditions.
-
Date submitted2014-12-28
-
Date accepted2015-02-21
-
Date published2015-12-25
Modeling of rock massif geomechanical state at gas extraction from coal seams
- Authors:
- M. G. Mustafin
The article describes the method of modeling a coal seam stress-strain state and an enclosing rock massif when degasified. An approach to defining the model input parameters, calculated with the porosity and gas pore pressure coefficient, was shown. The importance of preliminary calculations, indicating possible coal seam shrinkage and surface subsidence was underlined. It shows formation mechanism for coal seam zones with elevated gas pressure, where gas recovery is efficient.
-
Date submitted2014-12-07
-
Date accepted2015-02-23
-
Date published2015-12-25
Bump hazard evaluation of a rock mass area as a result of its seismic acoustic activity registration
- Authors:
- V. V. Nosov
Ore production in deep rock-bump hazardous mines is closely connected with the need to in-crease workers’ safety, which demands heavy costs of taking preventive shockproof actions and applying expensive protection systems against mountain blows. The article considers a resource forecasting technique and a bump hazard evaluation method for a rock mass area, based on a mi-cromechanical model, which registers acoustic emission of heterogeneous materials, and empirical data, obtained as a result of acoustic signals registration with the help of the model, aimed at seis-mic-acoustic activity evaluation at «Taimir» and «Oktyabrsky» rock mass areas, belonging to Norylsk industrial region.
-
Date submitted2014-11-29
-
Date accepted2015-01-09
-
Date published2015-10-26
G.V.Bogomolov and his role in development of national hydrogeology
- Authors:
- D. L. Ustyugov
- L. P. Norova
In March 2015 the scientific community celebrated the 110th anniversary of the birth of one of the founders of the hydrogeological and engineering-geological school, an honouree of State Award of the USSR and the Byelorussian SSR, Academician Gerasim Vasilyevich Bogomolov. The article is devoted to several important stages of the development of Russian hydrogeology, which are primarily associated with the research conducted by G.V.Bogomolov. His role in the development of hydrogeology in Belarus, i.e. theory and practice of the use of groundwater, is emphasized. This article is about the man who was a brilliant geologist, scholar, lecturer and an outstanding research manager. G.V.Bogomolov founded a school of disciples and followers who continued to develop and put into practice the academician’s ideas in various branches of geological theory and practice.
-
Date submitted2014-11-07
-
Date accepted2015-01-07
-
Date published2015-10-26
The concept of reducing the risks of potash mines flooding caused by groundwater inrush into excavations
- Authors:
- V. P. Zubov
- A. D. Smychnik
Results of the analysis of factors influencing the probability of accidental groundwater inrush into mine workings of salt (potash, potassium and magnesium) mines are given in the article. The cases of the potash mine flooding that occurred in different countries with developed mining industry are given. It is shown that at the present technical and scientific level of solving this problem the unexpected groundwater inrush in potash mines usually results in the shutdown of the enterprise and negative ecological consequences. It is pointed out that the underground waters flow into the mines through water-conducting fractures of either natural or technogenic origin which location and influence on a mine was almost impossible to predict at the design stage under existing regulations. The concept of reducing the risks of potash mine flooding caused by underground waters in-rush is formulated. Administrative and technical measures which allow reducing the risks of potash mine flooding caused by groundwater inrush into the excavations are considered.
-
Date submitted2014-11-01
-
Date accepted2015-01-18
-
Date published2015-10-26
On the design features of underground multiple gassy coal seam mining
- Authors:
- O. I. Kazanin
The analysis of the industry regulatory requirements and the world design experience of underground multiple coal seam mining is provided. The main problems of intensive longwall mining of multiple flat gassy coal seams as well as methods for determination of high rock pressure zone parameters and seams interaction are considered. The examples of a number of mines in the Kuzbass and Pechora coal basins show that the design of multiple seam mining and the choice of longwall panel parameters were often made without taking into consideration influence of surrounded seams that leads to essential complication of conditions for mining operations and decreases the technical and economic indicators of mining. The existing industry regulations do not allow considering complex influence of factors in multiple coal seams mining fully. On the basis of field, laboratory, and numeric research results it is noted that recommendations for pillar positioning in contiguous seams ensuring efficiency and safety of multiple seam longwall mining can significantly differ in case of liability of coal seams to spontaneous combustion, high natural gas content, influence of multiple seam mining onto daily surface, and difficult conditions of entries maintenance. The importance of having information on the stress-strain condition of the rock mass at a design stage and its changes in the process of multiple seam mining is shown. The need for industry regulations updating for the purpose of a more detailed definition of a form, size and a location of high rock pressure zones as well as stress parameters in these zones is noted. A set of recommendations for effective and safe multiple seam mining is developed.
-
Date submitted2014-06-24
-
Date accepted2014-08-29
-
Date published2014-12-22
Mathematical modeling of mine air conditioning in the zone of mine works
- Authors:
- A. A. Lapshin
The article addresses the topical problem of normalizing the microclimate in the deep ore mines of the Krivbas and Zaporozhsky iron ore mines. Studies of heat exchange processes in the mine workings of the deep ore mines of Krivbas and Zaporozhsky iron ore have shown considerable changes in air temperature. Moreover, as a rule, in the zone of mining works, the air temperature exceeds the permissible values of 26 °С, and at depths of 1200-1500 m reaches 28-30 °C. A method of normalization of the thermal conditions in the zone of mining works due to cooling in the irrigation chamber is presented. A mathematical model of heat exchange processes in the irrigation chamber, which allows, by simulation modeling, to establish thermal regimes corresponding to the sanitary and hygienic norms of mining operations in the conditions of deep iron ore mines, is presented.
-
Date submitted2014-06-23
-
Date accepted2014-09-15
-
Date published2014-12-22
Topical issues of the management of extraction of underground waters on the territory of the Russian Federation
- Authors:
- N. V. Pashkevich
- E. I. Golovina
Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides for the economic, social, and environmental well-being of the population. The modern system of taxation and regulation of subsoil use in the extraction of groundwater is currently imperfect and has definite disadvantages, among them not enough control of natural resources by the state, the commercialization stage of licensing, and the budget deficit, which is passed on to other areas of the national economy. General information about the state of the underground water supply in Russia, and the negative trends of underground water use are presented. The system of licensing underground water intakes in Germany is briefly described; some measures to improve the system of man-agement of Russia’s underground waters fund are suggested.
-
Date submitted2009-10-23
-
Date accepted2009-12-11
-
Date published2010-09-22
Aspects in geomechanics and safety in exploration of solid mineral deposits
- Authors:
- A. I. Perepelitsyn
The paper deals with the aspects of safety in mining at the ore mine «Norilsk nickel», the Yakovlevsky iron ore deposit, the Verkhnekamsk potassium-magnesium deposit of salts. It was shown that with due account of state of mining at the objects related to the utilization of the Earth's interior, the normative-legal support of mining regulation in the field of geomechanics is rather actual and it requires researches into the activities of mining enterprises as well as in the control work carried out by supervisory bodies of Mining Supervision.
-
Date submitted2009-10-18
-
Date accepted2009-12-09
-
Date published2010-09-22
Influence of blocky-hierarchy structure of geological medium on the forming of natural and technogenic geodynamic fields in the North-West part of the Amur geoblock
- Authors:
- I. Yu. Rasskazov
- B. G. Saksin
On the example of the South-Argun uranium ore district of Zabaikalie consideration is given to the interaction of regional and local fields of stresses. The district includes a number of deposits prone to rock bursts. The performed analysis contains data on recent geodynamics of the explored part of the Amur geoblock as well as on geomechanical and geologo-structural materials of Tulukuev caldera and of Antey deposit. It is shown that with the use of the M.A. Sadovsky relationship the indices of local structural forms of a row are subjected to unified laws of deformation and fracturing. Conclusion was made that at the beginning of deposit exploitation the direction of action of stress field within rock mass conformed to regional one, and then it considerably changed under influence of large-scale mining operations.