Submit an Article
Become a reviewer

Search articles for by keywords:
absorption control

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-29
  • Date accepted
    2024-11-07
  • Date published
    2025-02-26

Well killing with absorption control

Article preview

The development of new fields with low-permeability reservoirs required the introduction of new production technologies, of which the most significant for well killing and underground repair were multi-ton hydraulic fracturing, the simultaneous operation of two or three development sites by one well grid, and an increase in the rate of fluid extraction. These global decisions in field development have led to the need to search for new effective materials and technologies for well killing. The article is devoted to the analysis of problems associated with the process of killing production wells in fields characterized by increased fracturing, both natural and artificial (due to hydraulic fracturing), with reduced reservoir pressure and a high gas factor. The relevance of the analysis is due to the increase in the number of development sites where complications arise when wells are killed. Particular attention is paid to technical solutions aimed at preserving the filtration and capacity properties of the bottomhole formation zone, preventing the absorption of process fluid, and blocking the manifestation of gas. The classification of block-packs used in killing is given, based on the nature of the process fluid. Suspension thickened water-salt solutions are considered, forming a waterproof crust on the surface of the rock, which prevents the penetration of water and aqueous solutions into the formation. This approach ensures the safety and efficiency of killing operations, especially when working with formations in which maintaining water saturation and preventing the ingress of the water phase are of critical importance. Modern trends in the development of technology are revealed, and promising areas for further improvement of well killing with absorption control are outlined.

How to cite: Saduakasov D.S., Zholbasarova A.T., Bayamirova R.U., Togasheva A.R., Tabylganov M.T., Sarbopeeva M.D., Kasanova A.G., Gusakov V.N., Telin A.G. Well killing with absorption control // Journal of Mining Institute. 2025. p. EDN SBXUTZ
Energy industry
  • Date submitted
    2024-06-12
  • Date accepted
    2024-07-18
  • Date published
    2024-07-26

Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities

Article preview

The issue of determining the main parameters of electric energy storage systems – power and energy intensity – is being considered, the determination of which is a fundamentally important task when introducing such devices into the power supply systems of enterprises for both technical (technological) and economic reasons. The work analyzes problems that can be solved by installing electricity storage systems at gas industry facilities. An industry-wide methodology has been developed for calculating the parameters of an electricity storage system based on traditional methods and methods aimed at minimizing the standardized cost of electricity with adaptation to the conditions of the gas industry. A distinctive feature of the presented methodology is the ability to determine the power and energy intensity of electricity storage systems when performing several functions. The methodology was tested at a typical gas industry facility – the Yarynskaya compressor station of OOO Gazprom Transgaz Ukhta, a characteristic feature of which is an autonomous power supply system. An example is given of calculating the electricity storage normalized cost using an improved LCOS indicator, which takes into account the effect of changing the fill factor of the electrical load schedule on the amount of gas consumption by a power plant for its own needs. To confirm the economic efficiency of introducing electricity storage systems calculated using the above methodology, calculations of the integral effect, net present value and efficiency index are presented.

How to cite: Tokarev I.S. Development of parameters for an industry-specific methodology for calculating the electric energy storage system for gas industry facilities // Journal of Mining Institute. 2024. p. EDN UIZSOQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-26
  • Date accepted
    2023-09-20
  • Date published
    2024-04-25

Technology of absorption elimination with cross-linking plugging material based on cement and cross-linked polymer

Article preview

The peculiarity of the geological structure of carbonate reservoirs is their complex permeability and porosity characteristics, reflecting the simultaneous presence of cavities variety (fractures, caverns, pores). Loss of circulation during penetration of fractured rock intervals significantly increases well construction time due to lack of efficient plugging isolation compositions. The main disadvantages of traditional compositions are high sensitivity to dilution in the process of their injection into the absorption zone, as well as insufficient structural strength to prevent the isolation composition from spreading during the induction period. For efficient isolation of catastrophic absorption zones in conditions of high opening of absorption channels a new cross-linking plugging isolation composition has been developed, which allows to exclude disadvantages of traditional isolation compositions. Application of the composition will allow to reduce the injection volume of the isolation composition and the time of isolation works due to its resistance to dilution and movement of formation water in the absorption interval.

How to cite: Predein A.А., Garshina О.V., Melekhin A.А. Technology of absorption elimination with cross-linking plugging material based on cement and cross-linked polymer // Journal of Mining Institute. 2024. Vol. 266. p. 295-304. EDN BPUQNV
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-04-03
  • Date accepted
    2023-03-02
  • Date published
    2023-12-25

Specifics of geotechnical risk control in the design of underground structures

Article preview

The underground space development is associated with the emergence of complex and dangerous situations, often leading to accidents. The condition for their development is the potential geotechnical risks. High-quality execution and analysis of design work at all the stages of design, starting from the early stages, is one of the effective ways to control risks. Clarification of the characteristics and features of the rock mass adjacent to the projected underground structure makes it possible to identify the potential cause of the occurrence of an adverse event with a certain probability during the construction and operation of an underground structure. The purpose of a qualitative risk analysis is to identify risk factors in underground construction. The value of the total geotechnical risk, expressed by the sum of each of the possible risks, should be numerically estimated at the design stage of a specific underground facility. At the same time, it is extremely important to develop a methodology for managing geotechnical risks, which would make it possible to assess their probability of development at an early stage of project preparation and propose measures to reduce or prevent them. This technique is given in the article. The results of the study conducted in accordance with the presented methodology showed that geotechnical risk control proved an effective method in preventing accidents during underground construction.

How to cite: Kulikova E.Y., Polyankin A.G., Potokina A.M. Specifics of geotechnical risk control in the design of underground structures // Journal of Mining Institute. 2023. Vol. 264. p. 895-905. EDN DGEAGK
Energy industry
  • Date submitted
    2022-10-26
  • Date accepted
    2023-02-13
  • Date published
    2023-07-19

Determination of the grid impedance in power consumption modes with harmonics

Article preview

The paper investigates the harmonic impedance determination of the power supply system of a mining enterprise. This parameter is important when calculating modes with voltage distortions, since the determined parameters of harmonic currents and voltages significantly depend on its value, which allow the most accurate modeling of processes in the presence of distortions in voltage and current. The power supply system of subsurface mining is considered, which is characterized by a significant branching of the electrical network and the presence of powerful nonlinear loads leading to a decrease in the power quality at a production site. The modernization of the mining process, the integration of automated electrical drive systems, renewable energy sources, energy-saving technologies lead to an increase in the energy efficiency of production, but also to a decrease in the power quality, in particular, to an increase in the level of voltage harmonics. The problem of determining the grid harmonic impedance is solved in order to improve the quality of design and operation of power supply systems for mining enterprises, taking into account the peculiarities of their workload in the extraction of solid minerals by underground method. The paper considers the possibility of determining the grid impedance based on the measurement of non-characteristic harmonics generated by a special nonlinear load. A thyristor power controller based on phase regulation of the output voltage is considered as such a load. Simulation computer modeling and experimental studies on a laboratory test bench are used to confirm the proposed method. The recommendations for selecting load parameters and measuring device connection nodes have been developed.

How to cite: Skamyin A.N., Dobush V.S., Jopri M.H. Determination of the grid impedance in power consumption modes with harmonics // Journal of Mining Institute. 2023. Vol. 261. p. 443-454. DOI: 10.31897/PMI.2023.25
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-01-21
  • Date accepted
    2022-11-14
  • Date published
    2023-08-28

Strategy of mine ventilation control in optimal mode using fuzzy logic controllers

Article preview

The issues related to improving the efficiency of automatic ventilation control systems of mines that regulate the air supply to the mine in accordance with the need are considered. During the tests of such a system in the 3RU mine of OAO Belaruskali, the shortcomings of its existing, implementation, associated with the incorrect choice of the most difficult-to-ventilate direction, were revealed. The possibilities of implementing a control strategy, in which the system automatically determines the optimal configuration of the operating modes of fans and regulators, are demonstrated. As an alternative to the implemented algorithms, it is proposed to use a fuzzy control device to account for the nonlinearity of the dependence of the input and output parameters of ventilation equipment and to set the conditions for the optimal operating mode of the system in a declarative form. To assess the effectiveness of the proposed approach, the data of simulation modeling of the current ventilation mode and the transition from one ventilation mode to another are analyzed with comparison with the actual data of the system operation. The simulation results show that the use of an upgraded control scheme for the main ventilation fan based on fuzzy logic in the implementation of automatic ventilation control systems makes it possible to eliminate the possibility of a shortage of fresh air in the regulated directions of its movement, as well as excessive power consumption of the main ventilation fan.

How to cite: Kashnikov A.V., Kruglov Y.V. Strategy of mine ventilation control in optimal mode using fuzzy logic controllers // Journal of Mining Institute. 2023. Vol. 262. p. 594-605. DOI: 10.31897/PMI.2022.75
Economic Geology
  • Date submitted
    2022-07-15
  • Date accepted
    2022-12-13
  • Date published
    2023-02-27

Assessment of the efficiency of occupational safety culture management in fuel and energy companies

Article preview

The results of development, testing and implementation of the process of occupational safety culture management in a fuel and energy company including the assessment of current state, assessment of deviation, formation of control action and its implementation are presented. Using the methods of mathematical analysis, the components of occupational safety culture and criteria for their evaluation were developed. As a control action, a procedure for conducting behavioural safety audit was elaborated and implemented. Proceeding from the results of analysing average ratings of safety culture components among the employees prior to and after the introduction of behavioural safety audit, it was concluded that there was a statistically significant increase in the average values of 12 out of 16 ratings of safety culture components. Analysis of the results of 1,011 audits showed the absence of an “alarm area” at the enterprise. Introduction of the developed process management model promotes an increase in the efficiency of attaining a high level of occupational safety culture in fuel and energy companies.

How to cite: Glebova E.V., Volokhina A.T., Vikhrov A.E. Assessment of the efficiency of occupational safety culture management in fuel and energy companies // Journal of Mining Institute. 2023. Vol. 259. p. 68-78. DOI: 10.31897/PMI.2023.12
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-09-30
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies

Article preview

The national strategic goal of the Russian Federation is to ensure the safety of critical technologies and sectors, which are important for the development of the country's oil and gas industry. The article deals with development of national technology for intelligent monitoring of the condition of industrial facilities for transport and storage of oil and gas. The concept of modern monitoring and safety control system is developed focusing on a comprehensive engineering control using integrated automated control systems to ensure the intelligent methodological support for import-substituting technologies. A set of approved algorithms for monitoring and control of the processes and condition of engineering systems is proposed using modular control robotic complexes. Original intelligent models were developed for safety monitoring and classification of technogenic events and conditions. As an example, algorithms for monitoring the intelligent safety criterion for the facilities and processes of pipeline transport of hydrocarbons are presented. The research considers the requirements of federal laws and the needs of the industry.

How to cite: Zemenkova M.Y., Chizhevskaya E.L., Zemenkov Y.D. Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies // Journal of Mining Institute. 2022. Vol. 258. p. 933-944. DOI: 10.31897/PMI.2022.105
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-31
  • Date accepted
    2022-04-26
  • Date published
    2022-07-13

Identification of structural control factors of primary gold ore occurrences by method of unmanned aeromagnetic survey by the example of the Neryungrisky district of Yakutia

Article preview

The long-term development of the geophysical industry, in which the methods of magnetometry are in maximum demand, as the simplest in instrumental and methodological execution, has determined the development of remote measurement methods implemented both from space and airborne carriers. The necessity to use the latter as an obligatory component of field surveys, providing coverage of significant areas, determines the need for using the unmanned low-tonnage carriers. Their use is implemented to search for predictive elements of structural (spatial, genetic) control of endogenous gold ore occurrences that allow predictive constructions, i.e., solving the problem of increasing gold reserves, which is being performed within the framework of federal programs. The purpose of the survey is to develop a system of instrumental and subsequent interpretation approaches in the organization of unmanned magnetometer survey, implemented for structural and geological mapping by the example of the Neryungrinsky district of Yakutia. Within the framework of the digital model formation of the relief and the anomalous magnetic field, a survey method using an unmanned aircraft, its technical characteristics are considered; the analysis and the author's modification of the office analysis of magnetometry data are performed. Based on the obtained materials, a physical and geological model of the investigated area was created, which is presented in the form of a geological and structural cut, accompanied by the physical characteristics of the structural and material complexes. The refinement of the physical and geological model was implemented by a joint morphostructural analysis of the remote base and the anomalous magnetic field using the results of quantative interpretation of the anomalous magnetic field. The result of the study is presented by an updated geological basis with the allocation of promising ore sites for their detailing as part of the planned large-scale geological and geophysical surveys. The scientific novelty of the work consists in the synthesis of the tried and tested methods of unmanned aeromagnetometric measurements and geostructural reconstructions, which allow the processing of both potential and non-potential geofields.

How to cite: Movchan I.B., Shaygallyamova Z.I., Yakovleva A.A. Identification of structural control factors of primary gold ore occurrences by method of unmanned aeromagnetic survey by the example of the Neryungrisky district of Yakutia // Journal of Mining Institute. 2022. Vol. 254. p. 217-233. DOI: 10.31897/PMI.2022.23
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-31
  • Date accepted
    2022-03-24
  • Date published
    2022-07-13

Mathematical model of linear and non-linear proppant concentration increase during hydraulic fracturing – a solution for sequential injection of a number of proppant types

Article preview

It is known that much of the technology aimed at intensifying fluid inflow by means of hydraulic fracturing involves the use of proppant. In order to transport and position grains in the fracture, a uniform supply of proppant with a given concentration into the fracturing fluid is ensured. The aim of the operation is to eliminate the occurrence of distortions in the injection program of proppant HF. A mathematically accurate linear increase of concentration under given conditions is possible only if the transient concentration is correctly defined. The proposed approach allows to correctly form a proppant HF work program for both linear and non-linear increase in proppant concentration. The scientific novelty of the work lies in application of a new mathematical model for direct calculation of injection program parameters, previously determined by trial and error method. A mathematical model of linear and non-linear increase of proppant concentration during HF was developed. For the first time, an analytical solution is presented that allows direct calculation of parameters of the main HF stages, including transient concentrations for given masses of the various types of proppant. The application of the mathematical model in formation of a treatment plan allows maintaining correct proppant mass distribution by fractions, which facilitates implementation of information and analytical systems, data transfer directly from a work program into databases. It is suggested to improve spreadsheet forms used in production, which would allow applying mathematical model of work program formation at each HF process without additional labour costs. The obtained mathematical model can be used to improve the software applied in the design, modelling and engineering support of HF processes.

How to cite: Kochetkov A.V., Fattakhov I.G., Mukhametshin V.V., Kuleshova L.S., Mingulov S.G. Mathematical model of linear and non-linear proppant concentration increase during hydraulic fracturing – a solution for sequential injection of a number of proppant types // Journal of Mining Institute. 2022. Vol. 254. p. 210-216. DOI: 10.31897/PMI.2022.10
Mining
  • Date submitted
    2021-06-01
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Indicator assessment of the reliability of mine ventilation and degassing systems functioning

Article preview

The gas emission control in the mines is operated by ventilation and degassing systems that ensure the aerological safety of the mines or minimize the aerological risks. The ventilation system of the mine and its individual sites includes a significant number of technical devices and equipment, and the air tubes are mainly mining workings, the condition of which determines the quality of the ventilation network (its capacity) and depends on a number of mining factors. Similarly, one of the most important elements of the degassing system, which includes its own chain of technological equipment, are wells, and in some cases, mining workings. Thus, mine ventilation and degassing systems cannot be attributed to purely technical systems, since they include mining elements characterized by high variability of the determining parameters. To assess their reliability, it is necessary to use various combined methods that include additional characteristics in relation to the mining component. At the same time, the reliability of technical devices that ensure the functioning of mine ventilation and degassing systems largely determines the efficiency (stability and reliability) of these systems and, consequently, affects the level of aerological risks. The described approach to assessing the reliability of ventilation and degassing systems of coal mines when analyzing aerological risks is based on the developed system of risk indicators for the methane factor and will allow determining the risk dynamics in automatic mode based on monitoring the parameters of the ventilation and degassing system state.

How to cite: Kaledina N.O., Malashkina V.A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning // Journal of Mining Institute. 2021. Vol. 250. p. 553-561. DOI: 10.31897/PMI.2021.4.8
Electromechanics and mechanical engineering
  • Date submitted
    2020-05-18
  • Date accepted
    2020-06-16
  • Date published
    2021-04-26

Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement

Article preview

The article discusses the solution to the problem of underground railway transport slipping in dynamic modes, which occurs when there is a significant difference in the speeds of the driving and driven pairs of wheels. The state of the rail surfaces largely determines the coefficient of adhesion, therefore, using a mathematical model, the condition for the dependence of the magnitude of slipping and tractive effort is selected. For effective acceleration and deceleration of an electric locomotive, it is necessary to control the coefficient of adhesion at a certain level. A simulation model of rolling stock has been created, which for the first time takes into account a mechanical system with distributed parameters. In the structural diagram of the automatic control system of traction electric drives with frequency regulation, such factors as the volume of goods being moved, rolling friction, slope (rise) levels and the state of the rail track are taken into account. The simulation results show the features of the movement and stops of the freight train not only by the diagrams of speed and forces in the modes of acceleration-deceleration and uniform movement, but also the positions of the plungers and tractive forces on the couplings of the electric locomotive and all trolleys involved in the movement of goods. The practical application of the proposed method lies in the possibility of starting a heavily laden train from its place on the ascent section in conditions of insufficient adhesion coefficient with contaminated roads.

How to cite: Borisov S.V., Koltunova E.A., Kladiev S.N. Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement // Journal of Mining Institute. 2021. Vol. 247. p. 114-121. DOI: 10.31897/PMI.2021.1.12
Mining
  • Date submitted
    2020-05-26
  • Date accepted
    2020-09-23
  • Date published
    2020-12-29

Automated ventilation control in mines. Challenges, state of the art, areas for improvement

Article preview

The article is divided into three main parts. The first part provides an overview of the existing literature on theoretical methods for calculating the optimal air distribution in mines according to the criteria of energy efficiency and providing all sections of mines with the required amount of air. It is shown that by the current moment there are many different formulations of the problem of searching the optimal air distribution, many different approaches and methods for optimizing air distribution have been developed. The case of a single (main) fan is most fully investigated, while for many fans a number of issues still remain unresolved. The second part is devoted to the review of existing methods and examples of the automated mine ventilation control systems implementation in Russia and abroad. Two of the most well-known concepts for the development of such systems are automated ventilation control systems (AVCS) in Russia and the CIS countries and Ventilation on demand (VOD) abroad. The main strategies of ventilation management in the framework of the AVCS and VOD concepts are described and also the key differences between them are shown. One of the key differences between AVCS and VOD today is the automatic determination of the operation parameters of fan units and ventilation doors using the optimal control algorithm, which is an integral part of the AVCS. The third part of the article describes the optimal control algorithm developed by the team of the Mining Institute of the Ural Branch of the Russian Academy of Sciences with the participation of the authors of the article. In this algorithm, the search for optimal air distribution is carried out by the system in a fully automated mode in real time using algorithms programmed into the microcontrollers of fans and ventilation doors. Minimization of energy consumption is achieved due to the most efficient selection of the fan speed and the rate of ventilation doors opening and also due to the air distribution shift control and the partial air recirculation systems introduction. It is noted that currently the available literature poorly covers the issue related to emergency operation modes ventilation systems of mines and also with the adaptation of automated control systems to different mining methods. According to the authors, further development of automated ventilation control systems should be carried out, in particular, in these two areas.

How to cite: Semin M.A., Grishin E.L., Levin L.Y., Zaitsev A.V. Automated ventilation control in mines. Challenges, state of the art, areas for improvement // Journal of Mining Institute. 2020. Vol. 246. p. 623-632. DOI: 10.31897/PMI.2020.6.4
Electromechanics and mechanical engineering
  • Date submitted
    2020-06-15
  • Date accepted
    2020-06-15
  • Date published
    2020-06-30

Multi-terminal dc grid overall control with modular multilevel converters

Article preview

This paper presents a control philosophy for multiterminal DC grids, which are embedded in the main AC grid. DC transmission lines maintain higher power flow at longer distances compared with AC lines. The voltage losses are also much lower. DC power transmission is good option for Russian north. Arctic seashore regions of Russia don't have well developed electrical infrastructure therefore power line lengths are significant there. Considering above it is possible to use DC grids for supply mining enterprises in Arctic regions (offshore drilling platforms for example). Three different control layers are presented in an hierarchical way: local, primary and secondary. This whole control strategy is verified in a scaled three-nodes DC grid. In one of these nodes, a modular multilevel converter (MMC) is implemented (five sub-modules per arm). A novel model-based optimization method to control AC and circulating currents is discussed. In the remaining nodes, three-level voltage source converters (VSC) are installed. For their local controllers, a new variant for classical PI controllers are used, which allow to adapt the values of the PI parameters with respect to the measured variables. Concerning the primary control, droop control technique has been chosen. Regarding secondary level, a new power flow technique is suggested. Unbalance conditions are also verified in order to show the robustness of the whole control strategy.

How to cite: Jiménez Carrizosa M., Stankovic N., Vannier J.-C., Shklyarskiy Y.E., Bardanov A.I. Multi-terminal dc grid overall control with modular multilevel converters // Journal of Mining Institute. 2020. Vol. 243. p. 357-370. DOI: 10.31897/PMI.2020.3.357
Geology
  • Date submitted
    2020-06-13
  • Date accepted
    2020-06-14
  • Date published
    2020-06-30

Deep structure and geodynamic conditions of granitoid magmatism in the Eastern Russia

Article preview

We investigated the deep structure of the lithosphere and the geodynamic conditions of granitoid magmatism in the Eastern Russia within the borders of the Far Eastern Federal District. The relevance of the work is determined by the need to establish the geotectonic and geodynamic conditions of the granitoids petrogenesis and ore genesis in the Russian sector of the Pacific Ore Belt. The purpose of the article is to study the deep structure of the lithosphere and determine the geodynamic conditions of granitoid magmatism in the East of Russia. The author's data on the magmatism of ore regions, regional granitoids correlations, archive and published State Geological Map data, survey mapping, deep seismic sounding of the earth's crust, gravimetric survey, geothermal exploration, and other geophysical data obtained along geotraverses. The magma-controlling concentric geostructures of the region are distinguished and their deep structure is studied. The connection of plume magmatism with deep structures is traced. The chain of concentric geostructures of Eastern Russia controls the trans-regional zone of leucocratization of the earth's crust with a width of more than 1000 km, which includes the Far Eastern zone of Li-F granites. Magmacontrolling concentric geostructures are concentrated in three granitoid provinces: Novosibirsk-Chukotka, Yano-Kolyma, and Sikhote-Alin. The driving force of geodynamic processes and granitoid magmatism was mantle heat fluxes in the reduced zones of the lithospheric slab. The distribution of slab windows along the Pacific mobile belt's strike determines the location of concentric geostructures and the magnitude of granitoid magmatism in the regional provinces. Mantle diapirs are the cores of granitoid ore-magmatic systems. The location of the most important ore regions of the Eastern Russia in concentric geostructures surrounded by annuli of negative gravity anomalies is the most important regional metallogenic pattern reflecting the correlation between ore content and deep structure of the earth's crust.

How to cite: Alekseev V.I. Deep structure and geodynamic conditions of granitoid magmatism in the Eastern Russia // Journal of Mining Institute. 2020. Vol. 243. p. 259-265. DOI: 10.31897/PMI.2020.3.259
Electromechanics and mechanical engineering
  • Date submitted
    2019-05-24
  • Date accepted
    2019-09-08
  • Date published
    2020-02-25

Investigation of the influence of the length of the intermediate magnetic circuit on the characteristics of magnetic gripper for robotic complexes of the mining industry

Article preview

The analysis of the existing systems of mechanical grippers of various operating principles and operating environments, in the design of which both soft and hard magnetic materials are executed. The characteristics of existing prototypes are shown and the results of our own research are presented. The article presents a study of the effect of the intermediate magnetic circuit length on the characteristics of magnetic gripper, the principle of which is based on the control of the field of a permanent magnet. The gripper based on this principle of action does not require constant energy expenditures to maintain both on and off states. The description of the magnetic gripper design and the design of the test bench is given, as well as the results of a series of experiments to determine the strength of the release of the gripper at different lengths of the magnetic circuit in the on and off states, followed by statistical processing of the data. The intervals of the ranges in which with a high degree of probability there will be a value of the gripping disengagement force for various lengths of the intermediate magnetic circuit are identified. The nature of the distribution of a random variable, which is the force of decoupling of the gripper, is determined. The dependences of the gripper decoupling force on the length of the intermediate magnetic circuit for each of the gripper states are constructed. It has been established that a decrease in the length of the intermediate magnetic circuit is the cause of a decrease in the gripping adhesion force. Plots of the dependence of the gripper decoupling force were constructed using the modes of the force values varieties to visually display the experimental results. The maximum adhesion force of magnetic pickup – 9.5 kg – was achieved with an intermediate magnetic core length of 50 mm, the minimum with a length of 25 mm – 5.6 kg.

How to cite: Krestovnikov K.D., Cherskikh E.O., Saveliev A.V. Investigation of the influence of the length of the intermediate magnetic circuit on the characteristics of magnetic gripper for robotic complexes of the mining industry // Journal of Mining Institute. 2020. Vol. 241. p. 46-52. DOI: 10.31897/PMI.2020.1.46
Electromechanics and mechanical engineering
  • Date submitted
    2019-03-31
  • Date accepted
    2019-08-25
  • Date published
    2020-02-25

Cascade frequency converters control features

Article preview

The structures of systems with high-voltage cascade frequency converters containing multi-winding transformers and low-voltage low-power converters connected in series at each output phase of the load are considered. Low-voltage blocks contain three-phase diode or active rectifiers, DC capacitor filters, single-phase stand-alone voltage inverters and block disconnecting devices in partial modes (in case of failure when part of the blocks are disconnected). The possibilities of operation of cascade converters are determined, equations for correcting tasks to units in partial modes are given, tables of correction of tasks with estimates of achievable load characteristics are proposed. The results of experiments on the model of a powerful installation with a cascade frequency converter are presented, confirming the possibility of ensuring the symmetry of the load currents when disconnecting part of the blocks and the asymmetry of the circuit.

How to cite: Vorontsov A.G., Glushakov V.V., Pronin M.V., Sychev Y.A. Cascade frequency converters control features // Journal of Mining Institute. 2020. Vol. 241. p. 37-45. DOI: 10.31897/PMI.2020.1.37
Electromechanics and mechanical engineering
  • Date submitted
    2019-07-07
  • Date accepted
    2019-09-13
  • Date published
    2019-12-24

Installation for experimental research of multiphase electromechanical systems

Article preview

The subject of this study is an installation for experimental research designed to study the characteristics and control algorithms of multiphase motors with the number of working phases from 3 to 8, connected by a star, a triangle, or in another way, allowing phase currents to flow, creating a rotating electromagnetic field. The installation consists of two separate independent units: a controller, or a human-machine control interface, and a power inverter module (converter). The controller is connected to the converter by a two-wire half-duplex interface (RS485) via the Modbus RTU communication protocol. The installation also includes synchronous motors with the number of phases 3, 5, 7. Using the developed installation for experimental research, it is possible to carry out experimental studies of multiphase motors when implementing various control algorithms for a converter that implements pulse-width vector modulation. The time required to implement control algorithms is minimal. According to the results of the experiments, it is possible to carry out a comparative analysis of multiphase motors in terms of energy efficiency, in terms of vibration of electromagnetic origin, in dynamic parameters. An experimental assessment of the load of the converter keys is possible. The created installation is an effective tool for checking the reliability of the results of theoretical studies of electromechanical systems based on multiphase motors.

How to cite: Tereshkin V.M., Grishin D.A., Makulov I.A. Installation for experimental research of multiphase electromechanical systems // Journal of Mining Institute. 2019. Vol. 240. p. 678-685. DOI: 10.31897/PMI.2019.6.678
Geoeconomics and Management
  • Date submitted
    2019-07-11
  • Date accepted
    2019-09-02
  • Date published
    2019-12-24

Stakeholders management of carbon sequestration project in the state – business – society system

Article preview

Prevention of catastrophic effects of climate change is one of the most pressing challenges of this century. A prominent place in the low-carbon development system today is carbon capture and storage technology (CCS). This technology can significantly reduce greenhouse gas emissions, leading to global warming. Effectiveness of technology has been proven through successful implementation of a number of CCS projects. CCS projects are implemented in the context of national and often international interests, consolidating efforts of many parties. Sequestration projects involve government bodies, public, industrial and scientific sectors, as well as a number of other business structures. Each participant presents his own expectations for results of the project, which can compete among themselves, creating threats to its successful implementation. World experience in implementing CCS projects indicates that opposition from a certain group of stakeholders can lead to closure of a project, therefore, interaction with environment is one of the key elements in managing such projects. This study focuses on specifics of stakeholder management in implementation of CO 2 sequestration projects. Based on the analysis of world experience, role of the state, business and society in such projects is determined, their main expectations and interests are summarized. The main groups of stakeholders of CCS and CCUS (carbon capture, utilization and storage) projects were identified, differences in their interests and incentives to participate were analyzed. It is proved that system of interaction with stakeholders should be created at the early stages of the project, while management of stakeholders is a continuous process throughout the life cycle. An author’s tool is proposed for assessing degree of stakeholder interest, the use of which allowed us to determine interaction vectors with various groups of stakeholders.

How to cite: Cherepovitsyn A.E., Ilinova A.A., Evseeva O.O. Stakeholders management of carbon sequestration project in the state – business – society system // Journal of Mining Institute. 2019. Vol. 240. p. 731-742. DOI: 10.31897/PMI.2019.6.731
Oil and gas
  • Date submitted
    2019-06-28
  • Date accepted
    2019-09-03
  • Date published
    2019-12-24

Development of a drilling process control technique based on a comprehensive analysis of the criteria

Article preview

Compliance with drilling operations requirements is achieved by introducing advanced approaches to the management of the drilling process. Main requirement is to reduce the time and material costs for construction of the well. Increase in drilling speed is provided by rational selection of rock cutting tools and modes of its use. Development of a new generation of rock cutting tools is a complex process and requires systematic, integrated approach. In order for high costs of developing and manufacturing the tool to pay off without significantly increasing the cost of drilling, considerable attention should be paid to scientifically justified methods for its running. At well drilling using bottomhole telemetry systems with full computer support for the drilling process, there is a reasonable possibility of using a control technique based on objective results of the drilling process coming directly from the bottomhole of the well in real time. Use of a full factorial experiment is justified for processing data that affect drilling performance. Aim of the research is to develop a drilling process management technique based on a comprehensive analysis of criteria online. Objects of research: rock destruction mechanism during drilling; parameters affecting the process of well drilling; optimization of well drilling processes. The research used the following: experimental drilling with a diamond tool at the bench, method of a full factorial experiment, analytical studies. Article highlights the factors affecting the performance of a diamond rock cutting tool in the process of drilling a well, notes main criteria affecting the efficiency of the drilling process. It also describes mechanism of volumetric destruction, defines the conditions for the destruction of rock at various drilling modes and the dependence of the change in deepening per round on the parameters of the drilling modes. Technique of controlling the parameters of the drilling mode is considered, which allows determining indirectly the mode of rock destruction at the bottomhole of the well and choosing optimal values of the parameters for the drilling mode that correspond to the most favorable conditions.

How to cite: Neskoromnykh V.V., Popova M.S. Development of a drilling process control technique based on a comprehensive analysis of the criteria // Journal of Mining Institute. 2019. Vol. 240. p. 701-710. DOI: 10.31897/PMI.2019.6.701
Electromechanics and mechanical engineering
  • Date submitted
    2019-05-05
  • Date accepted
    2019-07-03
  • Date published
    2019-10-23

Scraper Face Conveyors Dynamic Load Control

Article preview

The task of controlling the dynamic loading of scraper face conveyors (SC) is considered and the unsatisfactory state of loading of mechanical and electrical components of the SC is recorded. The possibility of the appearance of a self-oscillatory nature of the entire system load due to the peculiarities of the movement of the traction chain along the lattice frame of the SC is indicated. The property of the system is noted – the cyclic nature of the loading of the circuit during movement, which causes energy exchange processes between the mechanical and electromotive components of the conveyor (when using the head and tail electric drives) through the common cable network of the power supply system of the SC. A high level of dynamic loading of the electromechanical system causes the problem of eliminating the self-oscillating operating mode of the SC that generates it which is proposed to be solved by changing the angular rotation speeds of the SC drive sprockets. Angular speeds can be changed by applying frequency control of asynchronous electric motors. The efficiency of setting the frequency of electric motor stator currents of the head and tail drives of the conveyor is established in proportion to the frequency of rotors rotation to eliminate self- oscillating modes of operation in the main operating mode. The possibility of reducing the starting shock values of the electromagnetic moments of electric motors is considered. The results of the calculation of the start-up and liquidation of the self-oscillating operating mode are presented on the example of the scraper face conveyor Anzhera-34. The results of calculations of the start-up modes and the main operational transportation of coal in an uncontrolled mode of operation and after the introduction of control are compared, based on which it is concluded that it is advisable to use active control of the dynamic loading ofSC.

How to cite: Eshchin E.K. Scraper Face Conveyors Dynamic Load Control // Journal of Mining Institute. 2019. Vol. 239. p. 570-575. DOI: 10.31897/PMI.2019.5.570
Oil and gas
  • Date submitted
    2019-03-05
  • Date accepted
    2019-05-03
  • Date published
    2019-08-23

Efficiency Estimation of the Single- and Multicomponent Anti-hydrate Reagents

Article preview

Different types of technological and technical problems in the oil, gas and chemical industries are connected with the hydrate formation process and with the using of anti-hydrate chemicals. That is why, it is necessary to estimate thermobaric ranges within which reagents does not let hydrate to grow or is their dissociation. Also, to estimate anti-hydrate influence we need to determine the chemicals’ anti-hydrate efficiency and chose the best one. They make the reagents consisting of several chemical components depending on the purpose of their application – for prevention of formation and (or) elimination of hydrates. It demands calculations of the optimum concentration and expenses and also the intensity (speed) of hydrates dissociation causing with the reagents. The analytical method of the anti-hydrate chemical reagents efficiency determination containing one or several components from different classes of chemical compounds – alcohols, salts, acids, compounds of nitrogen and oxygen – is presented in this paper. With its help it is possible to define decrease in temperature of hydrate formation from reagents influence, to count key parameters of reagents anti-hydrate efficiency depending on component compositions of hydrate gas and a phase condition of a hydrate-gas system, to select types of chemical components and their quantity in multicomponent reagents, i.e., to make new compounds. The method can be used for express assessment of anti-hydrate chemical reagents efficiency on criteria sign for practical application in oil, gas and processing industry.

How to cite: Shostak N.A., Zaporozhets E.P. Efficiency Estimation of the Single- and Multicomponent Anti-hydrate Reagents // Journal of Mining Institute. 2019. Vol. 238. p. 423-429. DOI: 10.31897/PMI.2019.4.423
Electromechanics and mechanical engineering
  • Date submitted
    2018-12-30
  • Date accepted
    2019-03-01
  • Date published
    2019-06-25

The concept of development of monitoring systems and management of intelligent technical complexes

Article preview

Conceptual approaches to improving the system of monitoring and managing the functional capabilities of intelligent technical complexes of buildings and transport and technological machines of mining enterprises are defined. Criteria are proposed for the efficiency of functioning of automatic systems for controlling the movement of transport-technological machines, taking into account the probabilistic nature of system-forming factors. The scheme of scientific and methodological research on the improvement of automation systems and traffic control in the automotive transport is presented. The perspective directions of the formation of control functions for the movement of vehicles based on the use of intelligent automated systems are substantiated. The stages of the life cycle of technical systems for monitoring the movement of vehicles, taking into account the features of their operation. A technique has been developed for the optimal use of technical means of control in the field of providing control and supervisory functions in the operation of vehicles, and the dependence of determining the financial costs of maintaining their efficiency has been determined.

How to cite: Safiullin R.N., Afanasyev A.S., Reznichenko V.V. The concept of development of monitoring systems and management of intelligent technical complexes // Journal of Mining Institute. 2019. Vol. 237. p. 322-330. DOI: 10.31897/PMI.2019.3.322
Electromechanics and mechanical engineering
  • Date submitted
    2018-10-27
  • Date accepted
    2019-01-04
  • Date published
    2019-04-23

Application of an active rectifier used to mitigate currents distortion in 6-10 kV distribution grids

Article preview

The paper addresses issues of using the active rectifier in partially loaded variable frequency drive as active filter in the conditions of non-sinusoidal current and voltage disturbances caused by the presence of high-power non-linear load in the grid. The topology of transformless three-level converter for 6-10 kV suitable for proposed solution has been presented and its mathematical model has been de-rived. Based on the model, the direct power control algorithm with ability to compensate non-linear currents has been designed. The investigation of active rectifier efficiency was performed depending on the relation between linear and non-linear load currents of the grid node, as well as on active power load of the active rectifier. Efficiency analysis was based on the developed computer model of the grid node with connected non-linear load simultaneously with the variable frequency drive with active rectifier.

How to cite: Solovev S.V., Kryltcov S.B., Munoz-Guijosa J.M. Application of an active rectifier used to mitigate currents distortion in 6-10 kV distribution grids // Journal of Mining Institute. 2019. Vol. 236. p. 229-238. DOI: 10.31897/PMI.2019.2.229
Electromechanics and mechanical engineering
  • Date submitted
    2018-11-13
  • Date accepted
    2019-01-23
  • Date published
    2019-04-23

Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation

Article preview

The balance of electricity consumption a significant part is occupied by the production of compressed air at the mining enterprises. Many compressor stations of enterprises are equipped with automated parameter management systems that allow reliable, uninterrupted and safe operation of the compressor facilities. But the majority of automation systems at compressor stations do not perform the function of monitoring the energy efficiency indicators of the operation of a compressor station. The article discusses the issue of including compressed air flow sensors (flow meters) in an automated control system of a compressor station, which allows you to control the production of compressed air and the consumption of electrical energy for its production. Monitoring and recording of these parameters makes it possible, using microprocessor technology, to control one of the main indicators of energy efficiency – the specific energy consumption for producing one cubic meter of compressed air, determine how efficiently the compressor station works, and take appropriate measures to reduce specific energy consumption in time. . The use of additional functions of automated control and monitoring systems will allow the development and application of energy-saving measures aimed at improving the energy efficiency of the enterprise, which will lead to a reduction in the cost of finished products and increase their competitiveness

How to cite: Ugolnikov A.V., Makarov N.V. Application of automation systems for monitoring and energy efficiency accounting indicators of mining enterprises compressor facility operation // Journal of Mining Institute. 2019. Vol. 236. p. 245-248. DOI: 10.31897/PMI.2019.2.245