-
Date submitted2023-06-25
-
Date accepted2024-11-07
-
Date published2025-02-25
Study of wormhole channel formation resulting from hydrochloric acid treatment in complex-type reservoirs using filtration and X-ray computed tomography methods
- Authors:
- Andrei A. Аbrosimov
The primary function of hydrochloric acid treatment (HAT) is to create the maximum number of high-conductivity channels in the near-wellbore zone of the reservoir to restore its permeability and enhance hydraulic connectivity between the undisturbed part of the formation and the well. The objective of this study is to physically model HAT on core samples from the Orenburg oil and gas condensate field and to research the impact of such treatment on the structure of the pore space of rocks related to complex-type reservoirs. The complexity of the rock's pore space and the low permeability of the formations are distinguishing features of the study object. For this reason, HAT is a widely applied method for production intensification, necessitating the verification of acid injection rates, where the success criterion is the formation of high-conductivity filtration channels (wormholes) in the near-wellbore zone. These channels significantly expand the drainage area of wells, thereby bringing additional reservoir sections into development. The study examined the characteristics of filtration channel development resulting from acid treatment. Their structure was characterized and analyzed using X-ray computed tomography. The complex study confirmed the accuracy of the selected injection rate and provided practical recommendations for enhancing the efficiency of HAT.
-
Date submitted2023-11-10
-
Date accepted2024-06-03
-
Date published2025-02-25
Enhancing the interpretability of electricity consumption forecasting models for mining enterprises using SHapley Additive exPlanations
- Authors:
- Pavel V. Matrenin
- Alina I. Stepanova
The objective of this study is to enhance user trust in electricity consumption forecasting systems for mining enterprises by applying explainable artificial intelligence methods that provide not only forecasts but also their justifications. The research object comprises a complex of mines and ore processing plants of a company purchasing electricity on the wholesale electricity and power market. Hourly electricity consumption data for two years, schedules of planned repairs and equipment shutdowns, and meteorological data were utilized. Ensemble decision trees were applied for time series forecasting, and an analysis of the impact of various factors on forecasting accuracy was conducted. An algorithm for interpreting forecast results using the SHapley Additive exPlanation method was proposed. The mean absolute percentage error was 7.84 % with consideration of meteorological factors, 7.41 % with consideration of meteorological factors and a load plan formulated by an expert, and the expert's forecast error was 9.85 %. The results indicate that the increased accuracy of electricity consumption forecasting, considering additional factors, further improves when combining machine learning methods with expert evaluation. The development of such a system is only feasible using explainable artificial intelligence models.
-
Date submitted2022-05-23
-
Date accepted2022-07-21
-
Date published2023-02-27
Alluvial tin mining by spray-suction borehole method: a case study on remaining alluvial tin reserves in Bangka Belitung, Indonesia
The area of the Bangka Belitung Islands, which is a potential area for alluvial tin deposits in Indonesia, has been affected by the destruction of tin reserves on the mainland due to rampant artisanal mining, which has left remnants of small-dimensional reserves. The remnants of these reserves can no longer be mined using the hydraulic mining of open pit method due to the small dimensions of the deposits. The hypothesis is that such sedimentary conditions can only be mined by the borehole method. This research aimed to design tools and perform test mining using the borehole method with a spray-suction mechanism. This research produced a novelty, namely, a method and parameters for alluvial tin deposits mining using borehole mining methods, such as the excavation capacity, excavation radius, mining recovery, and dilution factor. The benefit of this research is expected to provide an opportunity to increase the amount of onshore alluvial tin reserves to support tin production.
-
Date submitted2022-05-26
-
Date accepted2022-11-17
-
Date published2022-12-29
Renovation method of restoring well productivity using wavefields
A stagewise theoretical substantiation of the renovation vibrowave method of influencing the near-wellbore zone of reservoir for restoring well productivity is presented. The area of treatment by the proposed method covers the reservoir with a heterogeneous permeability with fractures formed by fracking. In this method a decrease in concentration of colmatants occurs due to a change in direction of contaminants migration. Under the influence of pressure pulses, they move deep into the reservoir and disperse through the proppant pack. The results of mathematical modelling of the propagation of pressure wave and velocity wave and the calculations of particles entrainment in wave motion are presented.
-
Date submitted2021-07-05
-
Date accepted2022-11-17
-
Date published2022-12-29
Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation
A large amount of gas is emitted during underground mining processes, so mining productivity decreases and safety risks increase. Efficient methane drainage from the coal seam and surrounding rocks in underground mines not only improves safety but also leads to higher productivity. Methane drainage must be performed when the ventilation air cannot dilute the methane emissions in the mine to a level below the allowed limits. The cross-measure borehole method is one of the methane drainage methods that involves drilling boreholes from the tailgate roadway to an un-stressed zone in the roof or floor stratum of a mined seam. This is the main method used in Tabas coal mine N 1. One of the effective parameters in this method is the distance between methane drainage stations, which has a direct effect on the length of boreholes required for drainage. This study was based on the measurement of ventilation air methane by methane sensors and anemometers placed at the longwall panel as well as measuring the amount of methane drainage. Moreover, in this study, the obtained and analyzed data were used to determine the suitable distance between methane drainage stations based on the cross-measure borehole method. In a field test, three borehole arrangements with different station distances in Panel E4 of Tabas coal mine N 1 were investigated. Then, the amounts of gas drained from these arrangements were compared with each other. The highest methane drainage efficiency was achieved for distances in the range of 9-12 m between methane drainage stations.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-11-03
In-situ leaching of molybdenum and uranium by percarbonate and chloride-hypochlorite solutions
In-situ leaching of molybdenum and uranium is becoming an increasingly common process. The features of the material composition of ores, leading to a decrease in their filtration properties, were considered. Activation leaching with leaching solutions that have undergone electrophotochemical activation before contact with the ore mass were studied. Activation preparation of leaching solutions promotes the synthesis of clustered water molecules with collectivized protons and hydroxyl ions, as well as active forms of oxygen and hydrogen. Cell leaching of molybdenum from mature tailings of the Shakhtaminsk deposit was studied experimentally. After pre-oxidation with an active carbonate solution, a model borehole leaching was carried out with a chloride-hypochlorite solution. Molybdenum extraction on resin a was 85 % in 30 days. Experiments on the percolation leaching of uranium from the ores of the Uchkuduk and Sugraly deposits confirmed the potential possibility of a significant increase in the extraction of uranium by electrophotoactivated percarbonate solutions relative to aqueous solutions of sodium and ammonium carbonate. When leaching with carbonate solutions without an additional oxidizing agent, the extraction of uranium from the Sugraly deposit ore sample was 52 and 59 % (sodium carbonate and ammonium carbonate). The use of hydrogen peroxide as an oxidizing agent made it possible to achieve 87-88 % extraction into pregnant solutions in 21 days without pre-oxidation. The performed studies confirm the processing capability of extracting uranium and molybdenum by percolation leaching in columns and borehole leaching.
-
Date submitted2021-06-24
-
Date accepted2021-10-18
-
Date published2021-12-16
Modeling the acid treatment of a polymictic reservoir
- Authors:
- Mars M. Khasanov
- Andrey А. Maltcev
Acid treatment of wells program is directly related to oil production efficiency. Investigations aimed at improving the efficiency of acid treatment in a terrigenous reservoir have mainly reviewed the changing and adapting the reagents to minimize bridging caused by acid-rock interaction. Under real conditions, application of new and unique acid compositions is a complex process from an organizational point of view and is therefore not widely used as compared with conventional compositions based on a mixture of hydrochloric and hydrofluoric acids. The paper is based on an approach to improve acid treatment efficiency through optimal design based on near-bottomhole zone treatment simulation. The aspects for practical application of the developed acid treatment simulator for terrigenous reservoirs based on a numerical model of hydrodynamic, physical and chemical processes in a porous medium on an unstructured PEBI-grid are described. The basic uncertainties of the model are identified and analyzed. Influence of empirical parameters within the system of equations on the calculation results and modeling of the mineralogical composition of rocks are considered. Algorithm for static modelling of near-bottomhole zone for acid treatment modelling is described, as well as an approach to optimizing the design of near-bottomhole zone treatment based on adapting the results of rock tests in the model. Using experimental data, the necessity of accounting for influence of secondary and tertiary reactions on the results of modeling physical and chemical processes during acid treatment of terrigenous reservoirs was proved. The distinctive features of West Siberian objects (polymictic reservoirs) with respect to the efficiency of near-bottomhole zone treatment with clay acid have been investigated. Series of calculations to determine the optimum volume of acid injection has been carried out. Experience of previously conducted measures under the considered conditions has been analyzed and recommendations to improve the efficiency of acid treatment have been given.
-
Date submitted2020-09-09
-
Date accepted2021-03-29
-
Date published2021-09-20
Developing features of the near-bottomhole zones in productive formations at fields with high gas saturation of formation oil
The article studies the formation features of the bottomhole zones in productive formations during operation of production wells in the north of the Perm Territory. Their distinctive feature is the high gas saturation of formation oil. The most widely used parameter in Russian and world practice – the skin factor was used as a criterion characterizing the state of the bottomhole zone. Analysis of scientific publications has shown that one of the main problems of applying the skin factor to assess the state of bottomhole zones is the ambiguity of interpretations of its physical meaning and the impossibility of identifying the prevailing factors that form its value. The paper proposes an approach to identifying such factors in the conditions of the fields under consideration, based on multivariate correlation-regression analysis. Choice of this tool is due to the complexity of the processes occurring in the “formation – bottomhole zone – well” system. When describing complex multifactorial processes, the chosen method demonstrates a high degree of reliability. For a large number of wells in the region, significant material was collected and summarized, including the results of determining the skin factor (1102 values) during hydrodynamic investigations, as well as data on the values of various geological and technological indicators, which can probably be statistically related to the value of the skin factor. A series of multidimensional mathematical models has been built; the skin factor was used as a predicted parameter, and data on the values of geological and technological indicators were used as independent indicators. Analysis of the constructed models is a key stage of this study. Set of parameters included in the multidimensional models, sequence of their inclusion and contribution to the total value of the achieved determination coefficient as the main indicator for the performance of the constructed models were studied. It has been established that the main factor influencing the state of the bottomhole zone is oil degassing. Significant differences in the formation features of the skin factor in the terrigenous and carbonate sediments at the fields under consideration have been determined.
-
Date submitted2020-06-16
-
Date accepted2021-03-29
-
Date published2021-09-20
Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench
- Authors:
- Igor A. Alenichev
- Ruslan A. Rakhmanov
Minimizing the discharge of blasted rock mass into the developed space of the pit is a very relevant area for study, as it allows to increase the processability of work and reduce the cost of mining. The article presents the results of experimental industrial explosions, during which the study of this issue was conducted. The main purpose of the work was to establish the key factors affecting the volume of rock mass discharge to the pit haulage berm. During the analysis of the world experience of research on this topic, the key factors affecting the formation of collapse and discharge – natural and technological – are identified. The method of conducting experiments and collecting data for analyzing the influence of technological parameters of location, charging and initiation of wells on the volume of rock mass discharge is described. It is established that the main discharge to the pit haulage berm is formed by the volume of rock mass limited by the prism of the slope angle. With a sufficient rock mass displacement from the edge of the bench crest towards the center of the block, only the wells of the 1st and 2nd rows participate in the discharge formation. Empirical dependences of the total volume of rock mass discharge on the length of the block along the bench crest, the specific consumption of explosives, the size of a rock piece P 50 and the rate of rock breaking are obtained. The obtained results can be used to design the parameters of the drilling and blasting operations (DBO), as well as to predict and evaluate the possible consequences of a mass explosion in similar mining and geological conditions.
-
Date submitted2020-11-20
-
Date accepted2021-03-30
-
Date published2021-06-24
Petrochemical features of tholeiites from the Shaka ridge (South Atlantic)
The article presents original data of chemical composition of tholeiitic basaltoids and andesites, dredged from the Shaka Ridge (South Atlantic) in the course of field research in spring 2016 on the scientific expedition vessel “Akademik Fedorov”. The analytical part of the work on estimating the contents of petrogenic, trace and rare-earth elements was carried out using the classical method (“wet chemistry”), X-ray fluorescence analysis (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). The studied samples demonstrate elevated concentrations of large-ion lithophile elements, or LILE, (Ba, Rb, Pb) and light rare earth elements, or LREE, (La, Ce, Nd, Sm) relative to high field strength elements, or HFSE, (Nb, Ta) and heavy rare earth elements, or HREE, (Dy, Yb, Lu). The specifics of trace element geochemistry suggest a significant contribution of crustal or subduction components to the magmas of the Shaka Ridge. Discrimination diagrams of basaltoids and allied rocks with fields of different geodynamic settings indicate that they were formed in the setting of the mid-ocean ridge basalt (MORB). The reason behind the appearance of subduction and crustal marks in the rocks is possibly associated with assimilation of crustal matter by magmas or lies in their inheritance from the mantle source.
-
Date submitted2019-09-25
-
Date accepted2019-12-20
-
Date published2020-04-24
Study of the well near-bottomhole zone permeability during treatment by process fluids
- Authors:
- Evgenii A. Rogov
In the process of drilling-in productive horizons, several irreversible physical and chemical processes take place in the near-wellbore zone of the formation: stress state of the rocks changes, penetration of the filtrate and solid phase, as well as drilling mud into the reservoir, and swelling of clay particles of intergranular cementing material are observed. As a result, permeability of productive horizon is significantly reduced and, consequently, potential inflow of oil or gas from formation is excluded. An equally serious problem exists during well servicing and workover, when the use of irrational fluids of well killing causes negative consequences associated with deterioration of reservoir properties of formations in the wells being repaired. Article presents the results of the experiments on permeability of clayed porous samples after exposure to various compositions of liquids. In order to increase permeability of near-borehole zone of the formation and increase productivity of wells completed by drilling, and after well servicing and workover, a composition of the process fluid containing a 15 % aqueous solution of oxyethylene diphosphonic acid (OEDA) with addition of a surfactant is proposed.
-
Date submitted2019-10-30
-
Date accepted2019-11-23
-
Date published2020-02-25
Methodology for determining the parameters of drilling mode for directional straight sections of well using screw downhole motors
- Authors:
- Vladimir S. Litvinenko
- M. V. Dvoinikov
Article presents results of study on possibility of increasing the efficiency of drilling directional straight sections of wells using screw downhole motors (SDM) with a combined method of drilling with rotation of drilling string (DS). Goal is to ensure steady-state operation of SDM with simultaneous rotation of DS by reducing the amplitude of oscillations with adjusting the parameters of drilling mode on the basis of mathematical modeling for SDM – DS system. Results of experimental study on determination of extrema distribution of lateral and axial oscillations of SDM frame depending on geometrical parameters of gerotor mechanism and modes ensuring stable operation are presented. Approaches to development of a mathematical model and methodology are conceptually outlined that allow determining the range of self-oscillations for SDM – DS system and boundaries of rotational and translational wave perturbations for a heterogeneous rod with an installed SDM at drilling directional straight sections of well. This mathematical model of SDM – DS system's dynamics makes it possible to predict optimal parameters of directional drilling mode that ensure stable operation of borehole assembly.
-
Date submitted2019-07-10
-
Date accepted2019-08-30
-
Date published2019-12-24
Methodology for calculating technical efficiency of power sections in small-sized screw downhole motors for the «Perfobur» system
With an increase in the share of old and low-yield wells and for the efficient exploitation of fields, it is necessary to include low-capacity formations into production. There are many wells where sidetracking and hydraulic fracturing are difficult due to the close proximity of the gas cap and underlying water caused by geological and technological reasons, and the use of existing secondary drilling-in technologies is not effective due to the extensive colmatated zone or annular circulation. Relevance of radial drilling technologies is growing, which allows drilling-in of the formation with a network of extended channels to establish high-quality hydraulic communication between the formation and the well without affecting the permeability of the formation. In contrast to radial drilling technologies using hydraulic washing, technical system (TS) «Perfobur» uses small-sized screw downhole motors (SDM) and rock cutting tools for channel construction. For efficient milling of production casing and destruction of rock, the hydraulic downhole motor must have high torque, and for the possibility of drilling with a high rate of angle gain, it must have short power section. Existing Russian and foreign SDM have limited number of standard sizes and do not meet the requirements specified for the development of the downhole module of TS «Perfobur». The paper discusses the development of universal small-sized sectional screw downhole motors for milling casing strings and drilling a network of branched channels of super-small diameter and radius of curvature as a part of the TS «Perfobur». Methodology proposed in the article for selecting optimal configuration of the SDM power sections allows constructing small-sized sectional downhole motor that meets the technical requirements and has improved characteristics compared to standard SDM.
-
Date submitted2019-05-26
-
Date accepted2019-07-23
-
Date published2019-10-23
Ensuring Stability of Undermining Inclined Drainage Holes During Intensive Development of Multiple Gas-Bearing Coal Layers
At high rates of production face advance, requirements towards reliable operation of undermining drainage holes get raised. The issue of maintaining high intensity of gaseous seams development under naturally increasing gas content, mining depth and capacity of production equipment poses a problem. The greatest threat comes from the loss of hole stability in the bearing pressure affected zone (in front of the face) and in the intensive shift area of overhanging rock corbels (behind the face). Intensification of air leaks due to deformation of borehole channel leads to impoverishment of removed methane-air mixture and an increasing risk to disturb safe aerogas regime in the mining area. The paper describes a mechanism of how coal-face operations affect the state of underground holes and formation of overhanging rock corbels. A typification of basic kinds of borehole deformations is presented. Authors point out critical disadvantages of the most widely-used technological schemes of gaseous seams development under high load on the production face, which hinder normal operation of a gas drainage system. As a result of research, a dependency of shot hole number, as well as the distance between shot hole axes and the borehole, on the stress state of the borehole outline has been defined more precisely. Basing on that, a formula to calculate drilling parameters of the discharge hole system has been suggested. Implementation of these measures will allow to increase the efficiency of underground gas drainage and to maintain growing intensity of gaseous coal seam development.
-
Date submitted2019-03-21
-
Date accepted2019-05-05
-
Date published2019-08-23
Stimulation of the Drilling Process with the Top Driven Screw Downhole Motor
- Authors:
- S. L. Simonyants
- M. Al Taee
Paper considers application of the top driven screw downhole motor during drilling of directional wells. The advantages and disadvantages of the rotation-sliding technology with implementation of top drive together with screw downhole motor are shown. It has been proven that the use of a screw downhole motor with simultaneous rotation of drilling pipes using the drilling rig's top drive allows increasing the bit rotation frequency without additional loading of the drilling string. Field data for the work out of one-type PDC bits in identical geological and technical conditions with different types of drives during the construction of three directed wells at the Rumaila oil field of the Republic of Iraq were obtained. A regular increase in the mechanical penetration rate, which is explained by an increase in the bit rotation frequency, has been proved. According to the data obtained, a comparative analysis of the drilling indices was carried out, as a result of which the feasibility of joint use of top power drive with screw downhole motor at drilling oil and gas wells was proved.
-
Date submitted2018-11-18
-
Date accepted2019-01-17
-
Date published2019-04-23
Calculation of elastoviscoplastic displacement of well walls in transversal and isotropic rocks
- Authors:
- A. G. Gubaidullin
- A. I. Moguchev
The relevance of the work is justified by the need to improve the technical and economic indicators of well construction based on forecasting and preventing drilling tools sticking due to the narrowing of an open well bore in the intervals of transversely isotropic rocks. A mathematical model of elastic-viscous-plastic displacement of the walls of inclined and horizontal wells has been developed during the narrowing of the open borehole due to rock creep in the intervals of transversely isotropic rocks. In the program developed based on this mathematical model, the calculation of the elastic-viscous-plastic displacement of the walls of an obliquely directed and horizontal well in the reservoir of argillite from the Western Siberia deposit was carried out. As a result of the calculation, it was established that after opening the rock with bits, the cross-section of the open borehole due to the rock creep eventually takes the form of an ellipse, the small axis of which is in the plane of the upper wall of the well and decreases with time.
-
Date submitted2018-09-07
-
Date accepted2018-11-10
-
Date published2019-02-22
Justification of the technological parameters choice for well drilling by rotary steerable systems
- Authors:
- Vladimir S. Litvinenko
- M. V. Dvoinikov
Paper presents the analysis of the investigation results of vibrational accelerations and beating amplitudes of the downhole drilling motor, which help to define the ranges of optimum energy characteristics of the gerotor mechanism, ensuring its stable operation. Dependencies describing the operation of the «drilling bit – rotary steerable system with power screw section – drilling string» system and the values of the self-oscillation boundaries and the onset of system resonance when it is used jointly, were defined as a result of computational and full-scale experimental research. A mathematical model is proposed, which allows determining the optimal range of technological parameters for well drilling, reducing the extreme vibration accelerations of the bottomhole assembly by controlling the torque-power and frequency characteristics of the drilling string, taking into account the energy characteristics of the power screw section of the rotary steerable system. Recommendations on the choice of drilling mode parameters were given.
-
Date submitted2018-01-04
-
Date accepted2018-03-08
-
Date published2018-06-22
Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores
- Authors:
- M. N. Overchenko
- S. A. Tolstunov
- S. P. Mozer
The paper presents the results of borehole stability research and considers possible causes of emergencies. The features of the blast hole drilling process are analyzed taking into account the properties of the rock. Based on the distribution of speed of drill fines removal from the well, an algorithm for selecting drilling modes is proposed. The nature of change in the size of the holess over time has been analyzed. This paper investigates the influence of rock fracturing and its water content on borehole stability. Possible options for eliminating the man-made impact on the massif near holes and options for fixing the hole walls with soft shells are suggested. The experimental data on the installation of shells for the conditions of open mining of apatite-nepheline ores are given. The operability and effectiveness of the technology is proved.
-
Date submitted2018-01-17
-
Date accepted2018-03-09
-
Date published2018-06-22
Control and regulation of the hydrochloric acid treatment of the bottomhole zone based on field-geological data
- Authors:
- M. K. Rogachev
- V. V. Mukhametshin
The analysis results of the hydrochloric acid treatment of the bottomhole zone efficiency along the deposits of high-viscosity oil in the carbonate reservoirs of the Tournaisian stage are presented in the paper. Based on the use of the non-parametric Kulbak criterion, the most informative geological and technological parameters, which affect most the success of hydrochloric acid treatments, assessed by the criteria of increased oil production and reduced water cut, are revealed. The generalization of the hydrochloric acid treatments experience in the conditions of the high-viscosity oil reservoirs of the Tournaisian Stage allows for efficient forecasting, selection of wells, control and regulation of the treatment process to reduce the number of inefficient operations and improve the technical and economic parameters of fuel and energy enterprises at the investigated sites and the ones with similar field-geological characteristics.
-
Date submitted2016-11-21
-
Date accepted2017-01-23
-
Date published2017-04-14
Prospects of obtaining samples of bottom sediments from subglacial lake Vostok
- Authors:
- N. I. Vasilev
- G. L. Leichenkov
- E. A. Zagrivnyi
The paper proves the timeliness of obtaining and examining bottom sediments from subglacial Lake Vostok. Predictive geological section of Lake Vostok and information value of bottom sediments have been examined. Severe requirements towards environmental security of lake examinations and sampling of bottom sediments rule out the use of conventional drilling technologies, as they would pollute the lake with injection liquid from the borehole. In order to carry out sampling of bottom sediments from the subglacial lake, it is proposed to use a dynamically balanced tool string, which enables rotary drilling without any external support on borehole walls to transmit counter torque. A theoretical analysis has been carried out to assess the operation of the tool string, which is a two-mass oscillatory electromechanical system of reciprocating and rotating motion (RRM) with two degrees of freedom.
-
Date submitted2016-09-01
-
Date accepted2016-11-05
-
Date published2017-02-22
Research on technical and technological parameters of inclined drilling
- Authors:
- M. V. Dvoinikov
An analysis of operational capabilities of inclined drilling equipment and technology is presented. Two options of rotary drilling are reviewed as technical and technological solutions, facilitating construction of wells with difficult profiles. The first option implies that the driver unit of the drill bit is represented by downhole drilling motor, the second one utilizes sophisticated rotary steerable systems. Practical results of drilling wells with difficult profiles are presented. A quality assessment of drilling is provided through the example of comparing designed and actual trajectories, using different driver units for the drill bit, as well as properties of surrounding rocks, rheology of the drill fluid and other characteristics of dynamically active systems. A range of rotation speed has been determined that allows rotary steerable systems to have minimal oscillation amplitude of the bottom-hole assembly. Analysis of investigation results showed that the main source of oscillations is linked to bending and compressing stresses, caused by well deviations as well as rigidity of the drilling tool. In effect, in the bottom-hole assembly occur auto-oscillations, making it impossible to correct azimuth and zenith angles. Alteration of rigidity in the bottom part of the tool and drilling parameters, implying reduced rotation speed of the drill string and regulation of drill bit pressure, can partially solve this problem, though increase in rotation speed is limited by technical characteristics of existing top drive systems.
-
Date submitted2015-10-17
-
Date accepted2015-12-19
-
Date published2016-08-22
Improving the retention of minerals in the course of separating monolith from bedrock with the use of gas generator cartridges
- Authors:
- G. P. Paramonov
- V. N. Kovalevskii
- Peter Mozer
Results are presented on the effect of firing rate on pressure pulse in charge camera and fracture stress during spalling. Results are presented of comparative calculations using the equations of autocatalytic reactions of firing rates and escape of reaction products for the system of sodium chlorate - polythene (propylene) in pipe shape. Dependences are obtained of firing rate on concentration of gas generating mixture, its density, components size distribution and cartridge case size. Experimental and computational data were used to consider the conditions of firing turning into explosion for compositions based on sodium chlorate and hydrocarbons in layered and powdered systems. The relation is retrieved between the technological parameters of mining activities (blast hole to blast hole distance, blast hole diameter, depth of cartridge placement) and specific cartridge consumption along the spalling line with gas generators going off.
-
Date submitted2015-08-21
-
Date accepted2015-10-24
-
Date published2016-04-22
Results of the 5G borehole drilling at russian antarctic station «Vostok» and researches of ice cores
- Authors:
- N. I. Vasilev
- A. N. Dmitriev
- V. Ya. Lipenkov
We produce an information about results and features of the 5G borehole drilling in Antarctic layer at Russian station Vostok. Main regularities of the change structured and physical properties by Antarctic ice layer depth, which determine mechanical and reological properties if ice, which influence to sinking of a borehole and to the maintaining of it in a working condition, the safe and competitive technologies creation for drilling of strong ice layers and the environmentally safe technology of the subglacial reservoirs unsealing. We also produce results of the ice cores researching and the paleoclimatic raws construction, which are reconstructed by the ice cores researching from Vostok station, which is compared with isotopic graph. This graph describes changes of World ocean level.
-
Date submitted2015-08-03
-
Date accepted2015-10-06
-
Date published2016-04-22
Technical and technological solutions to ensure stability of downhole drilling motors
- Authors:
- M. V. Dvoinikov
- Yu. D. Muraev
The article shows research analysis of engineering and technological solutions that aimed at improving the efficiency of drilling wells using optimization of dynamic of work downhole drill-ing motors. As the technical solutions that reduce vibration, considered two options of construc-tion of the power section. A first embodiment involves the production of a hollow rotor which can reduce its moment of inertia. The second solution is the production of modular rotor, which are changing the eccentricity (misalignment) of rotating parts of the engine. The research of fluctuations throughout the length of the power section of the working bodies and the spindle of the engine, taking into account changes in its energy characteristics has been con-ducted to ensure stable operation of the engine in a well, identifying optimal loading parameters. Indicators of shaft speed ensuring minimum vibration amplitude of the engine has been Iden-tified. Optimal speed range of the rotor to prevent buckling of the BHA and to sustain its operation is shown to be between 15-20 % of the frequency of the engine at idle. The maximum reduction in speed during the drilling process should not exceed 30 % by conducted research.
-
Date submitted2014-11-04
-
Date accepted2015-01-20
-
Date published2015-10-26
Stability of productive well operation in a steam hydrothermal field
- Authors:
- A. N. Shulyupin
A condition of well operation stability based on agreement of indicator characteristics of well and aquifer throughput capacity is considered. Two hypotheses of the stability state are examined: with one and two possible combinations of characteristics. It is shown that taking into account resistance between the wellhead and the environment with constant pressure helps explain all the features of wellhead pressure and flow-rate relationship of steam-water wells based on the hypothesis with one combination (when the operating point is located on the ascending branch of a well characteristic). The throttling effect on the wellhead which was used in the development of the Mutnovka steam hydrothermal field in order to stabilize the well operation is explained.