Submit an Article
Become a reviewer

Search articles for by keywords:
structural weakening coefficient

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-06-17
  • Date accepted
    2024-07-17
  • Date published
    2025-04-25

Justification on the safe exploitation of closed coal warehouse by gas factor

Article preview

The annual increase of coal production and its demand lead to the necessity in temporary storage places (warehouses) organization to accommodate raw coal materials before the shipment. It is noted that at the open method of coal storing the dust emission from loading/unloading operations and from the pile surface effects negatively the health of the warehouse workers and adjacent territories. An alternative solution is closed-type warehouses. One of the main hazards of such coal storage can be the release of residual methane from coal segregates into the air after degassing processes during mining and extraction to the surface, as well as transportation to the place of temporary storage. The study carries the analysis of methane content change in coal during the processes of extraction, transportation and storage. Physical and chemical bases of mass transfer during the interaction between gas-saturated coal mass and air are studied. It is determined that the intensity of methane emission depends on: the coal seam natural gas content, parameters of mass transfer between coal, and air and the ambient temperature. The dynamics of coal mass gas exchange with atmospheric air is evaluated by approximate approach, which is based on two interrelated iterations. The first one considers the formation of methane concentration fields in the air space of the bulk volume and the second accounts the methane emission from the pile surface to the outside air. It is determined that safety of closed coal warehouses exploitation by gas factor can be ensured by means of artificial ventilation providing volumetric methane concentration in the air less than 1 %. The flow rate sufficient to achieve this methane concentration was obtained as a result of computer modeling of methane concentration fields formation in the air medium at theoretically calculated methane emission from the pile surface.

How to cite: Gendler S.G., Stepantsova A.Y., Popov M.M. Justification on the safe exploitation of closed coal warehouse by gas factor // Journal of Mining Institute. 2025. Vol. 272 . p. 72-82. EDN SIJDWE
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-17
  • Date accepted
    2025-01-28
  • Date published
    2025-04-25

Determination of impact hazard potential of rocks in the Norilsk Industrial Region

Article preview

The deeper the mineral deposits developments are, the worse the mining and geological conditions become. Significant growth of stress level in the rock mass contributes to possible manifestation of rock pressure in dynamic form. The resulting task of assessment of rock impact hazard is closely related to the task of obtaining more accurate results of compression tests of samples in rigid or servohydraulic test presses using graphs of their full deformation. This approach requires special expensive equipment, considerable time resources, and sufficient core material. Therefore, it is important to have an approach that allows to assess the propensity of rocks to brittle fracture with research methods simple enough not to result in the loss of quality and reliability of the obtained results. This paper presents the results of laboratory tests of rocks from the Norilsk Industrial Region to determine their tensile and compressive strengths. Test methods involved both domestic and foreign standards for determining the value of the brittleness coefficient. The impact hazard potential of rocks was determined using the Kaiser criterion. It is found that the tested lithological types (rich sulfide ores, hornblende, disseminated ores, and gabbro-dolerite rocks), with the exception of anhydrite, have a low impact hazard potential.

How to cite: Gospodarikov A.P., Zatsepin M.A., Kirkin A.P. Determination of impact hazard potential of rocks in the Norilsk Industrial Region // Journal of Mining Institute. 2025. Vol. 272 . p. 83-90. EDN UOHOQP
Geology
  • Date submitted
    2022-11-21
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

M1 formation tectono-structural features and gas-oil potential within Archinskaya area Paleozoic basement (Western Siberia)

Article preview

Western Siberian Plate basement oil and gas potential evaluation largely depends on structural and stratigraphic complex architecture representation. New modern procedures for seismic data processing, detailed Paleozoic deposits stratigraphic studies and expanded geophysical well logging significantly change the representation of the basement rocks fold-block structure and previously developed hydrocarbon reservoirs models. Detailed studies conducted within the Archinskii uplift showed that Paleozoic sediments form a contrasting folded structure complicated by block tectonics. The significant block displacements amplitude determines the lithological and stratigraphic basement rocks erosional-tectonic surface, while the identified stratigraphic blocks control the oil productivity distribution within the Archinskaya area. The filtration-capacity heterogeneity folded structure of the Paleozoic sediments is reflected in the distribution of hydrocarbon saturation in the well section, forming independent gas, oil, and oil-water zones for the development process. The relationship between anticlinal structural forms of basement rocks to lowered, and synclinal to elevated blocks, determines the necessity to conduct exploration prospecting within younger stratigraphic blocks when assessing the deep Paleozoic oil and gas potential.

How to cite: Belozerov V.B., Korovin M.O. M1 formation tectono-structural features and gas-oil potential within Archinskaya area Paleozoic basement (Western Siberia) // Journal of Mining Institute. 2024. Vol. 268 . p. 520-534. EDN XDUIIJ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-08-02
  • Date accepted
    2023-12-27
  • Date published
    2024-04-25

Justification of the approaches to improve management strategy of the mining system based on the analysis of data on the mining of complex structural rock blocks

Article preview

Long-term activity of mining enterprises causes the necessity to substantiate the strategies of management of the mining and technical system functioning in terms of improvement of ore quality control, which is determined by its change in the course of field development due to the priority development of the main reserves and, as a consequence, forced transition to the mining of complex structural rock blocks with a decrease in the recovery percentage, which is typical in case the ore component meets the requirements of the feasibility study in terms of grade at substandard capacity. In this case, it is possible to identify the recovery percentage and the potential for its increase by analyzing the long-term activity of the mining and industrial enterprise, namely, by analyzing the data of mining complex structural rock blocks with the subsequent establishment of the relationship between the primary data on mining and geological conditions and information on the quality of the mineral obtained from the technological equipment. Therefore, the purpose of the research was to substantiate the necessity of improving the management strategy of the mining-technical system functioning, which consists in the fact that on the basis of analyzing the mining data of complex structural rock blocks it is possible to determine the ore mass losses and their quantity and to lay the basis for the development of decisions on its extraction. For this purpose, the collected data on the mining of complex structural rock blocks, accounting the geological and industrial type of extracted ores, were considered in modeling the conditions and studying the parameters of technological processes, the implementation of which provides additional products. It was revealed that the ore mass from substandard thickness layers is delivered to the dumps, and ore mass losses have been estimated at 25-40 % per year. It is proved that determination of ore mass losses based on the analysis of data on mining of complex structural rock blocks, as well as timely solution of this issue can significantly increase the production efficiency of mining and technical system. Taking into account for the results obtained, the options for optimizing the production of the mining and engineering system were proposed.

How to cite: Tsupkina M.V., Kirkov A.E., Klebanov D.A., Radchenko D.N. Justification of the approaches to improve management strategy of the mining system based on the analysis of data on the mining of complex structural rock blocks // Journal of Mining Institute. 2024. Vol. 266 . p. 316-325. EDN JOLUPJ
Geology
  • Date submitted
    2022-10-29
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site)

Article preview

The study presents the results of the research on geodynamic and geological conditions of the Enisei site (Krasnoyarsk Krai), chosen for the construction of an underground research laboratory. The laboratory is being built at a depth of 500 m to assess the suitability of the rock mass for burying high-level radioactive waste. The rocks consist of weakly fractured gneisses, granites, and dikes of metadolerites. Field observations were conducted on bedrock outcrops. They included the determination of rock mass quality indicators, measurement of rock fracturing, and a rating classification of stability using N.Barton's method. GNSS observations were also made to monitor surface deformations. These data were used to develop a three-dimensional structural model, including lithology, fault disruptions, intrusive bodies, elastic-strength properties of rocks, and the sizes of zones influenced by faulting. It will serve as a basis for boundary conditions and the construction of three-dimensional variational models of stress-strain states, identifying zones of concentration of hazardous stresses, and planning in situ geomechanical experiments in underground mines of the laboratory. The obtained values of the modified QR index for the main types of rocks allowed their classification as stable and moderately stable, corresponding to strong and very strong rocks on Barton's scale and the massif rating according to geomechanical classification.

How to cite: Akmatov D.Z., Manevich A.I., Tatarinov V.N., Shevchuk R.V., Zabrodin S.M. Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site) // Journal of Mining Institute. 2024. Vol. 266 . p. 167-178. EDN ECCWUV
Energy industry
  • Date submitted
    2023-03-16
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Energy efficiency of the linear rack drive for sucker rod pumping units

Article preview

At present, in order to increase oil production and reduce economic costs in the development of marginal fields, the development of a cluster method using compact mobile drives of sucker rod pumping units (SRPU) is relevant. The aim of the work is to analyze the ways to improve the energy efficiency of the SRPU by reducing the loss of mechanical and electrical energy, to select the most energy-efficient compact drive for the development of marginal fields in the cluster method, to carry out the kinematic and strength calculations of the drive of the selected size, to develop an adaptive control system for a group of drives in the cluster development of drillings. According to the results of the performed calculations, the linear rack-and-gear drive has the highest efficiency of the drive mechanism. The kinematic and strength calculations of a linear rack-and-gear drive with a stroke length of 1120 mm and a load of up to 8 tons are presented. It was shown that the usage of a direct torque control system and a kinetic energy storage system for the SRPU drive elements and a rod string is an effective means of reducing energy costs in oil production from marginal fields. The use of the developed system for storing and redistributing the potential energy of the rods between the SRPUs that lift oil made it possible to eliminate fluctuations in the power consumption, reduce the power peak value by three times, the peak value of the current consumed from the electric network by two times, and reduce losses in the input converter and cables by three times.

How to cite: Ganzulenko O.Y., Petkova A.P. Energy efficiency of the linear rack drive for sucker rod pumping units // Journal of Mining Institute. 2023. Vol. 261 . p. 325-338. EDN HIGAOE
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-01-27
  • Date accepted
    2023-03-04
  • Date published
    2023-04-25

Use of the UNIFAC model in the calculation of physicochemical properties of ecotoxicants for technological and ecoanalytical purposes

Article preview

Modern development vector of environmental monitoring leads to elaboration of analytical methods for qualitative and quantitative analysis of different ecotoxicants. Many studies face the lack of information on isomers and homologues of already studied compounds. This problem cannot always be solved experimentally due to the difficulty of separating or synthesizing certain compounds; the use of group theories of solutions will help partly; using them, solubility in water or partition coefficient between two immiscible solvents is calculated for ecotoxicants. These parameters are important for solving the analytical and ecological problems. The partition coefficient in the octanol – water system is associated with a possibility of accumulation of different compounds in living organisms; the partition coefficient in the hexane – acetonitrile system can be used in gas chromatographic analysis. Solubility in water is closely associated with accumulation of ecotoxicants in water bodies, as well as with their ability to be transferred. This paper presents the capabilities of the UNIFAC model for solving physicochemical problems using the example of calculating the properties of real ecotoxicants on the basis of the available thermodynamic data. All the obtained calculated values were compared with those determined experimentally. In the case of pyrene derivatives, solubility data were obtained for the first time using a correlation group model to calculate the heat of fusion and melting temperature.

How to cite: Povarov V.G., Efimov I.I. Use of the UNIFAC model in the calculation of physicochemical properties of ecotoxicants for technological and ecoanalytical purposes // Journal of Mining Institute. 2023. Vol. 260 . p. 238-247. DOI: 10.31897/PMI.2023.41
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-06
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Comprehensive study of filtration properties of pelletized sandy clay ores and filtration modes in the heap leaching stack

Article preview

There are the results of a study of the factors determining the formation and changes in the filtration properties of a heap leaching stack formed from pelletized poor sandy-clay ores. An analysis of methods of investigation of filtration properties of ore material for different stages of heap leaching plots functioning is carried out. Influence of segregation process during stack dumping on formation of zones with very different permeability parameters of ore has been established by experimental and filtration works. The construction and application of a numerical model of filtration processes in pelletized ores based on laboratory experiments is shown. By means of solution percolation simulation at different irrigation intensities the justification of optimal stack parameters is provided in terms of the geomechanical stability and prevention of solution level rise above the drainage layer.

How to cite: Marinin M.A., Karasev M.A., Pospehov G.B., Pomortseva A.A., Kondakova V.N., Sushkova V.I. Comprehensive study of filtration properties of pelletized sandy clay ores and filtration modes in the heap leaching stack // Journal of Mining Institute. 2023. Vol. 259 . p. 30-40. DOI: 10.31897/PMI.2023.7
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-05-13
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing

Article preview

Hydraulic fracturing is an effective way to stimulate oil production, which is currently widely used in various conditions, including complex carbonate reservoirs. In the conditions of the considered field, hydraulic fracturing leads to a significant differentiation of technological efficiency indicators, which makes it expedient to study in detail the crack formation patterns. For all affected wells, the assessment of the resulting fractures spatial orientation was performed using the developed indirect technique, the reliability of which was confirmed by geophysical methods. In the course of the analysis, it was found that in all cases the fracture is oriented in the direction of the development system element area, which is characterized by the maximum reservoir pressure. At the same time, reservoir pressure values for all wells were determined at one point in time (at the beginning of hydraulic fracturing) using machine learning methods. The reliability of the used machine learning methods is confirmed by high convergence with the actual (historical) reservoir pressures obtained during hydrodynamic studies of wells. The obtained conclusion about the influence of the formation pressure on the patterns of fracturing should be taken into account when planning hydraulic fracturing in the considered conditions.

How to cite: Filippov Е.V., Zakharov L.A., Martyushev D.A., Ponomareva I.N. Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing // Journal of Mining Institute. 2022. Vol. 258 . p. 924-932. DOI: 10.31897/PMI.2022.103
Metallurgy and concentration
  • Date submitted
    2022-05-12
  • Date accepted
    2022-09-06
  • Date published
    2022-11-03

Morphometric parameters of sulphide ores as a basis for selective ore dressing

Article preview

To assess the possibility of selective disintegration and reduction of overgrinding of hard-to-reproduce ores, optical microscopic and X-ray microtomographic studies were carried out and quantitative characteristics of morphological parameters of disseminated and rich cuprous ore samples from Norilsk-type Oktyabrsky deposit were identified. Among quantitative morphological parameters the most informative are area, perimeter, edge roughness, sphericity, elongation and average grain spacing for disseminated copper-nickel ores; area, perimeter, edge roughness and elongation for rich cuprous ores. The studied parameters are characterized by increased values and dispersion in ore zones, which is especially important for fine-grained ores, which are difficult to diagnose by optical methods. Three-dimensional modelling of the internal structure of sulphide mineralisation samples was carried out using computed X-ray microtomography, which allows observation of quantitative parameters of grains, aggregates and their distribution in the total rock volume and interrelationship with each other. The evaluation of rock pore space by computer microtomography made it possible to compare the results obtained with the strength characteristics of rocks and ores, including those on different types of crushers. The obtained quantitative characteristics of structural-textural parameters and analysis of grain size distribution of ore minerals allow us to evaluate the possibility of applying selective crushing at various stages of ore preparation

How to cite: Duryagina A.M., Talovina I.V., Lieberwirth H., Ilalova R.K. Morphometric parameters of sulphide ores as a basis for selective ore dressing // Journal of Mining Institute. 2022. Vol. 256 . p. 527-538. DOI: 10.31897/PMI.2022.76
Geology
  • Date submitted
    2022-04-06
  • Date accepted
    2022-06-15
  • Date published
    2022-07-26

Geological and structural position of the Svetlinsky gold deposit (Southern Urals)

Article preview

The paper presents the geological and structural position of the large Svetlinsky gold deposit in the Kochkar anticline (Southern Urals), localized in the zone of the Late Paleozoic (D 3 ) deep thrust of the western dip. The study confirms and clarifies the notion of its multiphase and polychronism. The thrust caused bending moments in its wings, subsidence of the lying crust, emergence of a shallow marine basin with rapid accumulation of terrigenous carbonate sediments (C 1 v), and formation of numerous landslide structures. The heating of rocks in the anticline core was accompanied by granitization and dome formation. A small Svetlinsky dome formed in the immediate vicinity of the thrust, creating a thermobaric gradient field (С 2 ). The zone of dome dynamic influence also includes the adjoining thrust area, complicated by a series of sub-vertical thrusts of sub meridional strike and numerous steeply dipping subparallel cracks of the latitudinal strike, synchronously filled with vein quartz and accompanied by hydrothermal metasomatic rock transformations. The formation of the gold deposit occurred during the post-collisional relaxation stage (from P 1 to, probably, the Early Jurassic). The association of gold mineralization with the Svetlinsky dome is indicated by the presence of native gold in Neogene ravine placers in the dome area and marbles of the Svetlinsky deposit, in association with fluorite, F-phlogopite, Cr-muscovite, pink topaz, pure quartz, and native sulphur. The presence of native gold in Neogene ravine placers in the dome area and marbles of the Svetlinsky deposit, in association with fluorite, F-phlogopite, Cr-muscovite, pink topaz, pure quartz, and native sulphur, indicates the association of gold mineralization with the Svetlinsky dome.

How to cite: Kissin A.Y., Pritchin M.E., Ozornin D.A. Geological and structural position of the Svetlinsky gold deposit (Southern Urals) // Journal of Mining Institute. 2022. Vol. 255 . p. 369-376. DOI: 10.31897/PMI.2022.46
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-04-11
  • Date accepted
    2021-10-18
  • Date published
    2021-12-16

Comprehensive assessment and analysis of the oil and gas potential of Meso-Cenozoic sediments in the North Caucasus

Article preview

At the present stage, the development of the oil and gas industry in the Russian Federation is impossible without replenishing the raw material base, so the urgent task is to conduct investigations, prospecting and evaluation of oil and gas bearing capacity prospects in undiscovered areas. The purpose of the investigations is to analyze facies and thicknesses, choose the methodology of prospecting and exploration in reservoirs, make a comprehensive assessment of oil and gas bearing capacity prospects based on experimental investigations and construct a map of oil and gas bearing capacity prospects of the studied sediment structure. The methodology of the conducted investigations was to identify and trace zones of increased fracturing by qualitative interpretation of time seismic sections. Methods for qualitative interpretation of time seismic sections, the model of physical, chemical and geochemical criteria developed by I.A.Burlakov, gas and geochemical surveying and correlation analysis were used in the investigations. A number of prospecting criteria, established based on the analysis of reference seismic materials on well-studied areas in comparison with the results of well tests, were also used. Structural plan for forecast prospects of oil and gas bearing capacity in the studied area was made; zonal and local objects with prospects for oil and gas were identified. Graphical plotting of Eh and pH concentrations distribution and various gas and geochemical indicators allowed identifying zones of possible oil and gas accumulations and starting their detailed survey. Processing of gas and geochemical materials by means of software allowed efficient assessment of prospects for oil and gas bearing capacity of the investigated objects.

How to cite: Bosikov I.I., Мaier A.V. Comprehensive assessment and analysis of the oil and gas potential of Meso-Cenozoic sediments in the North Caucasus // Journal of Mining Institute. 2021. Vol. 251 . p. 648-657. DOI: 10.31897/PMI.2021.5.4
Geology
  • Date submitted
    2021-01-19
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Geological and structural characteristics of deep-level rock mass of the Udachnaya pipe deposit

Article preview

For hard rock massifs, structural disturbance is a key indicator of mining structure stability. The presence of intersecting structural elements in the massif reduces rock strength and leads to formation of potential collapse structures. In addition to that, disjunctive deformations that penetrate rock strata serve as channels for fluid migration and connect aquifers into a single system. It was established that the largest of them –faults of east-northeastern, northeastern and northwestern directions – form the kimberlite-bearing junction of the Udachnaya pipe. These faults represent zones of increased fracturing, brecciation and tectonic foliation, distinguished from adjacent areas by increased destruction of the rock mass. Specifics of tectonic fracture distribution within structural and lithological domains are determined by the presence of multidirectional prevailing systems of tectonic fracturing, as well as by differences in their quantitative characteristics. With some exceptions, the main systems form a diagonal network of fractures (northeastern – northwestern orientation), which is typical for larger structural forms – faults. Despite the differences in dip orientation of the systems, most of them correspond to identified directions, which is typical for both kimberlites and sedimentary strata. Overall disturbance of the massif, expressed in terms of elementary block volume, reaches its peak in the western ore body. For such type of deposits, friction properties of fracture structures have average values. Consideration of geological and structural data in the design and development of new levels of the deposit will allow to maintain the necessary balance between efficiency and safety of performed operations.

How to cite: Serebryakov E.V., Gladkov A.S. Geological and structural characteristics of deep-level rock mass of the Udachnaya pipe deposit // Journal of Mining Institute. 2021. Vol. 250 . p. 512-525. DOI: 10.31897/PMI.2021.4.4
Metallurgy and concentration
  • Date submitted
    2020-06-29
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

Transformation of grains of technological raw materials in the process of obtaining fine powders

Article preview

Crushing and grinding of materials are the most common processes of sample preparation for subsequent analysis and industrial application. Recently, grinding has become one of the most popular methods for producing nano-sized powders. This study investigates certain features of grain transformation in the process of grinding ores with finely dispersed valuable components in order to liberate them, as well as specifics of grinding metallurgical raw materials, metals and their mixtures for using them as initial components in metallurgical and other technological processes. We identified and examined structural and morphological changes of various powders after ultrafine grinding using the methods of scanning electron microscopy and X-ray microanalysis. It was proved that in order to take into account sample preparation artifacts during analytic studies of solid samples and development of technological processes, fine grinding of heterogeneous materials, especially if they contain metals, requires monitoring of the ground product by methods of scanning electron microscopy and X-ray microanalysis.

How to cite: Gembitskaya I.M., Gvozdetskaya M.V. Transformation of grains of technological raw materials in the process of obtaining fine powders // Journal of Mining Institute. 2021. Vol. 249 . p. 401-407. DOI: 10.31897/PMI.2021.3.9
Geoeconomics and Management
  • Date submitted
    2021-02-05
  • Date accepted
    2021-03-30
  • Date published
    2021-04-26

Assessment of negative infrastructural externalities when determining the land value

Article preview

The work forms and substantiates the concept of land value, based on a new institutional theory. The infrastructural component of the cost of land in the presented concept determines, on the one hand, the efficiency of the use of natural resources, properties, demand for land on the market, on the other hand, the costs, which are determined not only by capital investments in construction of engineering infrastructure, but also by losses associated with restrictions on activities within zones with special conditions for territory use, creation of unfavorable conditions for economic activity, small contours, irregularities and others on a specific land plot, which are external negative infrastructural externalities that create losses of rights holders of land plots that are not compensated by the market, falling within the boundaries of these zones. Methods for assessing the impact of such negative infrastructural externalities on the cost of land encumbered by zones in different conditions of land market activity have been developed and tested, based on an expert-analytical approach (depressed market); the ratio of market values of land plots encumbered and unencumbered by a specific zone, and qualimetric modeling (inactive market); modeling by introducing into the model the factor of presence of zones with special conditions for territory use, based on the grouping of zones according to similar regulations for use, or by introducing the parameters of this factor (active market). Methods for taking into account spatial deficiencies and compensating for restrictions and prohibitions on activities on the territory of land plots with an individual market assessment are proposed.

How to cite: Bykova E.N. Assessment of negative infrastructural externalities when determining the land value // Journal of Mining Institute. 2021. Vol. 247 . p. 154-170. DOI: 10.31897/PMI.2021.1.16
Mining
  • Date submitted
    2021-01-25
  • Date accepted
    2021-02-22
  • Date published
    2021-04-26

Conducting industrial explosions near gas pipelines

Article preview

The problem to ensure the safety of objects which are in the area of blasting operations, ensuring the destruction of hard rocks, remains relevant. The article presents the results of a large-scale experiment to determine the safe conditions for conducting drilling and blasting operations near the active gas pipeline. The simplest and most reliable way to ensure the safety of the protected object from seismic impact is to reduce the intensity of the seismic wave, which is achieved by changing the parameters of drilling and blasting operations. This requires research to determine the impact of blasting operations on the parameters of seismic waves and the development of methods for measuring these parameters. The paper presents a detailed analysis of the seismic blast wave impact on the displacement of the ground and the model gas pipeline. The features of seismic monitoring during blasting operations near the active gas pipeline are shown. The seismic coefficients and attenuation coefficient of seismic waves are determined. It is proved that the readings of the seismic receivers on the surface and in the depth of the massive differ by two or more times.

How to cite: khokhlov S.V., Sokolov S.T., Vinogradov Y.I., Frenkel I.B. Conducting industrial explosions near gas pipelines // Journal of Mining Institute. 2021. Vol. 247 . p. 48-56. DOI: 10.31897/PMI.2021.1.6
Electromechanics and mechanical engineering
  • Date submitted
    2020-05-18
  • Date accepted
    2020-06-16
  • Date published
    2021-04-26

Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement

Article preview

The article discusses the solution to the problem of underground railway transport slipping in dynamic modes, which occurs when there is a significant difference in the speeds of the driving and driven pairs of wheels. The state of the rail surfaces largely determines the coefficient of adhesion, therefore, using a mathematical model, the condition for the dependence of the magnitude of slipping and tractive effort is selected. For effective acceleration and deceleration of an electric locomotive, it is necessary to control the coefficient of adhesion at a certain level. A simulation model of rolling stock has been created, which for the first time takes into account a mechanical system with distributed parameters. In the structural diagram of the automatic control system of traction electric drives with frequency regulation, such factors as the volume of goods being moved, rolling friction, slope (rise) levels and the state of the rail track are taken into account. The simulation results show the features of the movement and stops of the freight train not only by the diagrams of speed and forces in the modes of acceleration-deceleration and uniform movement, but also the positions of the plungers and tractive forces on the couplings of the electric locomotive and all trolleys involved in the movement of goods. The practical application of the proposed method lies in the possibility of starting a heavily laden train from its place on the ascent section in conditions of insufficient adhesion coefficient with contaminated roads.

How to cite: Borisov S.V., Koltunova E.A., Kladiev S.N. Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement // Journal of Mining Institute. 2021. Vol. 247 . p. 114-121. DOI: 10.31897/PMI.2021.1.12
Oil and gas
  • Date submitted
    2019-12-25
  • Date accepted
    2020-06-30
  • Date published
    2020-10-08

Accounting of geomechanical layer properties in multi-layer oil field development

Article preview

Amid the ever-increasing urgency to develop oil fields with complex mining and geological conditions and low-efficiency reservoirs, in the process of structurally complex reservoir exploitation a number of problems arise, which are associated with the impact of layer fractures on filtration processes, significant heterogeneity of the structure, variability of stress-strain states of the rock mass, etc. Hence an important task in production engineering of such fields is a comprehensive accounting of their complex geology. In order to solve such problems, the authors suggest a methodological approach, which provides for a more reliable forecast of changes in reservoir pressure when constructing a geological and hydrodynamic model of a multi-layer field. Another relevant issue in the forecasting of performance parameters is accounting of rock compressibility and its impact on absolute permeability, which is the main factor defining the law of fluid filtration in the productive layer. The paper contains analysis of complex geology of a multi-layer formation at the Alpha field, results of compression test for 178 standard core samples, obtained dependencies between compressibility factor and porosity of each layer. By means of multiple regression, dependencies between permeability and a range of parameters (porosity, density, calcite and dolomite content, compressibility) were obtained, which allowed to take into account the impact of secondary processes on the formation of absolute permeability. At the final stage, efficiency of the proposed methodological approach for construction of a geological and hydrodynamic model of an oil field was assessed. An enhancement in the quality of well-by-well adaptation of main performance parameters, as well as an improvement in predictive ability of the adjusted model, was identified.

How to cite: Galkin S.V., Krivoshchekov S.N., Kozyrev N.D., Kochnev A.A., Mengaliev A.G. Accounting of geomechanical layer properties in multi-layer oil field development // Journal of Mining Institute. 2020. Vol. 244 . p. 408-417. DOI: 10.31897/PMI.2020.4.3
Geology
  • Date submitted
    2019-07-29
  • Date accepted
    2020-01-10
  • Date published
    2020-04-24

Petrographic structures and Hardy – Weinberg equilibrium

Article preview

The article is devoted to the most narrative side of modern petrography – the definition, classification and nomenclature of petrographic structures. We suggest a mathematical formalism using the theory of quadratic forms (with a promising extension to algebraic forms of the third and fourth orders) and statistics of binary (ternary and quaternary, respectively) intergranular contacts in a polymineralic rock. It allows constructing a complete classification of petrographic structures with boundaries corresponding to Hardy – Weinberg equilibria. The algebraic expression of the petrographic structure is the canonical diagonal form of the symmetric probability matrix of binary intergranular contacts in the rock. Each petrographic structure is uniquely associated with a structural indicatrix – the central quadratic surface in n-dimensional space, where n is the number of minerals composing the rock. Structural indicatrix is an analogue of the conoscopic figure used for optical recognition of minerals. We show that the continuity of changes in the organization of rocks (i.e., the probabilities of various intergranular contacts) does not contradict a dramatic change in the structure of the rocks, neighboring within the classification. This solved the problem, which seemed insoluble to A.Harker and E.S.Fedorov. The technique was used to describe the granite structures of the Salminsky pluton (Karelia) and the Akzhailau massif (Kazakhstan) and is potentially applicable for the monotonous strata differentiation, section correlation, or wherever an unambiguous, reproducible determination of petrographic structures is needed. An important promising task of the method is to extract rocks' genetic information from the obtained data.

How to cite: Voytekhovsky Y.L., Zakharova A.A. Petrographic structures and Hardy – Weinberg equilibrium // Journal of Mining Institute. 2020. Vol. 242 . p. 133-138. DOI: 10.31897/PMI.2020.2.133
Oil and gas
  • Date submitted
    2019-05-30
  • Date accepted
    2019-09-03
  • Date published
    2020-02-25

Study on influence of two-phase filtration transformation on formation of zones of undeveloped oil reserves

Article preview

In order to study the process of fluid filtration during flooding of an oil field, article uses Rapoport – Lis model of non-piston oil displacement by water. During plane-radial filtration in a homogeneous formation, radii of disturbance zones are determined with and without taking into account the end effect. Influence of changes in value of capillary pressure gradient on distribution of water saturation coefficient in the non-piston displacement zone for high and low permeability reservoirs is revealed. Application of an element model for a five-point injection and production well placement system showed that, using traditional flooding technology, flat-radial fluid filtration is transformed into rectilinear-parallel. At solving equation of water saturation, Barenblatt method of integral relations was used, which allows determining the transformation time. By solving the saturation equation for rectilinear-parallel filtration, change in the value of water saturation coefficient at bottomhole of production well for an unlimited and closed deposit is determined. It is shown that an increase in water cut coefficient of a production well is possible only for a closed formation. To determine coefficient of water saturation in a closed deposit, a differential equation with variable coefficients is obtained, an iterative solution method is proposed. In the element of the five-point system, oil-saturated zones not covered by development were identified. For channels of low filtration resistance, conditions for their location in horizontal and vertical planes are established. It is shown that, at maintaining formation pressure, there is an isobar line in formation, corresponding to initial formation pressure, location of which determines direction of fluid crossflow rates. Intensity of crossflows affects application efficiency of hydrodynamic, physical and chemical, thermal and other methods of enhanced oil recovery.

How to cite: Grachev S.I., Korotenko V.A., Kushakova N.P. Study on influence of two-phase filtration transformation on formation of zones of undeveloped oil reserves // Journal of Mining Institute. 2020. Vol. 241 . p. 68-82. DOI: 10.31897/PMI.2020.1.68
Oil and gas
  • Date submitted
    2019-01-31
  • Date accepted
    2022-12-02
  • Date published
    2020-02-25

The relationship of fracture toughness coefficients and geophysical characteristics of rocks of hydrocarbon deposits

Article preview

This paper contains the results of laboratory tests to determine the fracture toughness coefficient K IC of rocks for terrigenous and carbonate objects by three methods. The tests were carried out by different methods due to the lack of a standard method for determining the fracture toughness characteristics of rocks in Russia. We used the following methods for determining the K IC coefficient: the extension of core specimens with an annular fracture, the action of a concentrated load on a beam specimen with a fracture and the method of bending semi-circular samples with a fracture according to ISRM recommendations. The paper presents the relationship of the fracture toughness coefficients with the P-wave velocity and porosity. The obtained dependencies characterize the general trend of changing for the studied parameter and can be used in the design of hydraulic fracturing in the fields for which tests were conducted.

How to cite: Kashnikov Y.A., Ashikhmin S.G., Kukhtinskii A.E., Shustov D.V. The relationship of fracture toughness coefficients and geophysical characteristics of rocks of hydrocarbon deposits // Journal of Mining Institute. 2020. Vol. 241 . p. 83-90. DOI: 10.31897/PMI.2020.1.83
Mining
  • Date submitted
    2019-07-21
  • Date accepted
    2019-09-20
  • Date published
    2020-02-25

Assessment of operational reliability of quarry excavator-dump truck complexes

Article preview

The method proposed in the article is based on the mathematical apparatus for quantitative assessment of the reliability of majority schemes of structural redundancy of transport processes, which provide the availability and usage of several backup delivery channels in the transport process in case of any malfunction. The principle of multi-channel haulage is commonly used in quarries for transportation of overburden and minerals from benches by dump trucks, when excavators and dump trucks performing cyclic operations function as a single excavator-dump truck complex. This pattern of work significantly increases the likelihood of fulfilling the daily plan for transporting rock mass due to the redistribution of dump trucks between mining and overburden excavators in the event of failure of one or more units of mining and handling equipment. The reliability of excavator-dump truck complexes is assessed in three stages: initial data collection for mathematical modeling of excavator-dump truck complex performance; solving the problem of optimizing the distribution of dump trucks between excavators, ensuring maximum productivity of the excavator-dump truck complex; assessment of the reliability of its work depending on the probability of fulfilling the daily plan for the transportation of rock mass. The proposed method is implemented as part of a computer program and makes it possible to automate the operational management of the process of transporting rock mass in a quarry using a mobile application. The developed guidelines can be used for any quarries with automobile transport, regardless of the type of mineral extracted, the mining method, the loading pattern, the capacity of the excavation and loading equipment fleet, and the capacity of operated dump trucks.

How to cite: Kurganov V.M., Gryaznov M.V., Kolobanov S.V. Assessment of operational reliability of quarry excavator-dump truck complexes // Journal of Mining Institute. 2020. Vol. 241 . p. 10-21. DOI: 10.31897/PMI.2020.1.10
Geoeconomics and Management
  • Date submitted
    2019-07-06
  • Date accepted
    2019-09-11
  • Date published
    2019-12-24

Structural changes and innovation economic development of the Arctic regions of Russia

Article preview

This article is devoted to problem of assessing relationship of innovative economic development and structural changes in industry of the Arctic regions. Performed analysis showed that change in the structure of industrial production in the Arctic regions from 2010 to 2016 was characterized by significant interregional differences in speed and intensity of transformation processes. It is shown that one of the key factors that caused structural changes in industry of the Arctic regions of Russia in 2010-2016 was increase in economic role of innovations and change in the pace of innovative processes development. In particular, the results of correlation analysis showed the presence of stable positive links between «science intensity» of economy and transformation of regional industry structure. The presence of a strong positive connection between impact of innovative development factors – an increase in growth rate of innovative goods – and structural changes in industrial production was set. Another factor contributing to structural changes in industry was investment in modernization of production. It is proved that in order to ensure further sustainable economic growth in regions of the Arctic, a necessary condition should be a substantial increase of «science intensity» in economy, including industries related to mining operations.

How to cite: Berezikov S.A. Structural changes and innovation economic development of the Arctic regions of Russia // Journal of Mining Institute. 2019. Vol. 240 . p. 716-723. DOI: 10.31897/PMI.2019.6.716
Mining
  • Date submitted
    2019-04-27
  • Date accepted
    2019-07-10
  • Date published
    2019-10-23

Estimation of Rock Mass Strength in Open-Pit Mining

Article preview

The paper presents results of an experimental study on strength characteristics of the rock mass as applied to the assessment of open-pit slope stability. Formulas have been obtained that describe a correlation between ultimate and residual strength of rock samples and residual shear strength along the weakening surface. A new method has been developed to calculate residual interface strength of the rock mass basing on data from the examination of small-scale monolith samples with opposing spherical indentors. A method has been proposed to estimate strength characteristics (structural weakening coefficients and internal friction angles) of the fractured near-slope rock mass. The method relies on test data from shattering small-scale monolith samples with spherical indentors, taking into ac- count contact conditions along the weakening surface, and can be applied in the field conditions. It is acceptable to use irregular-shaped samples in thetests.

How to cite: Pavlovich A.A., Korshunov V.A., Bazhukov A.A., Melnikov N.Y. Estimation of Rock Mass Strength in Open-Pit Mining // Journal of Mining Institute. 2019. Vol. 239 . p. 502-509. DOI: 10.31897/PMI.2019.5.502
Mining
  • Date submitted
    2017-12-29
  • Date accepted
    2018-03-06
  • Date published
    2018-06-22

Evaluation of signal properties when searching for cavities in soil under concrete slabs by radio detection stations of subsurface investigation

Article preview

A method of localization of concealed cavities on the basis of studying of the reflected electromagnetic impulses is considered in the paper. An issue of early detecting of concealed cavities in engineering facilities is a critical one due to a significant influence on further serviceability of a structure. Problems of localization of concealed cavities in the soil body under the concrete slabs of hydropower stations were studied; the results of ground radar detecting investigations of the cavities, physical simulation of a cavity as well as a mathematical modeling of a reflected signal are presented. Modern subsurface radar detection provides methods which allow to reliably detect concealed cavities in the soil. However, it is possible only in case of a clear boundary between the adjacent layers that conditions a jump of dielectric permeability. In the result of an abrupt change of dielectric permeability a reflected wave occurred; the existence of subsurface heterogeneity is conditioned by the properties of this wave. Moreover, the greater is the difference between the values of dielectric permeability in the adjacent layers, the larger amplitude the reflected wave will have. If the cavity is at the stage of forming, i.e. it is filled with the soil of reduced density, then there is no clear boundary at the border of the layers which will condition a gradual change of dielectric permeability with depth. In this case an amplitude of a reflected wave will be minimal and a formation signal will be masked out by jamming signals reflected from various heterogeneities. In such case to determine a cavity at the stage of forming seems to be impossible. To determine poor signals an analysis of a phase of a reflected signal may be used; phase alters in compliance with the reflection coefficient change pattern. The article contains information about signals reflected from the heterogeneities and a conclusion regarding a possibility of detecting cavities in the soil on the basis of a method of coherent processing of signals is made.

How to cite: Rudianov G.V., Krapivskii E.I., Danilev S.M. Evaluation of signal properties when searching for cavities in soil under concrete slabs by radio detection stations of subsurface investigation // Journal of Mining Institute. 2018. Vol. 231 . p. 245-253. DOI: 10.25515/PMI.2018.3.245