Submit an Article
Become a reviewer

Search articles for by keywords:
mechanical shovel

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-11
  • Date accepted
    2025-01-28
  • Date published
    2025-03-21

Research and development of technology for the construction of snow airfields for accommodating wheeled aircraft in Antarctica

Article preview

Construction of a new wintering complex at the Antarctic Vostok Station required prompt delivery of builders and mechanics to Progress Station to move them further to the work area. To solve this major logistical issue, a new landing site, later named Zenit, certified for accommodating heavy wheeled aircraft, was prepared in the Progress Station area from March to August 2022. Its snow pavement slab with a total area of 350 thousand m2 is from 100 to 120 cm high. It was made by applying snow layers with their subsequent compaction by a specially designed compaction platform for snow airfields suitable for heavy wheeled aircraft. As a result, the pavement has a surface hardness of at least 1 MPa. The layer from 30 to 60 cm has a hardness of at least 0.8 MPa, and the bottom layer at least 0.6 MPa. The first Il-76TD-90VD aircraft of the Russian company Volga-Dnepr was accommodated to the new runway on 7 November 2022. The aircraft landed in normal mode. The depth of the chassis wheels track after landing did not exceed 3 cm. The research provided in-depth understanding of the mechanisms for forming the supporting base of the runway from snow and ice in Antarctica. The experience gained can be used to solve similar issues in the Far North.

How to cite: Polyakov S.P., Popov S.V. Research and development of technology for the construction of snow airfields for accommodating wheeled aircraft in Antarctica // Journal of Mining Institute. 2025. p. EDN EKGJNF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-10
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Consideration of the geomechanical state of a fractured porous reservoir in reservoir simulation modelling

Article preview

This paper presents reservoir simulation modeling of a hydrocarbon accumulation with a fractured porous reservoir, incorporating the geomechanical effects of fracture closure during variations in formation pressure. The fracture permeability parameter is derived from the impact of stress on fracture walls. The fracturing parameter is determined based on 3D seismic data analysis. A permeability reduction model is implemented in the tNavigator reservoir simulation platform. The proposed approach improves the convergence of formation pressure dynamics in well data while maintaining flow rate and water cut adaptation accuracy. This results in enhanced formation pressure prediction and optimization of the pressure maintenance system.

How to cite: Kashnikov Y.A., Shustov D.V., Yakimov S.Y. Consideration of the geomechanical state of a fractured porous reservoir in reservoir simulation modelling // Journal of Mining Institute. 2025. Vol. 271 . p. 42-52. EDN BANZQB
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-05-08
  • Date accepted
    2024-11-07
  • Date published
    2024-12-12

The effect of mechanical and thermal treatment on the characteristics of saponite-containing material

Article preview

Solving the problems of modern building materials science is reduced to obtaining high-quality materials, expanding and searching for a rational raw material base, which can be carried out through the use of various industrial wastes. In this paper, the possibility of using waste from the mining industry – saponite-containing material (SCM) obtained during the enrichment of kimberlite ores from the Lomonosov diamond deposit, as an active mineral additive for cement binders and concretes is considered. The influence of mechanical and thermal treatment on a number of properties of the material selected from the tailings dump and in its initial state was studied. The study of the surface activity of SCM samples consisted in determining the sorption capacity, acid-base centers and their distribution. An increase in the activity of the surface of the material particles as a result of mechanical activation and its decrease during temperature treatment were determined. These effects are associated with phase rearrangements and structural changes in the sandy-clay rock, which was confirmed during thermal analysis. The temperature effect has no pronounced effect on the microstructure, the “smoothness” of the particles and the formation of a consolidated surface of the structural elements of the saponite-containing material are noted.

How to cite: Orekhova T.N., Sivalneva M.N., Frolova M.A., Strokova V.V., Bondarenko D.O. The effect of mechanical and thermal treatment on the characteristics of saponite-containing material // Journal of Mining Institute. 2024. p. EDN VZGFOR
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-09-09
  • Date accepted
    2024-11-05
  • Date published
    2024-11-12

Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths

Article preview

In order to study the mechanism of destruction of rocks of various genesis and the formation of fractured reservoirs at great depths, laboratory studies of rock samples in the loading conditions of comprehensive pressure with registration of acoustic emission (AE) and parameters of the process of changing the strength and deformation properties of samples were carried out. The spatial distributions of the hypocenters of AE events for each sample were investigated. By the nature of the distributions, the fracture geometry is described, then visually compared with the position of the formed macrofractures in the samples as a result of the tests. The time trends of the amplitude distribution b, set by the Guttenberg – Richter law, were calculated, which were compared with the loading curves and trends of the calculated AE activity. Based on the analysis of the AE process for three types of rocks – igneous (urtites), metamorphic (apatite-nepheline ores), and sedimentary (limestones) – parameterization of acoustic emission was carried out to determine the features of the deformation process and related dilatancy. As a result, three types of destruction of samples were identified, their geometry and changes in strength and seismic criteria were established.

How to cite: Trushko V.L., Rozanov A.O., Saitgaleev M.M., Petrov D.N., Ilinov M.D., Karmanskii D.A., Selikhov A.A. Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths // Journal of Mining Institute. 2024. Vol. 269 . p. 848-858. EDN EGOJFL
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-20
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

A new formula for calculating the required thickness of the frozen wall based on the strength criterion

Article preview

The study delves into the elastoplastic deformation of a frozen wall (FW) with an unrestricted advance height, initially articulated by S.S.Vyalov. It scrutinizes the stress and displacement fields within the FW induced by external loads across various boundary scenarios, notably focusing on the inception and propagation of a plastic deformation zone throughout the FW's thickness. This delineation of the plastic deformation zone aligns with the FW's state of equilibrium, for which S.S.Vyalov derived a formula for FW thickness based on the strength criterion. These findings serve as a pivotal launchpad for the shift from a one-dimensional (1D) to a two-dimensional (2D) exploration of FW system deformation with finite advance height. The numerical simulation of FW deformation employs FreeFEM++ software, adopting a 2D axisymmetric approach and exploring two design schemes with distinct boundary conditions at the FW cylinder's upper base. The initial scheme fixes both vertical and radial displacements at the upper base, while the latter applies a vertical load equivalent to the weight of overlying soil layers. Building upon the research outcomes, a refined version of S.S.Vyalov's formula emerges, integrating the Mohr – Coulomb strength criterion and introducing a novel parameter – the advance height. The study elucidates conditions across various soil layers wherein the ultimate advance height minimally impacts the calculated FW thickness. This enables the pragmatic utilization of S.S.Vyalov's classical formula for FW thickness computation, predicated on the strength criterion and assuming an unrestricted advance height.

How to cite: Semin M.А., Levin L.Y. A new formula for calculating the required thickness of the frozen wall based on the strength criterion // Journal of Mining Institute. 2024. Vol. 268 . p. 656-668. EDN WEJUBT
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-06-20
  • Date accepted
    2023-01-10
  • Date published
    2023-08-28

Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir

Article preview

Results are discussed for evaluation of effectiveness of the cyclic geomechanical treatment (CGT) on a Tournaisian carbonate reservoir. Analysis of laboratory experiments performed according to a special program to assess permeability changes for Tournaisian samples under cyclic changes in pore pressure is presented. The main conclusion is the positive selectivity of the CGT: an increase in permeability is observed for samples saturated with hydrocarbons (kerosene) with connate water, and maximal effect is related to the tightest samples. For water-saturated samples, the permeability decreases after the CGT. Thus, the CGT improves the drainage conditions for tight oil-saturated intervals. It is also confirmed that the CGT reduces the fracturing pressure in carbonate reservoirs. Using flow simulations on detailed sector models taking into account the results of laboratory experiments, a possible increase in well productivity index after CGT with different amplitudes of pressure variation was estimated. Results of a pilot CGT study on a well operating a Tournaisian carbonate reservoir are presented, including the interpretation of production logging and well testing. The increase in the well productivity index is estimated at 44-49 % for liquid and at 21-26 % for oil, with a more uniform inflow profile after the treatment. The results of the field experiment confirm the conclusions about the mechanisms and features of the CGT obtained from laboratory studies and flow simulations.

How to cite: Indrupskiy I.M., Ibragimov I.I., Tsagan-Mandzhiev T.N., Lutfullin A.A., Chirkunov A.P., Shakirov R.I., Alekseeva Y.V. Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir // Journal of Mining Institute. 2023. Vol. 262 . p. 581-593. DOI: 10.31897/PMI.2023.5
Metallurgy and concentration
  • Date submitted
    2022-06-20
  • Date accepted
    2022-10-07
  • Date published
    2022-11-03

Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading

Article preview

One of the most reliable methods for assessing the physical and mechanical properties of rocks as a result of their destruction are laboratory tests using hard or servo-driven test presses. They allow to obtain reliable information about changes in these properties beyond the limit of compressive strength. The results of laboratory tests of rich sulfide ore samples are presented, which made it possible to obtain graphs of their extreme deformation. Both monolithic samples and samples with stress concentrators in the form of circular holes with a diameter of 3, 5 and 10 mm were tested. It was revealed that during the destruction of the samples, the modules of elasticity and deformation decrease by 1.5-2 times, and in the zone of residual strength – by 5-7 times.

How to cite: Gospodarikov A.P., Trofimov A.V., Kirkin A.P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading // Journal of Mining Institute. 2022. Vol. 256 . p. 539-548. DOI: 10.31897/PMI.2022.87
Mining
  • Date submitted
    2021-03-30
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Integrated development of iron ore deposits based on competitive underground geotechnologies

Article preview

The article presents an analytical review of the current state of the iron ore base of the ferrous metallurgy of Russia and the world, identifies the largest iron ore provinces and iron ore producers. The promising directions of development and improvement of the quality of the iron ore base of Russia and the features of the development of new deposits of rich iron ores are identified. Effective technologies for the development of rich iron ores deposits that ensure an increase in production volumes are proposed. The geomechanical justification of rational technological parameters that are easily adapted to changes in mining and geological conditions has been performed. Based on the results of field studies, the use of an elastic-plastic model with the Coulomb – Mohr strength criterion for modeling changes in the stress-strain state of an ore rock mass during mining operations is justified and recommendations for ensuring the stability of mine workings are developed. Effective engineering and technical solutions for the complex development and deep processing of rich iron ores with the production of fractionated sinter ore, which increases the efficiency of metallurgical processes, the production of high-grade iron oxide pigments and iron ore briquettes, which increase the competitiveness of iron ore companies and the full use of the resource potential of deposits, are presented.

How to cite: Trushko V.L., Trushko O.V. Integrated development of iron ore deposits based on competitive underground geotechnologies // Journal of Mining Institute. 2021. Vol. 250 . p. 569-577. DOI: 10.31897/PMI.2021.4.10
Mining
  • Date submitted
    2020-07-04
  • Date accepted
    2021-03-29
  • Date published
    2021-09-20

Transition between relieved and unrelieved modes when cutting rocks with conical picks

Article preview

In the modern theory of rock cutting in production conditions, it is customary to distinguish two large classes of achievable cutting modes – relieved and unrelieved. The kinematics of rock-breaking machines in most cases determines the operation of the cutting tool in both modes in one cycle of the cutting tool. The currently available calculation methods have been developed for a stable, usually unrelieved cutting mode. In this article, the task is set to determine the conditions for the transition between cutting modes and the modernization of the calculation method for determining the forces on the cutting tool. The problem is solved by applying methods of algebraic analysis based on the search for the extremum of the force function on the cutter, depending on the ratio of the real cut spacing to the optimal spacing for the current chip thickness. As a result of solving the problem, an expression is obtained for determining the chip thickness, for which, at the specified parameters, the transition between the relieved and unrelieved cutting modes is provided. The obtained result made it possible to improve the method of calculating the forces on the cutting tool in the areas of the cutter movement with relieved cutting.

How to cite: Averin E.A., Zhabin A.B., Polyakov A.V., Linnik Y.N., Linnik V.Y. Transition between relieved and unrelieved modes when cutting rocks with conical picks // Journal of Mining Institute. 2021. Vol. 249 . p. 329-333. DOI: 10.31897/PMI.2021.3.1
Oil and gas
  • Date submitted
    2020-07-02
  • Date accepted
    2021-02-16
  • Date published
    2021-04-26

Development of viscoelastic systems and technologies for isolating water-bearing horizons with abnormal formation pressures during oil and gas wells drilling

Article preview

Article provides a brief overview of the complications arising during the construction of oil and gas wells in conditions of abnormally high and abnormally low formation pressures. Technological properties of the solutions used to eliminate emergency situations when drilling wells in the intervals of catastrophic absorption and influx of formation fluid have been investigated. A technology for isolating water influx in intervals of excess formation pressure has been developed. The technology is based on the use of a special device that provides control of the hydrodynamic pressure in the annular space of the well. An experiment was carried out to determine the injection time of a viscoelastic system depending on its rheology, rock properties and technological parameters of the isolation process. A mathematical model based on the use of a special device is presented. The model allows determining the penetration depth of a viscoelastic system to block water-bearing horizons to prevent interformation crossflows and water breakthrough into production wells.

How to cite: Dvoynikov M.V., Kuchin V.N., Mintzaev M.S. Development of viscoelastic systems and technologies for isolating water-bearing horizons with abnormal formation pressures during oil and gas wells drilling // Journal of Mining Institute. 2021. Vol. 247 . p. 57-65. DOI: 10.31897/PMI.2021.1.7
Electromechanics and mechanical engineering
  • Date submitted
    2020-05-16
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Study of drive currents for lifting bridge cranes of metallurgical enterprises for early diagnosis of load excess weight

Article preview

The article discusses an approach based on the analysis of the drive motor currents to create an additional means of protection against emergency situations during the operation of bridge cranes associated with lifting a load with a mass exceeding the permissible one . A mathematical model of an overhead crane drive is described, as well as the results of computer simulation. It is shown that in the process of lifting up, before the stage of lifting the load, the stator current of the drive electric motor does not depend of the load mass, but when the load is detached, already for several periods of the mains voltage after the rope is pulled, when the mass of the load is exceeded, a measurable excess of the amplitude value of the current is recorded. This pattern has been confirmed for a number of cranes of various lifting capacities used at metallurgical enterprises. The possibility of diagnosing excess weight of the lifted load with a higher speed than existing mechanical methods of overload control is demonstrated, at the same time it is not required to make changes to the structural elements of overhead cranes.

How to cite: Semykina I.Y., Kipervasser M.V., Gerasimuk A.V. Study of drive currents for lifting bridge cranes of metallurgical enterprises for early diagnosis of load excess weight // Journal of Mining Institute. 2021. Vol. 247 . p. 122-131. DOI: 10.31897/PMI.2021.1.13
Oil and gas
  • Date submitted
    2019-12-25
  • Date accepted
    2020-06-30
  • Date published
    2020-10-08

Accounting of geomechanical layer properties in multi-layer oil field development

Article preview

Amid the ever-increasing urgency to develop oil fields with complex mining and geological conditions and low-efficiency reservoirs, in the process of structurally complex reservoir exploitation a number of problems arise, which are associated with the impact of layer fractures on filtration processes, significant heterogeneity of the structure, variability of stress-strain states of the rock mass, etc. Hence an important task in production engineering of such fields is a comprehensive accounting of their complex geology. In order to solve such problems, the authors suggest a methodological approach, which provides for a more reliable forecast of changes in reservoir pressure when constructing a geological and hydrodynamic model of a multi-layer field. Another relevant issue in the forecasting of performance parameters is accounting of rock compressibility and its impact on absolute permeability, which is the main factor defining the law of fluid filtration in the productive layer. The paper contains analysis of complex geology of a multi-layer formation at the Alpha field, results of compression test for 178 standard core samples, obtained dependencies between compressibility factor and porosity of each layer. By means of multiple regression, dependencies between permeability and a range of parameters (porosity, density, calcite and dolomite content, compressibility) were obtained, which allowed to take into account the impact of secondary processes on the formation of absolute permeability. At the final stage, efficiency of the proposed methodological approach for construction of a geological and hydrodynamic model of an oil field was assessed. An enhancement in the quality of well-by-well adaptation of main performance parameters, as well as an improvement in predictive ability of the adjusted model, was identified.

How to cite: Galkin S.V., Krivoshchekov S.N., Kozyrev N.D., Kochnev A.A., Mengaliev A.G. Accounting of geomechanical layer properties in multi-layer oil field development // Journal of Mining Institute. 2020. Vol. 244 . p. 408-417. DOI: 10.31897/PMI.2020.4.3
Oil and gas
  • Date submitted
    2020-01-09
  • Date accepted
    2020-01-20
  • Date published
    2020-02-25

Mechanical Properties of Sandstone using non-Destructive Method

Article preview

The understanding of physical and mechanical properties of rock is considered as critical in drilling, geo-engineering, and construction applications. As an example, the awareness of these rock parameters contributes to avoid or minimizing instability around the wellbore while drilling. The laboratory experiment of understanding of these parameters can be done in two-different ways: static, where the sample subjects to destruction after the test and dynamic, known as non-destruction method. The non-destructive method using ultrasonic waves under a series of different stress conditions, starting from 7 to 56 MPa with incrementation of 7MPa, has been used in this paper in order to characterize the mechanical properties of dry Zbylutów sandstone at 20 and 80°C. The velocity of primary (P) and secondary (S) waves within these ranges has been recorded in order to understand the behavior of the mechanical properties. The results showed that the Young’s modulus, bulk modulus, shear modulus, and Lame’s constant of Zbylutów sandstone have a positive correlation with good coefficient correlation with the increased stress, while the Poisson’s ratio showed a negative correlation. Besides, the effect of temperature on the rock parameters is approved by the decrease of primary wave velocity in this two-different temperature range. Such results are necessary when preparing the appropriate mud weight for drilling process, which is related to wellbore instability.

How to cite: Rajaoalison H., Zlotkowski A., Rambolamanana G. Mechanical Properties of Sandstone using non-Destructive Method // Journal of Mining Institute. 2020. Vol. 241 . p. 113-117. DOI: 10.31897/PMI.2020.1.113
Electromechanics and mechanical engineering
  • Date submitted
    2019-05-07
  • Date accepted
    2019-07-13
  • Date published
    2019-10-23

Improving the Energy Efficiency of the Electromechanical Transmission of an Open-pit Dump Truck

Article preview

The article analyzes the existing systems of electromechanical transmission of mining trucks BelAZ. The influence of the load nature created by the uncontrolled rectifier on the power factor and mass-dimensional indicators of the electromechanical transmission isassessed. Variants of modernization of the AC-electromechanical transmission system are proposed, which provide power factor correction. The influence of the proposed options on the overall dimensions of the electromechanical transmission is considered. Based on the assessment, a modernization option was chosen that provides the required power factor with minimal impact on the overall dimensions of the electromechanical transmission. The results of modeling the operation of the existing electromechanical transmission and the modernized electromechanical transmission system using the most promising modernization option are presented.

How to cite: Kozyaruk A.E., Kamyshyan A.M. Improving the Energy Efficiency of the Electromechanical Transmission of an Open-pit Dump Truck // Journal of Mining Institute. 2019. Vol. 239 . p. 576-582. DOI: 10.31897/PMI.2019.5.576
Mining
  • Date submitted
    2019-04-27
  • Date accepted
    2019-07-10
  • Date published
    2019-10-23

Estimation of Rock Mass Strength in Open-Pit Mining

Article preview

The paper presents results of an experimental study on strength characteristics of the rock mass as applied to the assessment of open-pit slope stability. Formulas have been obtained that describe a correlation between ultimate and residual strength of rock samples and residual shear strength along the weakening surface. A new method has been developed to calculate residual interface strength of the rock mass basing on data from the examination of small-scale monolith samples with opposing spherical indentors. A method has been proposed to estimate strength characteristics (structural weakening coefficients and internal friction angles) of the fractured near-slope rock mass. The method relies on test data from shattering small-scale monolith samples with spherical indentors, taking into ac- count contact conditions along the weakening surface, and can be applied in the field conditions. It is acceptable to use irregular-shaped samples in thetests.

How to cite: Pavlovich A.A., Korshunov V.A., Bazhukov A.A., Melnikov N.Y. Estimation of Rock Mass Strength in Open-Pit Mining // Journal of Mining Institute. 2019. Vol. 239 . p. 502-509. DOI: 10.31897/PMI.2019.5.502
Metallurgy and concentration
  • Date submitted
    2019-05-20
  • Date accepted
    2019-07-12
  • Date published
    2019-10-23

Development of Manufacturing Technology for High-Strength Hull Steel Reducing Production Cycle and Providing High-Quality Sheets

Article preview

The article presents the results of scientific research and industrial experiments aimed at the development of technology to reduce the production cycle of high-strength hull steel. The technology includes an improved reduced heat treatment of ingots made using rare-earth metals and uphill teeming of large sheet ingots. The proposed technology for the preliminary heat treatment of ingots eliminates the high-temperature phase re- crystallization operation, which is unnecessary, according to the authors, since it does not allow partial crushing (grinding) of the metal dendritic structure and homogenization. When using the proposed technology of reduced pre- treatment, phase and structural stresses are sharply reduced. Experiments have shown that the modification of steel with rare-earth metals has a positive effect on the crystallization of ingots, changing the macro- and microstructure of alloy steel. The developed manufacturing technology of high-strength hull steel provides a high level of sheet quality and a reduction in the production cycle time by 10-12 %.

How to cite: Milyuts V.G., Tsukanov V.V., Pryakhin E.I., Nikitina L.B. Development of Manufacturing Technology for High-Strength Hull Steel Reducing Production Cycle and Providing High-Quality Sheets // Journal of Mining Institute. 2019. Vol. 239 . p. 536-543. DOI: 10.31897/PMI.2019.5.536
Mining
  • Date submitted
    2019-03-17
  • Date accepted
    2019-05-13
  • Date published
    2019-08-23

Manifestations of Acoustic Emission in Frozen Soils with Simultaneous Influence of Variable Mechanical and Thermal Effects on Them

Article preview

The subject of the research is to establish the fundamental laws of acoustic emission in frozen soils, which allow to create ways to control (monitor) their stability under the influence of variable temperature fields and quasistatic mechanical stress from engineering objects located on these grounds for various purposes. The applied importance of such methods is to increase the speed and reduce the complexity of engineering geological surveys in the northern regions of Russia, carried out with the aim of predicting the loss of stability of the bases of buildings and structures to ensure their safe operation. The study was performed on the original instrumental complex. Its description and characteristics are given. With the use of this complex, thermoacoustic emission effects arising from the repeated alternation of freezing and thawing cycles of the soil during the development of its deformed state, starting from the normal compaction phase and up to the final stage of destruction (the bulging phase), have been studied. It is shown that on the basis of such informative parameters as thermally stimulated activity and duration of acoustic emission pulses, an indicator can be obtained that quantitatively characterizes the stages of the stress-strain state of soils. An experimental dependence of the field of values of this indicator as a function of the mechanical stress and the fractional composition of the test soil is given. The qualitative convergence of this dependence with the classical soil deformation diagram obtained by N.M.Hersevanov is shown, where the stages of compaction, loss of stability (shifts) and destruction are highlighted. Possible physical mechanisms and features of the formation of an acoustic emission response at each of these stages are considered and substantiated. It is noted that the approaches to receiving, processing and interpreting acoustic emission measurement information, which are grounded within the framework of the study, allow to control and monitoring of the carrying capacity and stress-strain state of soils directly in the field.

How to cite: Novikov E.A., Shkuratnik V.I., Zaytsev M.G. Manifestations of Acoustic Emission in Frozen Soils with Simultaneous Influence of Variable Mechanical and Thermal Effects on Them // Journal of Mining Institute. 2019. Vol. 238 . p. 383-391. DOI: 10.31897/PMI.2019.4.383
Mining
  • Date submitted
    2019-01-17
  • Date accepted
    2019-03-05
  • Date published
    2019-06-25

Geological and geomechanical model of the Verkhnekamsk potash deposit site

Article preview

Major accidents at OJSC Uralkali raised the question of the need for a detailed study of the geological structure of the Verkhnekamskoye potassium salt deposit, the identification of anomalous complex zones in the oversalt rocks and, above all, in the water-blocking layer (WBL). The article proposes a method for isolating weakened zones in the WBL and potash reservoirs, based on the combined use of geomechanical (laboratory core tests) and geophysical (acoustic broadband logging in wells and surface seismic exploration) studies. It also describes the method of zoning of WBLand potash reservoirs on the physical and mechanical properties to obtain their specific values. This technique will help solve the most urgent problem of ensuring industrial safety in the development of the Verkhnekamskoye potassium salt deposit (the safety of the WBL). The implementation of the proposed method is considered for the Romanovsky site of the Verkhnekamskoye deposits of potassium and magnesium salts. The research included 2D seismic explorations, physical and mechanical properties testing, and finding statistical dependencies between static and dynamic geomechanical parameters. Based on the processing of seismic materials and the obtained dependencies, a geological and geomechanical model of this area was created, and zones with different physicomechanical properties were identified.

How to cite: Kashnikov Y.A., Ermashov A.O., Efimov A.A. Geological and geomechanical model of the Verkhnekamsk potash deposit site // Journal of Mining Institute. 2019. Vol. 237 . p. 259-267. DOI: 10.31897/PMI.2019.3.259
Electromechanics and mechanical engineering
  • Date submitted
    2018-10-28
  • Date accepted
    2018-12-30
  • Date published
    2019-04-23

Development and research of formation technologies on specialized presses with subsequent sintering of high-density details from iron-based powders

Article preview

Creating shifts of the lyaers in a deforming workpieces improves the quality of the product produced by pressure treatment. qual-channel angular pressing and precipitations of a cylindrical billet with a rotating turnaround were developed by specialists earlier and became basic for scientists engaged in nanotechnology. One of the most modern schemes for creating nanostructures by processing on presses is the «Cyclic Extrusion Compression» scheme (in Russia – «Hourglass»), which has significant drawbacks. To date, research on the creation of layer shifts in compacted metal powders is substantially less than in compaction of compact blanks. The article developed compaction schemes for presses of blanks from iron-based powders that have a certain analogy with the «Hourglass», while lacking the disadvantages inherent in the named scheme and implemented on the created samples of specialized hydraulic presses. The results of the studies of density, strength and microhardness before sintering the samples molded from a number of domestic and imported powders on iron base, including those doped with carbon and other alloying components, are described. It has been established that with the use of the formation schemes for powders providing large shifts between particles, the density of the preforms increases on average by 10-12 %. With an average stress (16.32 MPa) of the transverse section of the molded specimen prior to its sintering, molding with shifts between particles increases this stress by 78 %. The strength after sintering of samples made using the compaction schemes developed by the authors of the article increases approximately by 2 times. Magnetic pulse treatment (MPT) of a molded sample prior to its sintering increases its resistance to shearing before sintering, regardless of the molding pattern. When MPT of both the powder and the molded sample is executed, the most uniform distribution of microhardness in the sample is achieved, and after subsequent sintering, the most uniform distribution of the mechanical characteristics of the product. The results of all studies are described by regression equations.

How to cite: Dmitriev A.M., Korobov N.V., Badalyan A.Z. Development and research of formation technologies on specialized presses with subsequent sintering of high-density details from iron-based powders // Journal of Mining Institute. 2019. Vol. 236 . p. 216-228. DOI: 10.31897/PMI.2019.2.216
Electromechanics and mechanical engineering
  • Date submitted
    2018-08-30
  • Date accepted
    2018-10-26
  • Date published
    2019-02-22

Study of bearing units wear resistance of engines career dump trucks, working in fretting corrosion conditions

Article preview

The occurrence of fretting corrosion on nominally fixed surfaces of high-loaded parts of mining machines and mechanisms is considered. Examples of wear and damage of critical parts, bearing assemblies of engines of dump trucks in fretting conditions are given. The mechanisms of fretting corrosion when using wear-resistant coatings are considered. It is noted that when choosing protective thin-layer coatings that provide an increase in the fretting-resistance of surfaces of tightly contacting parts, it is necessary to take into account both their wear resistance and the ability to resist shear. At the same time, the thickness of such coatings allows preserving, during operation, those provided during the assembly of the tension, without disturbing the maintainability of the nodes. The results of research of fretting wear of a number of coatings on a special installation are given. The mechanisms of wear of a number of thin-layer coatings based on friction-mechanical brazing, polymer fluorocarbon composition, solid lubricant coating using scanning electron microscopy were studied. Recommendations on the use of the studied thin-layer coatings for high-loaded parts of mining machines operating in fretting corrosion conditions have been developed. The aim of the work was to study the effect of a number of thin-layer coatings on the wear of highly loaded connections of the mechanisms of mining machines, in particular bearing assemblies of quarry dump trucks operating under fretting corrosion conditions.

How to cite: Olt J., Maksarov V.V., Krasnyy V.A. Study of bearing units wear resistance of engines career dump trucks, working in fretting corrosion conditions // Journal of Mining Institute. 2019. Vol. 235 . p. 70-77. DOI: 10.31897/PMI.2019.1.70
Mining
  • Date submitted
    2018-07-18
  • Date accepted
    2018-09-22
  • Date published
    2018-12-21

Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit

Article preview

The subject of the research is the stress-strain and rock burst hazardous state of the ore massif of the Nikolaevskoe polymetallic deposit, formed under the influence of complex mining-geological and mining-technical factors. The purpose of the research is to establish the peculiarities of the formation of technogenic stress fields at the deposit, which is characterized by a block structure, a complex tectonic system and the presence of a large volume of developed spaces. Volumetric geodynamic modeling of the stress-strain state of the massif at different stages of the development of the deep horizons of the deposit was carried out by collecting information on the structure, properties and geodynamic state of the rock mass. The assessment of stress changes taking into account the effect of hypsometry, the configuration of the selvages, the physical-mechanical properties of the ore deposit and host rocks, the presence of tectonic disturbances was made using the developed numerical algorithms, the automation equipment of the initial data and the PRESS 3D URAL software. The simulation made it possible to establish that tectonic faults in the massif lead to a qualitative change in the stress-strain state in certain parts of the ore massif and in the pillars, namely, the reduction of stresses along the tectonic faults and their growth in nearby pillars. The identified features of the distribution of stresses in the tectonically disturbed rock massif of the Nikolaevskoe deposit will allow to identify in advance potentially hazardous areas both at the planning stage of mining operations and during development, as well as to work out effective rock burst measures to increase the safety of mining. The results of research can be used in enterprises with similar mining-geological and mining-technical conditions.

How to cite: Sidorov D.V., Potapchuk M.I., Sidlyar A.V. Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit // Journal of Mining Institute. 2018. Vol. 234 . p. 604-611. DOI: 10.31897/PMI.2018.6.604
Electromechanics and mechanical engineering
  • Date submitted
    2018-05-21
  • Date accepted
    2018-07-14
  • Date published
    2018-10-24

Increasing the wear resistance of adapters and drill pipes by elec-tromechanical processing

Article preview

The directions of the research on increasing the wear resistance of drill pipe locks, threaded joints and casing drill string have been defined: application of drill pipes from the nose-resistant surfacing to the lock with Russian and foreign materials (hardbanding); hardening of the surface layer of drill pipe locks by electromechanical processing; hardaning of the external and internal locking thread of drill pipes by electromechanical processing. Comparative tests of the wear resistance of various hardening materials (hardbanding) of Russian and foreign production and the drill pipe lock without surfacing have been made. The recommendations for increasing the wear resistance of threaded joints by the method of electromechanical processing are developed, which determine the ways of increasing the resource and reliability of drill pipes and sub-assemblies, the formation of unique properties of parts, reducing the labor-capacity of manufacturing and restoring parts, increasing the efficiency of enterprises and organizations, protecting the environment and creation of competitive products. The materials of the article are of practical value for specialists of various fields engaged in the issues of increasing the reliability of technological equipment. The production success of using wear resistant surfacing technology on the body of a drill pipe joint is due to the possibility of using relatively simple and mobile welding equipment, carrying out work in the places of use of a drilling tool or temporary (permanent) production bases with a small transport arm from the field, re-depositing surfacing materials restoration of drill pipe locks; a wide and growing list of companies that receive accreditation for the production of these works.

How to cite: Fedorov S.K., Fedorova L.V., Ivanova Y.S., Voronina M.V., Sadovnikov A.V., Nikitin V.N. Increasing the wear resistance of adapters and drill pipes by elec-tromechanical processing // Journal of Mining Institute. 2018. Vol. 233 . p. 539-546. DOI: 10.31897/PMI.2018.5.539
Metallurgy and concentration
  • Date submitted
    2018-05-06
  • Date accepted
    2018-07-17
  • Date published
    2018-10-24

Obtaining intermetallic compounds in Al–Ti–Zn system

Article preview

Binary intermetallic compounds – titanium aluminides (TiAl, Ti 3 Al) – when added to the alloys, significantly increase their strength and special properties. The most promising direction to produce intermetallic compounds are mechanochemical technologies, including mechanical alloy building. Mechanical alloying makes it possible to introduce much smaller particles into the metal matrix than can be achieved using standard powder metallurgy technologies. In addition to mechanical synthesis, aluminum-based intermetallic compounds were produced by self-propagating high-temperature synthesis (SHS) of solid chemical compounds. The synthesis was carried out according to a multistage scheme: preparation of titanium and aluminum powder, mixing; synthesis of the Al 3 Ti intermetallic compound by the SHS method in vacuum followed by mechanical activation of stoichiometric charges. The aim of the research was to study the dynamics of the development of nanodispersed phases in the process of synthesis during mechanical alloying. The power absorbed by the unit mass of the material for different processing times of the charge was calculated. When the level of the specific power (dose) of mechanical treatment was 3.5 kJ/g, the maximum content of intermetallic compound in the resulting material was achieved. Based on calculations and the data obtained during X-ray phase analysis, the dependence of the change in the content of ternary intermetallic compounds in the final product on the absorbed power was determined. As a result of the studies using raster electron microscopy and X-ray analysis, it was found that mechanical alloying of nanostructured intermetallic compounds Ti 4 ZnAl 11 and Ti 25 Zn 9 Al 66 with the size of nanodisperse phases less than 12 nm in the Al–Ti–Zn system, the weight ratio of proportion of the latter reaches 74 %.

How to cite: Kaminskii V.V., Petrovich S.Y., Lipin V.A. Obtaining intermetallic compounds in Al–Ti–Zn system // Journal of Mining Institute. 2018. Vol. 233 . p. 512-517. DOI: 10.31897/PMI.2018.5.512
Electromechanics and mechanical engineering
  • Date submitted
    2018-01-12
  • Date accepted
    2018-03-08
  • Date published
    2018-06-22

A method for controlling siltation of water catchments of district drainage systems of kimberlite mines

Article preview

High contamination of mine water leads to intensive siltation of water catchments of district water drainage installations of kimberlite mines in Russia, because of which their pumping equipment periodically works in non-stationary regimes. At present, a number of known methods are used to limit the operation of pumping equipment in non-stationary modes: equipping the pump with a hand hoist to regulate the depth of lowering its suction pipeline into the sinkhole; preliminary dismantling of one of the two screen filters, mounted in the suction pipeline of the pump, which has smaller cells. Experience in the operation of water-drainage farms of kimberlite mines shows that these two methods allow to prevent the operation of pumping equipment in non-stationary modes only for a short period of time. A mine drainage installation is proposed, the technical result of which is the effective struggle against the silting of the water catchments of the district drainage systems of the kimberlite mines of the country.

How to cite: Ovchinnikov N.P. A method for controlling siltation of water catchments of district drainage systems of kimberlite mines // Journal of Mining Institute. 2018. Vol. 231 . p. 317-320. DOI: 10.25515/PMI.2018.3.317
Electromechanics and mechanical engineering
  • Date submitted
    2018-01-19
  • Date accepted
    2018-03-23
  • Date published
    2018-06-22

Topochemical kinetics of external friction during mechanical and thermal activation of the friction contact

Article preview

The article deals with the process of contact interaction (relative displacement) of surfaces as a chemical reaction, the regularity of which is described by the Arrhenius equation. The kinetic characteristics of Gersi-Striebeck are obtained taking into account the mechanical and temperature conditions of the frictional contact. The process of interaction of materials in friction in the form of regularities of topochemical kinetics, realized due to the processes of formation and growth of adhesion adhesion nuclei, makes it possible to present the experimental characteristics in the form of theoretical dependences. These dependences reflect the entire range of variation of the coefficient of friction from the speed of mutual movement of materials, including at ultra-low sliding speeds. In the framework of this approach, the lubricating action of the medium prevents and blocks the reactions of the transition of nuclei to actively growing nuclei.

How to cite: Albagachiev A.Y., Sidorov M.I., Stavrovskii M.E. Topochemical kinetics of external friction during mechanical and thermal activation of the friction contact // Journal of Mining Institute. 2018. Vol. 231 . p. 312-316. DOI: 10.25515/PMI.2018.3.312