Submit an Article
Become a reviewer

Search articles for by keywords:
strength

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-20
  • Date accepted
    2024-11-07
  • Date published
    2025-02-27

Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation

Article preview

The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values ​​of pressure drawdown and changes in stress-strain properties depending on the area of ​​mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.

How to cite: Popov S.N., Chernyshov S.E., Wang X. Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation // Journal of Mining Institute. 2025. p. EDN VOBTXU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-05-19
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

Development and research of backfill compounds with improved elastic and strength properties for oil and gas well lining

Article preview

This article describes operations from the well construction cycle where the cement rock behind the casing is subjected to dynamic action (impacts of the drill stem during drilling and normalization of the cement sleeve, secondary drilling operations, hydraulic fracturing, etc.). The developed cement mortar compositions were tested following API 10B-2, API 10B-6, API STD-65-2, and GOST 28985-91 standards. The composition of the cement system without the use of imported components (CM-5) was developed, which improved elastic and strength properties compared to existing industry solutions. An improvement in the elastic and strength features and technological properties of cement rock when using epoxy resins was identified, the optimal composition of the cement-and-epoxy grout was determined, and the internal structure of the formed backfill rock, its permeability, and porosity were studied.

How to cite: Blinov P.A., Sadykov M.I., Gorelikov V.G., Nikishin V.V. Development and research of backfill compounds with improved elastic and strength properties for oil and gas well lining // Journal of Mining Institute. 2024. Vol. 268 . p. 588-598. EDN OWJFHS
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-03-14
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Predictive assessment of ore dilution in mining thin steeply dipping deposits by a system of sublevel drifts

Article preview

The purpose of research is the study of stress-strain state of marginal rock mass around the stope and predictive assessment of ore dilution with regard for changes in ore body thickness in mining thin ore deposits on the example of the Zholymbet mine. Study of the specific features of the stress-strain state development was accomplished applying the methodology based on numerical research methods taking into account the geological strength index (GSI) which allows considering the structural features of rocks, fracturing, lithology, water content and other strength indicators, due to which there is a correct transition from the rock sample strength to the rock mass strength. The results of numerical analysis of the stress-strain state of the marginal part of the rock mass using the finite element method after the Hoek – Brown strength criterion made it possible to assess the geomechanical state in the marginal mass provided there are changes in ore body thickness and to predict the volume of ore dilution. It was ascertained that when mining thin ore deposits, the predicted value of ore dilution is influenced by the ore body thickness and the GSI. The dependence of changes in ore dilution values on the GSI was recorded taking into account changes in ore body thickness from 1 to 3 m. Analysis of the research results showed that the predicted dimensions of rock failure zone around the stopes are quite large, due to which the indicators of the estimated ore dilution are not attained. There is a need to reduce the seismic impact of the blasting force on the marginal rock mass and update the blasting chart.

How to cite: Imashev A.Z., Suimbaeva A.M., Musin A.A. Predictive assessment of ore dilution in mining thin steeply dipping deposits by a system of sublevel drifts // Journal of Mining Institute. 2024. Vol. 266 . p. 283-294. EDN GPKEBJ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-20
  • Date accepted
    2023-04-03
  • Date published
    2024-02-29

Impact of carbon dioxide on the main geotechnical quality criteria and preparation cost of cemented paste backfill

Article preview

There is a global upsurge in the use of cemented paste backfill (CPB) for various mining functions. However, the cost of the Portland cement binder is prohibitive, thus warranting strategies to reduce cement usage without overly diminishing the CPB quality. Since carbon dioxide is used for patented sand moulding processes, this study is premised on that physicochemical ability of CO2 to enhance the curing of consolidated inorganic materials. It evaluated the impact of carbon dioxide on the uniaxial compressive strength UCS and preparation cost of CPB standard samples (ASTM C109). The preparation cost was delimited to the purchase cost of the Portland cement. The backfill material was silica sand tailings with 4.5 wt.% Portland cement binder and a water-cement ratio of 7.6. Distilled water of pH 5.4 was used for the control samples while variable amounts of carbon dioxide were dissolved in distilled water to generate carbonated mixing water with pH values of 3.8; 4 and 4.2. The lower the carbonated water pH, the higher is the CO2 concentration. UCS tests were conducted on the samples after curing for 3, 7, 28, and 90 days. There was an observable increase in the UCSs and reduction in curing time with increasing carbon dioxide. Samples prepared with carbonated water of pH 3.8 had almost double the strength of those prepared with pure distilled water of pH 5.4, implying that more dissolved CO2 corresponds to higher CPB strength. This is supported by the trendline equations for the graphical simulation of strength on curing time. Thus, CPB with much less binder can be expected to attain the requisite UCS if carbon dioxide is incorporated. The average reduction in Portland cement consumption was 0.61 %, which translates to a cost saving of the same percentage points. If calculated over the operational life of a mine, this is a massive saving of millions of dollars.

How to cite: Bukasa P.M., Mashingaidze M.M., Simasiku S.L. Impact of carbon dioxide on the main geotechnical quality criteria and preparation cost of cemented paste backfill // Journal of Mining Institute. 2024. Vol. 265 . p. 45-54. EDN ZBZTKN
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-25
  • Date accepted
    2023-02-02
  • Date published
    2023-08-28

Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors

Article preview

Experimental data on the relationship of the residual shear strength of rocks in closed cracks with the functional characteristics of intact rocks – the tensile and compressive components of adhesion, the roughness of the crack surfaces, and the level of normal stresses are presented. A unified integrated approach determines the shear strength of intact and destroyed rocks, the residual shear strength of closed rough cracks has been developed. The approach provides for the selection of stress intervals corresponding to different types of fracture, for each of which a strength criterion is proposed, expressed in terms of functional characteristics of intact rock. An express method for estimating the residual shear strength of rocks by cracks with a rough surface has been developed, in which an improved method of loading samples with spherical indentors is used as a basic test method. The express method implements the transition from the data of mechanical tests of samples with spherical indentors to the shear strength indicators for cracks in the rock mass, taking into account the level of normal stresses and the roughness of the crack surfaces measured in field conditions. In this case the roughness scale developed by Barton is used. The express method is informative and available in the fieldwork.

How to cite: Korshunov V.A., Pavlovich A.A., Bazhukov A.A. Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors // Journal of Mining Institute. 2023. Vol. 262 . p. 606-618. DOI: 10.31897/PMI.2023.16
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-16
  • Date accepted
    2022-04-07
  • Date published
    2022-07-13

The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis

Article preview

The article reviews the issues concerned with correctness of the engineering-geological and hydrogeological assessment of the Upper Kotlin clays, which serve as the foundation or host medium for facilities of various applications. It is claimed that the Upper Kotlin clays should be regarded as a fissured-block medium and, consequently, their assessment as an absolutely impermeablestratum should be totally excluded. Presence of a high-pressure Vendian aquifer in the lower part of the geological profile of the Vendian sediments causes inflow of these saline waters through the fissured clay strata, which promotes upheaval of tunnels as well as corrosion of their lining. The nature of the corrosion processes is defined not only by the chemical composition and physical and chemical features of these waters, but also by the biochemical factor, i.e. the availability of a rich microbial community. For the first time ever, the effect of saline water inflow into the Vendian complex on negative transformation of the clay blocks was studied. Experimental results revealed a decrease in the clay shear resistance caused by transformation of the structural bonds and microbial activity with the clay’s physical state being unchanged. Typification of the Upper Kotlin clay section has been performed for the region of Saint Petersburg in terms of the complexity of surface and underground building conditions. Fissuring of the bedclays, the possibility of confined groundwater inflow through the fissured strata and the consequent reduction of the block strength as well as the active corrosion of underground load-bearing structures must be taken into account in designing unique and typical surface and underground facilities and have to be incorporated into the normative documents.

How to cite: Dashko R.E., Lokhmatikov G.A. The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis // Journal of Mining Institute. 2022. Vol. 254 . p. 180-190. DOI: 10.31897/PMI.2022.13
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-24
  • Date accepted
    2022-04-06
  • Date published
    2022-07-13

Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow

Article preview

The reduction kinetics of serial phase transitions of iron oxides during reduction to a metallized state with different modes of technical hydrogen supply has been studied and substantiated. The results of the pellets formation when 3-5 % molasses is added to the red mud as a binding reagent are presented. The dependences of the reduction rate of iron oxides on the hydrogen flow rate are obtained. Based on the results of the experiments, a kinetic model was constructed, and with the help of X-ray phase and spectral analysis, it was proved that the agglomerates formed after heat treatment received high strength due to the adhesion of reduced iron particles with red mud particles. The use of a new type of charge materials in melting units will reduce the amount of emissions and dust fractions, as well as increase the metal yield.

How to cite: Khalifa A.A., Bazhin V.Y., Ustinova Y.V., Shalabi M.E. Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow // Journal of Mining Institute. 2022. Vol. 254 . p. 261-270. DOI: 10.31897/PMI.2022.18
Mining
  • Date submitted
    2020-06-12
  • Date accepted
    2020-06-12
  • Date published
    2020-06-30

Management of hardening mixtures properties when stowing mining sites of ore deposits

Article preview

Underground mining is characterized by the weakening of the bearing rock mass strata competence and the accumulation of mineral waste. The full use of subsurface resources is ensured by the use of technologies with filling voids by hardening mixtures, which requires high-quality raw materials to obtain the required strength. The deficit of the binding component can be filled with the use of granulated slags of blast-furnace process, mill tailings, ash-slags and other wastes. Most often, voids are laid by mixtures with a combination of cement and a binding component. Mixtures with ash-slag additives to cement in an equivalent amount are not inferior to the strength of the mixture only with cement, especially when grinding ash-slag. The properties of stowing rock masses when using composite binding components and inert fillers are controlled by mechanical, chemical, physical and energy effects at the stages of preparation and transportation of hardening mixtures. To obtain the active fraction of cement substitutes, disintegrators are used that apply the inertia forces of materials at a high speed of rotation with an increase in high activity indicators and lower energy costs. The components of hardening mixtures can be the majority of waste from mining and related industries, which is determined experimentally in specific conditions.

How to cite: Golik V.I., Dmitrak Y.V., Komashchenko V.I., Kachurin N.M. Management of hardening mixtures properties when stowing mining sites of ore deposits // Journal of Mining Institute. 2020. Vol. 243 . p. 285-292. DOI: 10.31897/PMI.2020.3.285
Mining
  • Date submitted
    2019-04-30
  • Date accepted
    2019-07-16
  • Date published
    2019-10-23

Salt Rock Deformation under Bulk Multiple-Stage Loading

Article preview

The paper presents experimental justification of the possibility to use bulk multiple-stage loading to study the process of salt rock deformation in the laboratory conditions. Results of comparative tests between bulk multiple- stage and single-stage loading of salt rock samples are demonstrated. The paper contains results of research on the rate of lateral pressure and its impact on strength limit and residual strength limit of sylvinite, estimated using single- stage and multiple-stage methods. Research results demonstrate how the rate of lateral pressure impacts dilatancy boundary of salt rocks. Analysis of how the loading method influences certificate parameters of Mohr-Coulomb strength of sylvinite has been carried out. The dynamics of elastic modulus in the process of salt rock deformation is analyzed depending on the rate of lateralpressure. It is demonstrated how the method of multiple-stage loading adequately reflects the processes of salt rock de- formation and decomposition, and facilitates not only lowering impact of sample’s inner structure heterogeneities on the experimental results, but also significant reduction in the required amount of rock material.

How to cite: Pankov I.L., Morozov I.A. Salt Rock Deformation under Bulk Multiple-Stage Loading // Journal of Mining Institute. 2019. Vol. 239 . p. 510-519. DOI: 10.31897/PMI.2019.5.510
Mining
  • Date submitted
    2019-04-27
  • Date accepted
    2019-07-10
  • Date published
    2019-10-23

Estimation of Rock Mass Strength in Open-Pit Mining

Article preview

The paper presents results of an experimental study on strength characteristics of the rock mass as applied to the assessment of open-pit slope stability. Formulas have been obtained that describe a correlation between ultimate and residual strength of rock samples and residual shear strength along the weakening surface. A new method has been developed to calculate residual interface strength of the rock mass basing on data from the examination of small-scale monolith samples with opposing spherical indentors. A method has been proposed to estimate strength characteristics (structural weakening coefficients and internal friction angles) of the fractured near-slope rock mass. The method relies on test data from shattering small-scale monolith samples with spherical indentors, taking into ac- count contact conditions along the weakening surface, and can be applied in the field conditions. It is acceptable to use irregular-shaped samples in thetests.

How to cite: Pavlovich A.A., Korshunov V.A., Bazhukov A.A., Melnikov N.Y. Estimation of Rock Mass Strength in Open-Pit Mining // Journal of Mining Institute. 2019. Vol. 239 . p. 502-509. DOI: 10.31897/PMI.2019.5.502
Metallurgy and concentration
  • Date submitted
    2019-05-20
  • Date accepted
    2019-07-12
  • Date published
    2019-10-23

Development of Manufacturing Technology for High-Strength Hull Steel Reducing Production Cycle and Providing High-Quality Sheets

Article preview

The article presents the results of scientific research and industrial experiments aimed at the development of technology to reduce the production cycle of high-strength hull steel. The technology includes an improved reduced heat treatment of ingots made using rare-earth metals and uphill teeming of large sheet ingots. The proposed technology for the preliminary heat treatment of ingots eliminates the high-temperature phase re- crystallization operation, which is unnecessary, according to the authors, since it does not allow partial crushing (grinding) of the metal dendritic structure and homogenization. When using the proposed technology of reduced pre- treatment, phase and structural stresses are sharply reduced. Experiments have shown that the modification of steel with rare-earth metals has a positive effect on the crystallization of ingots, changing the macro- and microstructure of alloy steel. The developed manufacturing technology of high-strength hull steel provides a high level of sheet quality and a reduction in the production cycle time by 10-12 %.

How to cite: Milyuts V.G., Tsukanov V.V., Pryakhin E.I., Nikitina L.B. Development of Manufacturing Technology for High-Strength Hull Steel Reducing Production Cycle and Providing High-Quality Sheets // Journal of Mining Institute. 2019. Vol. 239 . p. 536-543. DOI: 10.31897/PMI.2019.5.536
Metallurgy and concentration
  • Date submitted
    2018-11-09
  • Date accepted
    2019-01-08
  • Date published
    2019-04-23

Effect of chalk thermal treatment mode on its strength

Article preview

Natural chalk is characterized by a fine-grained structure. The processing of chalk in conditions traditional for calcium carbonate baking is accompanied by its almost destruction and the formation of a huge amount of dust. The paper presents strength characteristics of chalk and chalky stone baking obtained with different temperature-time conditions of heating the raw material to a temperature of 450-600 °C. The uniaxial compression method was used to determine the strength depending on variable factors. Based on the experimental data, a model was constructed that determines the dependence of chalk strength on time and heating temperature. In the temperature range of 450-600 °C, the strength of chalk stone increases with increasing temperature and decreases with the increasing heating rate. In the process of isothermal heating, several factors will immediately affect the strength of a chalky stone: the formation and growth of calcite crystals, the evaporation of water, and the agglomeration of calcite grains. With an increase in the heating temperature from 450 to 600 °C, the average size of the crystals significantly increases and crystals with an estimated size of more than 4 microns are detected. An increase in the size of crystals is associated with an increase in their growth rate. The agglomeration of grains occurs at a temperature of 600 °C.

How to cite: Lipin V.A., Trufanov D.A. Effect of chalk thermal treatment mode on its strength // Journal of Mining Institute. 2019. Vol. 236 . p. 210-215. DOI: 10.31897/PMI.2019.2.210
Electromechanics and mechanical engineering
  • Date submitted
    2018-08-29
  • Date accepted
    2018-10-25
  • Date published
    2019-02-22

The study of the effect of temperature on the ability of metals to accumulate energy during their plastic deformation

Article preview

The subject of research is the surface layer of highly loaded parts, friction units of mining machines and equipment. The article presents a theoretical analysis of the factors that determine the ability of the material of the surface layer of parts to accumulate energy in the process of plastic deformation. It is suggested that the activation character of the accumulation of energy by metals. Based on the theory of diffusion, it was shown that the mobility of atoms, as well as the accumulated energy, are determined by the ratio of the test temperature to the melting temperature.

How to cite: Bezyazychnyi V.F., Szczerek M., Pervov M.L., Timofeev M.V., Prokofiev M.A. The study of the effect of temperature on the ability of metals to accumulate energy during their plastic deformation // Journal of Mining Institute. 2019. Vol. 235 . p. 55-59. DOI: 10.31897/PMI.2019.1.55
Electromechanics and mechanical engineering
  • Date submitted
    2017-11-17
  • Date accepted
    2018-01-05
  • Date published
    2018-04-24

Estimation of the relation of strength and ultrasound speed in glass-reinforce plastic

Article preview

In mining machinery, details and products made of composite materials are widely used, especially from GRP (glass-reinforce plastic). The work evaluates the relationship between the strength and the speed of ultrasound for nondestructive testing of strength in an article made of composite materials such as GDR with the use of a pulsed ultrasonic method. Methods for estimating the connection, the method of mechanical compression tests and mathematical processing and establishing the relationship between the ultrasonic velocity and the strength of GRP are considered. The results of experimental studies on establishing the relationship between the strength of GRP on compression and the speed of longitudinal ultrasonic waves are presented. As a result of statistical processing of the experimental results, equations of the relationship between the compressive strength and the ultrasonic velocity in fiberglass are obtained.

How to cite: Potapov A.I. Estimation of the relation of strength and ultrasound speed in glass-reinforce plastic // Journal of Mining Institute. 2018. Vol. 230 . p. 176-184. DOI: 10.25515/PMI.2018.2.176
Mining
  • Date submitted
    2017-09-20
  • Date accepted
    2017-10-29
  • Date published
    2018-02-22

Substantiation of strength of the filling mass by taking a blast effect into account for the room-and-pillar methods

Article preview

The development of the uranium ore bodies at the ore mines of PJSC «Priargunsky Industrial Mining and Chemical Union» (PJSC «PIMCU») by room-and-pillar method as high as a pillar between the levels (60 m) without fill, as a rule, leads to the fall of the adjoining rock, to the strong contamination of the ore and to the high yield of the oversize pieces of the barren rock. A longstanding industrial and theoretical research shows that the sizes of the self-sustaining rock escarpments at the ore mines of PJSC «PIMCU» in the solid mass of trachydacites, conglomerates, sandstones, felsites are equal to 20-40 m. Moreover, the sizes of the self-sustaining rock escarpments depend to a great extent on the intensity of fracturing of the adjoining rocks. The stable size of the escarpment does not exceed 5-10 m for the rocks with the size of a jointing up to 0.05 m. Consequently, timely performance of the filling operations of the worked-out space of the chamber is important. However, the question then arises: which characteristic strength should the filling mass have? The calculations of the characteristics of the filling mass in compliance with the reference guide «Shaft filling operations» show underestimated values of the characteristic compressive strength of the fill (1.4 MPa) for the room-and-pillar method, which leads to the increase of the ore contamination by the fill and provokes the additional costs for refilling of the volumes of the rock fall. On the basis of the Russian experience of using of the consolidated fill for the development of the ore bodies of 15 m thickness by chamber method the strength of the fill is taken as 3-5 MPa under the resultant value of the static stresses without taking into account the character of the dynamic loading stresses induced by the sequence blasthole ring initiating in a chamber. Overestimating the characteristic strength of the filling mass results in the high consumption of the cementing materials. On the basis of the theoretical research the authors suggested the theoretical dependence of calculation of the characteristic strength of the filling material with respect to compressive stresses of the fill induced by the blasting operations. The process of designing of the filling mass with the zones of diverse strength for the room-and-pillar extraction with the consolidated rock fill is proven to be economically reasonable. The bottom zone of the solid mass should have high strength (3-4 MPa), and the strength of the upper zone should be up to 2-2.5 MPa.

How to cite: Voronov E.T., Tyupin V.N. Substantiation of strength of the filling mass by taking a blast effect into account for the room-and-pillar methods // Journal of Mining Institute. 2018. Vol. 229 . p. 22-26. DOI: 10.25515/PMI.2018.1.22
Electromechanics and mechanical engineering
  • Date submitted
    2017-09-11
  • Date accepted
    2017-10-30
  • Date published
    2018-02-22

Provision of adhesion strength of gas-thermal coatings on piston rings of quarry transport engines

Article preview

The main trend in the development of modern diesel engine manufacturign is the creation of high-powered, reliable and economical internal combustion engines (ICE), which are widely used in various industries, including mining machinery. The application of the methods of gas-thermal and gas-plasma coating for obtaining wear-resistant layers on piston rings for large internal combustion engines of quarry transport – diesel locomotives and dump trucks- is considered. It is shown that the abrasive-jet machining of base coat is widely used as a preparatory operation before coating process, and the roughness of the working surface of the rings after abrasive-jet machining has a significant impact on the adhesion strength of the coating with the base material. The selection of the surface roughness and the conditions of abrasive-jet machining for increasing the coating adhesion strength to the base coat significantly determines both the thickness of the coating and the reliability of the part itself. The aim of the paper is to investigate the dependence of the adhesion strength of a gas-thermal wear-resistant coating of piston rings of large engines of quarry transport, including dump trucks and diesel locomotives, from the roughness of the working surface after abrasive-jet machining, which in turn depends on its modes (distance to the nozzle exit section, the number of passes, the working air pressure, the shot change rate). The working surface adhesion strength of piston rings with diameter of 210 mm coated with molybdenum and steel wire composition was investigated by the twisting angle at which the coating peeled. It is shown that the roughness providing a twist angle greater than 35° should be more than 22 μm, which does not cause coating peeling off. Modes of abrasive-jet machining providing the specified values of roughness: working air pressure is 0.4 MPa, distance to the nozzle exit section is 110 mm, the number of passes is 2, and the shot changes after processing 40 mandrels.

How to cite: Olt Y., Maksarov V.V., Krasnyi V.A. Provision of adhesion strength of gas-thermal coatings on piston rings of quarry transport engines // Journal of Mining Institute. 2018. Vol. 229 . p. 77-83. DOI: 10.25515/PMI.2018.1.77
Electromechanics and mechanical engineering
  • Date submitted
    2016-11-14
  • Date accepted
    2017-01-09
  • Date published
    2017-04-14

Method of restoring strength determination test

Article preview

The main requirements for an electric unit at the stages of its design, development, production and usage are described in technical specifications (TS) and standards (GOST). The electric unit should work in accordance with a specific purpose and have significant reliability, durability and safety. The reliability and durability of electric unit significantly depends on restoring strength speed value, that is growth of breakage voltage in arc pass for eliminating repeated arc strike. This article describes several methods of test identification of restoring strength, which were carried out at special testing laboratory units. They are described in relation to conditions of measuring the residual arc column of AC current after it reaches zero point and can be used in designing arc blowout units of low voltage.

How to cite: Apollonskii S.M., Kuklev Y.V. Method of restoring strength determination test // Journal of Mining Institute. 2017. Vol. 224 . p. 235-239. DOI: 10.18454/PMI.2017.2.235
Mining
  • Date submitted
    2016-09-03
  • Date accepted
    2016-11-24
  • Date published
    2017-02-22

Research of compression strength of fissured rock mass

Article preview

The article examines a method of forecasting strength properties and their scale effect in fissured rock mass using computational modelling with final elements method in ABAQUS software. It shows advantages of this approach for solving tasks of determining mechanical properties of fissured rock mass, main stages of creating computational geomechanic model of rock mass and conducting a numerical experiment. The article presents connections between deformation during loading of numerical model, inclination angle of main fracture system from uniaxial and biaxial compression strength value, size of the sample of fissured rock mass and biaxial compression strength value under conditions of apatite-nepheline rock deposit at Plateau Rasvumchorr OAO «Apatit» in Kirovsky region of Murmanskaya oblast. We have conducted computational modelling of rock mass blocks testing in discontinuities based on real experiment using non-linear shear strength criterion of Barton – Bandis and compared results of computational experiments with data from field studies and laboratory tests. The calculation results have a high-quality match to laboratory results when testing fissured rock mass samples.

How to cite: Protosenya A.G., Verbilo P.E. Research of compression strength of fissured rock mass // Journal of Mining Institute. 2017. Vol. 223 . p. 51-57. DOI: 10.18454/PMI.2017.1.51
Mining
  • Date submitted
    2015-12-27
  • Date accepted
    2016-02-26
  • Date published
    2016-12-23

Simulation of rock deformation behavior

Article preview

A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

How to cite: Rudaev Y.I., Kitaeva D.A., Mamadalieva M.A. Simulation of rock deformation behavior // Journal of Mining Institute. 2016. Vol. 222 . p. 816-822. DOI: 10.18454/PMI.2016.6.816
Oil and gas
  • Date submitted
    2015-08-25
  • Date accepted
    2015-10-24
  • Date published
    2016-04-22

The modern technology of drilling and casing of well during the exploration of gas hydrates

Article preview

In the paper, the perspectives of exploration and completion of gas hydrate fields and the drilling problems in the gas hydrates of the northwest china are studied. It has been established, that the main reasons of complications in the Muli field are the secondary hydrate formation on the walls of the well and drilling assembly and ice formation inside the set cement during the well drilling and completion in permafrost. It has been shown, that in the areas with permafrost during the drilling of the layers containing gas hydrates, temperature and pressure changes can lead to the dissociation of hydrates. At the same time, pressure increase in the annular space due to the gas release, can lead to the secondary formation of gas hydrates, drill string stuck, ceasing of drilling fluid circulation, which is the reason of serious trouble in the wellbore. The results of the research on the development of drilling fluids compositions, which lower the drilling troubles of permafrost, are presented. Comparative experiments have been conducted to evaluate the effectiveness of thermodynamic and kinetic inhibitors, which prevent the repeated hydrate formation. It has been established, that the kinetic inhibitors have the clear advantage: they have good inhibiting effects even with low amounts of additives. In the laboratory conditions, the researches have been conducted to evaluate the phase equilibrium of gas hydrates during their reaction with the water solutions, containing kinetic inhibitor PVP. A thin clay drilling mud has been developed on the water base, providing the holding of the temperature in the level of –2 °С and its effectiveness for the gas hydrate fields in the PRC has been shown. Casing effectiveness of unstable rocks during the drilling in the conditions of negative temperatures inside the well largely depends on their physical-mechanical properties, composition and the technical indicators of cement materials. The authors suggest the composition of quick-setting cements based on aluminum binding materials. It has been established, that the analyzed compositions have the ability to considerably improve the results of cementing.

How to cite: Nikolaev N.I., Tyanle L. The modern technology of drilling and casing of well during the exploration of gas hydrates // Journal of Mining Institute. 2016. Vol. 218 . p. 206-214.
Development of solid mineral deposits
  • Date submitted
    2010-07-20
  • Date accepted
    2010-09-01
  • Date published
    2011-03-21

Experimental and theoretical studies and justification of geotechnology of stock pile formation from pelletized gold-bearing ores in order to enhance its filtration properties

Article preview

Optimal parameters of geotechnology of stock pile formation from pelletized gold-bearing ores were established basing on experimental and theoretical studies in order to enhance its filtration properties. In particular, exponential dependence was established of permeability coefficient on the stock pile height and the ultimate strength of the pelletized ore, its bulk weight and content of coarse particles +2 mmin combination with sandy-loamy and loamy fine grained soil. Without account of this data loss of gold within the stock pile can increase over 2 or 3 times. Basing on the results obtained application of the combined geothechnology of heap leaching of gold-bearing clayey materials of natural and man-made origin was justified.

How to cite: Tataurov S.B. Experimental and theoretical studies and justification of geotechnology of stock pile formation from pelletized gold-bearing ores in order to enhance its filtration properties // Journal of Mining Institute. 2011. Vol. 189 . p. 168-174.
Problems in geodynamic safety in the exploration of solid deposits
  • Date submitted
    2009-10-18
  • Date accepted
    2009-12-17
  • Date published
    2010-09-22

Reuse of development workings as an element of providing the effective coal output

Article preview

The article contains the results of application in a coal mine of a combined way for protection and support of development workings. This method combines a frame support, anchors and a cast support strip erected behind the longwale. The geomechanical substantiation of technological parameters, regulations and the field for efficient use of this method are given. Its introduction has allowed to increase the loads on longwale and to lower labour content and expenses for maintenance of butt entries.

How to cite: Ilyashov M.A. Reuse of development workings as an element of providing the effective coal output // Journal of Mining Institute. 2010. Vol. 188 . p. 66-69.
Problems in geomechanics of technologeneous rock mass
  • Date submitted
    2009-07-05
  • Date accepted
    2009-09-27
  • Date published
    2010-04-22

The methods of strength definition for the rock mass properties applying to the open mining cut

Article preview

The review of factors influencing rock mass strength is given. Methods of definition for sample strength changeover to rock mass are considered in the article.

How to cite: Pavlovich A.A. The methods of strength definition for the rock mass properties applying to the open mining cut // Journal of Mining Institute. 2010. Vol. 185 . p. 127-131.
Problems in geomechanics of technologeneous rock mass
  • Date submitted
    2009-07-18
  • Date accepted
    2009-09-30
  • Date published
    2010-04-22

Account of stress gradients in rock mass in designing of mining constructions

Article preview

Using the gradient approach the criteria of shear and tensile cracking are developed in compression under conditions of stress concentrations near mine workings. Considering the size effect, a function type of local strength is determined, expressions for critical pressure are derived and comparison between analytical and experimental data is performed.

How to cite: Suknyov S.V., Novopashin M.D. Account of stress gradients in rock mass in designing of mining constructions // Journal of Mining Institute. 2010. Vol. 185 . p. 61-63.
Problems in geomechanics of technologeneous rock mass
  • Date submitted
    2009-07-24
  • Date accepted
    2009-09-16
  • Date published
    2010-04-22

Determination of indices of strength certificate оf rocks using the method of specimens failure with spherical indentors

Article preview

The method has been developed for the determination of indices of strength certificate of rocks using the technique of specimen’s failure with oncoming spherical indentors. This method is based on the assessment of ultimate stresses acting in the tensile plane and within the zones of failured rocks under action of indentors at the moment of sample splitting. Formulas were obtained for calculation of indices of strength certificate, i.e. cohesion and angles of internal friction under tensile compression and nonuniform triaxial compression, ultimate strength in uniaxial compression and tension. This method is applicable in situ conditions.

How to cite: Korshunov V.A., Kartashov Y.M., Kozlov V.A. Determination of indices of strength certificate оf rocks using the method of specimens failure with spherical indentors // Journal of Mining Institute. 2010. Vol. 185 . p. 41-45.