Submit an Article
Become a reviewer

Search articles for by keywords:
технологии интенсификации газоотдачи угольных пластов

Editorial
  • Date submitted
    2024-07-04
  • Date accepted
    2024-07-04
  • Date published
    2024-07-04

Environmental safety and sustainable development: new approaches to wastewater treatment

Article preview

In 2015, the UN member states adopted the 2030 Agenda for Sustainable Development. Despite significant progress, billions of people – one in three people – do not have access to safe, clean drinking water. Modern wastewater treatment methods include a wide range of biological, chemical and physical processes, each having its own advantages and applications. This thematic volume considers the latest achievements in wastewater treatment technologies, wastewater purification and treatment as well as their potential applications at the local level. The problem of surface water pollution is relevant for all regions of the world. One of the largest sources of pollutants is mining and processing industry. The first stage in the development of wastewater treatment technologies is monitoring of anthropogenically modified water bodies.

How to cite: Pashkevich M.A., Danilov A.S., Matveeva V.A. Environmental safety and sustainable development: new approaches to wastewater treatment // Journal of Mining Institute. 2024. Vol. 267 . p. 341-342.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-20
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Directions in the technological development of aluminium pots

Article preview

Directions for the technical and technological development of aluminium industry, existing and promising projects to reduce the energy consumption and the environmental impact are analyzed. The active participation of the state in the organization of financial instruments for the ecological reconstruction of obsolete production facilities is discussed. In spite of the fact that the technology of aluminium pots is developed towards the increase of a single capacity, but with limited potential of reducing energy consumption and greenhouse gases emission, the possibilities for the increase of specific output are practically non-existent. Therefore, such projects like pots, equipped with inert anodes and drained cathodes arise and are under development, the successful completion of which is unlikely after multi-year researches and pilot tests. To continue the works related to inert anodes the decisive answer about the industrial safety of local sources of the massive oxygen emissions to atmosphere is required from competent entities. The drained cathode project, after discussing the existing problems, seems unfeasible. As opposed to the existing technology the development of the pots with vertical electrodes offers great opportunities to the designs of inert anodes and drained cathodes. Positive results of using shaped electrodes, homogenizing their surface and developing the methods for the synthesis of composite cathodes directly during the electrolytic process were obtained in laboratory conditions. It is expected that the combination of these trends and the successive dimensional scaling shall allow using the vertical electrodes at the next level for the fold increase of specific pot capacity and for the decrease of energy consumption and greenhouse gas emissions.

How to cite: Gorlanov Е.S., Leontev L.I. Directions in the technological development of aluminium pots // Journal of Mining Institute. 2024. Vol. 266 . p. 246-259. EDN PYSEVM
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-08
  • Date accepted
    2022-07-21
  • Date published
    2023-12-25

Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement

Article preview

The results of the analysis of practical experience in the development of potash seams using longwall mining systems at the mines of OAO “Belaruskali” are presented. Positive changes in the technical and economic indicators of mines and an increase in the safety of mining operations were noted with the introduction of resource-saving technologies without leaving the pillars between the excavation columns or with leaving the pillars between the columns with dimensions at which they are destroyed by mining pressure in the goaf. It is noted that the use of mechanized stoping complexes characterized by high energy capacity, combined with large depths of development, is the main reason for the temperature increase in longwalls to values exceeding the maximum permissible air temperature regulated by sanitary standards. Based on production studies, it was concluded that the temperature regime along the length of the longwall face is determined by the temperature of rocks in the developed longwall space, heat emissions from the equipment of the power train, and the temperature of the rock mass ahead of the longwall. The conclusion has been drawn about the feasibility of using developed technological schemes in deep mining conditions, which provide a reduction in longwall temperature by 6-9 °C or more through isolated ventilation of longwall and power trains, as well as heat exchange between the airflow entering the longwall and the rocks in the developed space.

How to cite: Zubov V.P., Sokol D.G. Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement // Journal of Mining Institute. 2023. Vol. 264 . p. 874-885. EDN YYMIQY
Energy industry
  • Date submitted
    2023-01-12
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials

Article preview

The issues of energy saving in pyrometallurgical production during processing of mineral raw materials in ore-thermal furnaces are particularly important for the development of new energy-efficient technologies. The reduction of the specific power consumption during melting at different stages of heating and melting of charge materials when modeling is related to obtaining kinetic curves in the process of kyanite concentrate regeneration in polythermal conditions. Based on practical data of carbo-thermal reduction the mathematical modeling of reduction processes from alumosilicic raw materials – kyanite was carried out. In this work, the nonisothermal method based on a constant rate of charge heating (i.e. a linear dependence between time and temperature) was used for the reduction of kyanite charge, which saves electrical energy. The experiments were carried out on a high-temperature unit with a heater placed in a carbon-graphite crucible. Based on the obtained kinetic dependences of nonisothermal heating of enriched kyanite concentrates in plasma heating conditions we obtained a number of kinetic anamorphoses of the linear form which point to the possibility of describing the reaction rate using the modified Kolmogorov – Erofeev equation for given heating conditions and within a narrow temperature range. The complex of mathematical modeling makes it possible to create a control algorithm of technological process of reduction of kyanite concentrate to a metallized state within the specified temperature range for the full flow of reaction exchange and to reduce the specific power consumption by 15-20 %. With the help of the received kinetic dependences, taking into account the thermodynamics of processes and current state of the art it is possible to create a universal thermal unit for the optimal carbothermal reduction of charge to a metallized state (alloy) with minimum power inputs compared to existing technologies.

How to cite: Bazhin V.Y., Ustinova Y.V., Fedorov S.N., Shalabi M.E.K. Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials // Journal of Mining Institute. 2023. Vol. 261 . p. 384-391. EDN RTQXSE
Energy industry
  • Date submitted
    2023-04-02
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Integration of renewable energy at coal mining enterprises: problems and prospects

Article preview

This article addresses the issue of developing renewable energy in coal mining enterprises in the Russian Federation. The study presents a methodology for assessing the technical and economic efficiency of introducing renewable energy sources based on simulation modeling. An analysis of the potential of solar and wind energy for coal mining regions in Russia is conducted. The authors use a custom software developed by them to simulate the power supply system for various scenarios of renewable energy integration, including solar generation, wind generation, solar generation with energy storage, wind generation together with solar generation. Based on the example of the Rostov region, a feasibility study of the considered options is presented. Additionally, the research includes a sensitivity analysis of the investment project in the conditions of uncertainty in the development of Russian renewable energy. The research findings indicate that even in market conditions with CO2 emission quotas and prices at the level of the Sakhalin experiment, renewable energy in coal mining enterprises in Russia remains unattractive and requires additional support.

How to cite: Nepsha F.S., Varnavskiy K.A., Voronin V.A., Zaslavskiy I.S., Liven A.S. Integration of renewable energy at coal mining enterprises: problems and prospects // Journal of Mining Institute. 2023. Vol. 261 . p. 455-469. EDN LNSCEY
Economic Geology
  • Date submitted
    2022-04-07
  • Date accepted
    2023-04-21
  • Date published
    2023-08-28

Development of a new assessment system for the applicability of digital projects in the oil and gas sector

Article preview

Digital transformation is one of the global trends that has covered most sectors of the economy and industry. For oil and gas companies, the introduction of digital technologies has become not just a trend, but one of the factors for ensuring competitiveness and maintaining a stable position in the market in a rapidly changing macro environment. At the same time, despite the positive effects achieved, digital transformation is a complex process from the point of view of implementation and is associated with high technological, financial, and economic risks. The work aims to develop and test a new system for evaluating the applicability of digital projects in the oil and gas sector. The research methodology includes the application of the Gartner curve, methods of expert assessments, and tools for assessing the economic efficiency of investment projects. The developed assessment system is based on a comprehensive accounting of four components: the level of digital maturity of the company; compliance of the implemented technology with the goals and objectives of the organization; the level of reliability of the implemented technology; the level of innovation of the implemented project. Particular attention is paid to the practical testing of the proposed methodology based on the evaluation of a digital project implemented by a Russian oil and gas company.

How to cite: Cherepovitsyn A.E., Tretyakov N.A. Development of a new assessment system for the applicability of digital projects in the oil and gas sector // Journal of Mining Institute. 2023. Vol. 262 . p. 628-642. EDN QYBHMC
Economic Geology
  • Date submitted
    2022-10-14
  • Date accepted
    2022-12-13
  • Date published
    2023-02-27

Carbon capture and storage: net zero contribution and cost estimation approaches

Article preview

Carbon capture, utilization, and storage (CCUS) are a combination of necessary and promising technologies that can help reduce CO2 emissions, which are not used on a large scale due to the high cost of solutions. This article aims to review and analyze carbon capture and storage (CCS) projects in terms of their net zero contribution and cost estimates. The study identified a wide range of cost estimation methods that can be applied to CCS projects and revealed such issues as a lack of standardization, limited data, and cost data variability. Still, several common trends were found, including the classification of CCS adopters into low-cost and high-cost industries, cost estimation by CCS step (capture, transportation, storage) and industry (power generation, other sectors), and calculation of relative indices to make comparisons with other decarbonization options. The results of the study can serve as a foundation for developing approaches to estimating the costs of CCS in Russia, which are necessary for planning government support measures and involving businesses in the implementation of these initiatives.

How to cite: Skobelev D.O., Cherepovitsyna A.A., Guseva T.V. Carbon capture and storage: net zero contribution and cost estimation approaches // Journal of Mining Institute. 2023. Vol. 259 . p. 125-140. DOI: 10.31897/PMI.2023.10
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-05-13
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing

Article preview

Hydraulic fracturing is an effective way to stimulate oil production, which is currently widely used in various conditions, including complex carbonate reservoirs. In the conditions of the considered field, hydraulic fracturing leads to a significant differentiation of technological efficiency indicators, which makes it expedient to study in detail the crack formation patterns. For all affected wells, the assessment of the resulting fractures spatial orientation was performed using the developed indirect technique, the reliability of which was confirmed by geophysical methods. In the course of the analysis, it was found that in all cases the fracture is oriented in the direction of the development system element area, which is characterized by the maximum reservoir pressure. At the same time, reservoir pressure values for all wells were determined at one point in time (at the beginning of hydraulic fracturing) using machine learning methods. The reliability of the used machine learning methods is confirmed by high convergence with the actual (historical) reservoir pressures obtained during hydrodynamic studies of wells. The obtained conclusion about the influence of the formation pressure on the patterns of fracturing should be taken into account when planning hydraulic fracturing in the considered conditions.

How to cite: Filippov Е.V., Zakharov L.A., Martyushev D.A., Ponomareva I.N. Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing // Journal of Mining Institute. 2022. Vol. 258 . p. 924-932. DOI: 10.31897/PMI.2022.103
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-03-01
  • Date accepted
    2022-05-25
  • Date published
    2022-12-29

Study on the rheological properties of barite-free drilling mud with high density

Article preview

Improved drilling and reservoir penetration efficiency is directly related to the quality of the drilling mud used. The right choice of mud type and its components will preserve formation productivity, stability of the well walls and reduce the probability of other complications. Oil and gas operators use barite, less often siderite or hematite weighting agent as a weighting component in the composition of drilling muds for the conditions of increased pressure. But the use of these additives for the penetration of the productive formation leads to the reduction of filtration characteristics of the reservoir, as it is almost impossible to remove them from the pore channels. Therefore, barite-free drilling mud of increased density based on formic acid salts with the addition of carbonate weighting agent as an acid-soluble bridging agent is proposed. The results of experimental investigations on rheological parameters of barite-free solutions are given and the obtained data are analyzed. Based on the comparison of results it is recommended to use high-density drilling mud on the basis of formic acid salts (sodium and potassium formate) and with the addition of partially hydrolyzed polyacrylamide with molecular mass of 27 million.

How to cite: Leusheva E.L., Alikhanov N.T., Brovkina N.N. Study on the rheological properties of barite-free drilling mud with high density // Journal of Mining Institute. 2022. Vol. 258 . p. 976-985. DOI: 10.31897/PMI.2022.38
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-04-12
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits)

Article preview

Modern field operation conditions are characterized by a decline in gas production due to the depletion of its reserves, a decrease in reservoir pressure, an increase in water cut, as well as due to the depreciation of the operating well stock. These problems are especially specific at the late stage of development of the Cenomanian deposits of Western Siberia fields, where the anomaly factor below 0.2 prevails, while gas-bearing formations are represented mainly by complex reservoirs with high-permeability areas. When killing such wells, the classical reduction of overbalance by reducing the density of the process fluid does not provide the necessary efficiency, which requires the search for new technical and technological solutions. In order to prevent the destruction of the reservoir and preserve its reservoir properties during repair work in wells with abnormally low reservoir pressure, AO “SevKavNIPIgaz” developed compositions of special process fluids. A quantitative description of the process of blocking the bottomhole formation zone is proposed by means of mathematical modeling of injection of a gel-forming solution into a productive horizon. The well killing technology includes three main stages of work: leveling the injectivity profile of the productive strata using three-phase foam, pumping the blocking composition and its displacement with the creation of a calculated repression. Solutions obtained on the basis of a mathematical model allow optimizing technological parameters to minimize negative consequences in the well killing process.

How to cite: Gasumov R.А., Minchenko Y.S., Gasumov E.R. Development of technological solutions for reliable killing of wells by temporarily blocking a productive formation under ALRP conditions (on the example of the Cenomanian gas deposits) // Journal of Mining Institute. 2022. Vol. 258 . p. 895-905. DOI: 10.31897/PMI.2022.99
Geology
  • Date submitted
    2021-12-21
  • Date accepted
    2022-06-20
  • Date published
    2022-11-10

Scientific justification of the perforation methods for Famennian deposits in the southeast of the Perm Region based on geomechanical modelling

Article preview

The article presents the results of analysing geological structure of the Famennian deposits (Devonian) in the Perm Region. Numerical modelling of the distribution of inhomogeneous stress field near the well was performed for the two considered types of perforation. With regard for the geometry of the forming perforation channels, numerical finite element models of near-wellbore zones were created considering slotted and cumulative perforation. It is ascertained that in the course of slotted perforation, conditions are created for a significant restoration of effective stresses and, as a result, restoration of reservoir rock permeability. Stress recovery area lies near the well within a radius equal to the length of the slots, and depends on the drawdown, with its increase, the area decreases. From the assessment of failure areas, it was found that in case of slotted perforation, the reservoir in near-wellbore zone remains stable, and failure zones can appear only at drawdowns of 10 MPa and more. The opposite situation was recorded for cumulative perforation; failure zones near the holes appear even at a drawdown of 2 MPa. In general, the analysis of results of numerical simulation of the stress state for two simulated types of perforation suggests that slotted perforation is more efficient than cumulative perforation. At the same time, the final conclusion could be drawn after determining the patterns of changes in permeability of the considered rocks under the influence of changing effective stresses and performing calculations of well flow rates after making the considered types of perforation channels.

How to cite: Chernyshov S.E., Popov S.N., Varushkin S.V., Melekhin A.A., Krivoshchekov S.N., Ren S. Scientific justification of the perforation methods for Famennian deposits in the southeast of the Perm Region based on geomechanical modelling // Journal of Mining Institute. 2022. Vol. 257 . p. 732-743. DOI: 10.31897/PMI.2022.51
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-05-27
  • Date accepted
    2022-09-06
  • Date published
    2022-11-10

Application of resonance functions in estimating the parameters of interwell zones

Article preview

It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.

How to cite: Batalov S.А., Andreev V.Е., Mukhametshin V.V., Lobankov V.М., Kuleshova L.S. Application of resonance functions in estimating the parameters of interwell zones // Journal of Mining Institute. 2022. Vol. 257 . p. 755-763. DOI: 10.31897/PMI.2022.85
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-09-22
  • Date accepted
    2022-03-24
  • Date published
    2022-04-29

Predicting dynamic formation pressure using artificial intelligence methods

Article preview

Determining formation pressure in the well extraction zones is a key task in monitoring the development of hydrocarbon fields. Direct measurements of formation pressure require prolonged well shutdowns, resulting in underproduction and the possibility of technical problems with the subsequent start-up of wells. The impossibility of simultaneous shutdown of all wells of the pool makes it difficult to assess the real energy state of the deposit. This article presents research aimed at developing an indirect method for determining the formation pressure without shutting down the wells for investigation, which enables to determine its value at any time. As a mathematical basis, two artificial intelligence methods are used – multidimensional regression analysis and a neural network. The technique based on the construction of multiple regression equations shows sufficient performance, but high sensitivity to the input data. This technique enables to study the process of formation pressure establishment during different periods of deposit development. Its application is expedient in case of regular actual determinations of indicators used as input data. The technique based on the artificial neural network enables to reliably determine formation pressure even with a minimal set of input data and is implemented as a specially designed software product. The relevant task of continuing the research is to evaluate promising prognostic features of artificial intelligence methods for assessing the energy state of deposits in hydrocarbon extraction zones.

How to cite: Zakharov L.А., Martyushev D.А., Ponomareva I.N. Predicting dynamic formation pressure using artificial intelligence methods // Journal of Mining Institute. 2022. Vol. 253 . p. 23-32. DOI: 10.31897/PMI.2022.11
Mining
  • Date submitted
    2020-09-15
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Evaluating the effectiveness of fine gold extraction technologies on the example of titanomagnetite beach placers of the western coast of Kamchatka

Article preview

The material on the gold content of coastal-marine deposits of the western coast of Kamchatka is analyzed and the resource potential is briefly characterized. A review of gold technological estimates obtained from the study of gold-bearing samples taken in promising areas of the coastal-marine strip, from the Bolshaya Vorovskaya River in the north to Cape Levashova in the south, is presented. Stock materials supplemented by our studies were used. Gold-bearing deposits with very fine (0.05-0.1 mm) and fine (0.1-1.0 mm) gold amounting to 94.6 % were tested, as well as samples with gold up to 2 mm and more in addition to fine gold The content of freely recoverable gold reached 91.9 %. In the case of significant gold reserves in placers, prospects for their commercial development open up. experiments on the enrichment of gold-bearing coastal-marine deposits of Western Kamchatka indicate the possibility of extraction of free gold and other valuable components from them. Gravity technologies and modern equipment developed by ОАО Irgiredmet and JSC ITOMAK are the most effective for their extraction. enrichment of gold-bearing formations with simultaneous extraction of several useful components from them, which is possible with the use of fluoride technology, can also become economically advantageous.

How to cite: Kungurova V.E. Evaluating the effectiveness of fine gold extraction technologies on the example of titanomagnetite beach placers of the western coast of Kamchatka // Journal of Mining Institute. 2021. Vol. 252 . p. 840-853. DOI: 10.31897/PMI.2021.6.6
Oil and gas
  • Date submitted
    2021-03-11
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Justification of a comprehensive technology for preventing the formation of asphalt-resin-paraffin deposits during the production of highlyparaffinic oil by electric submersible pumps from multiformation deposits

Article preview

Production of highly solidifying abnormal oils (with a paraffin content of over 30 % by mass) in the Far North is complicated by the intensive formation of asphalt-resin-paraffin deposits (ARPD) in the bottomhole zone of the productive formation, well and surface equipment. Existing methods and technologies for countering the formation of organic deposits in well equipment have many advantages. However, their application in the production of highly paraffinic oil does not fully prevent the formation of ARPD in the tubing string. This leads to a significant reduction in oil production, reduction of turnaround and intertreatment periods of production wells operation, an increase in specific operating expenses for paraffin removal. Results of theoretical and laboratory investigations presented in the article show that one of the promising ways to improve the operational efficiency of wells equipped with electric submersible pumps during extraction of highly paraffinic oil from multiformation deposits is the application of a new integrated technology based on the joint production of highly solidifying abnormal oil with oil, characterized by a lower paraffin content and manifestation of structural and mechanical properties, in conjunction with the regulation of the parameters for the electric submersible pump. Results of numerical modeling using the PIPESIM steady-state multiphase flow simulator, physical, chemical and rheological investigations show that with a decrease of highly paraffinic oil from the productive formation D2ef in a blend with Stary Oskol oil from the Kyrtaelskoye field, a decrease in the mass content of paraffin in the blend and the temperature of its saturation with paraffin, depth and intensity of the organic deposits formation in the tubing string, pour point, as well as the improvement of the rheological properties of the investigated structured dispersed systems is observed. Article describes a promising assembly of well equipment for the single tubing separate production of highly paraffinic oil from multiformation deposits of the Timan-Pechora province, providing separation of the perforation zones in two productive formations using a packer-anchor system at simultaneous-separate operation of the formations by a double electric submersible pump unit.

How to cite: Rogachev M.K., Aleksandrov A.N. Justification of a comprehensive technology for preventing the formation of asphalt-resin-paraffin deposits during the production of highlyparaffinic oil by electric submersible pumps from multiformation deposits // Journal of Mining Institute. 2021. Vol. 250 . p. 596-605. DOI: 10.31897/PMI.2021.4.13
Mining
  • Date submitted
    2020-06-02
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

Analysis of technological schemes for creating a geodetic control at the industrial site

Article preview

The article highlights the issues of creating with the necessary accuracy a planned control on the industrial site of the engineering structures under construction using satellite technologies and total stations. Depending on the design features of the engineering structures under construction, as well as the technological scheme for the installation of building constructions and industrial equipment, various schemes for creating such control are considered, based on the application of the inverse linear-angular notch. Errors in the source data are one of the main errors that affect the accuracy of geodetic constructions, including the solution of the inverse linear-angular notch. When creating a geodetic network in several stages, the errors of the initial data of the first stage affect the values of the root-mean-square errors (RMS) of determining the position of the second stage points, the errors of which affect the value of the RMS of the position of the third stage points, etc. The reason for their occurrence is the errors of geodetic measurements that occur at each stage of control creating, as well as the stability violation of the points during the production of excavation, construction and installation works. When determining the coordinates of a separate project point at the stage of its removal in-situ by a total station, the entire network is not equalized in the vast majority of cases, and the coordinates of the starting points to which the total station is oriented are considered error-free. As a result, the RMS determination of the points coordinates of the control network or the removal of the design points of the elements of building structures and equipment will also be considered satisfying the requirements, i.e. the measurement accuracy will be artificially overestimated and will not correspond to the actual one obtained. This is due to the fact that the accumulation of errors in the initial data is not taken into account when the number of steps (stages) of control creating increases. The purpose of this work is to analyze the influence of measurement errors and initial data when creating a geodetic control on an industrial site by several stages of its construction based on inverse linear-angular notches and a priori estimation of the accuracy of the determined points position.

How to cite: Ustavich G.A., Nevolin A.G., Padve V.A., Salnikov V.G., Nikonov A.V. Analysis of technological schemes for creating a geodetic control at the industrial site // Journal of Mining Institute. 2021. Vol. 249 . p. 366-376. DOI: 10.31897/PMI.2021.3.5
Mining
  • Date submitted
    2021-01-18
  • Date accepted
    2021-05-21
  • Date published
    2021-09-20

Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Kuzbass mines

Article preview

The reasons for the lag of the indicators of the leading Russian coal mines engaged in the longwall mining of the flat-lying coal seams from similar foreign mines are considered. The analysis of the efficiency of the longwall face move operations at the JSC SUEK-Kuzbass mines was carried out. A significant excess of the planned deadlines for the longwall face move during the thick flat-lying seams mining, the reasons for the low efficiency of disassembling operations and the main directions for improving the technology of disassembling operations are revealed. The directions of ensuring the operational condition of the recovery room formed by the longwall face are considered. The recommended scheme of converged coal seams mining and a three-dimensional model of a rock mass to justify its parameters are presented. Numerical studies using the finite element method are performed. The results of modeling the stress-strain state of a rock mass in the vicinity of a recovery room formed under conditions of increased stresses from the boundary part of a previously mined overlying seam are shown. The main factors determining the possibility of ensuring the operational condition of the recovery rooms are established. It is shown that it is necessary to take into account the influence of the increased stresses zone when choosing timbering standards and organizing disassembling operations at a interbed thickness of 60 m or less. A sufficient distance from the gob of above- or undermined seams was determined to ensure the operational condition of the recovery room of 50 m, for the set-up room – 30 m. Recommendations are given for improving technology and organization of the longwall face move operations at the mines applied longwall mining of flat-lying coal seams with the formation of a recovery room by the longwall face.

How to cite: Meshkov А.A., Kazanin O.I., Sidorenko A.A. Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Kuzbass mines // Journal of Mining Institute. 2021. Vol. 249 . p. 342-350. DOI: 10.31897/PMI.2021.3.3
Mining
  • Date submitted
    2020-06-12
  • Date accepted
    2020-10-28
  • Date published
    2020-11-24

Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining

Article preview

The paper is devoted to the problem of increasing energy efficiency of coalmine methane utilization to provide sustainable development of geotechnologies in the context of transition to a clean resource-saving energy production. Its relevance results from the fact that the anthropogenic effect of coalmine methane emissions on the global climate change processes is 21 times higher than the impact of carbon dioxide. Suites of gassy coal seams and surrounding rocks should be classified as technogenic coal-gas deposits, while gas extracted from them should be treated as an alternative energy source. Existing practices and methods of controlling coalmine methane need to be improved, as the current “mine – longwall” concept does not fully take into account spatial and temporal specifics of production face advancement. Therefore, related issues are relevant for many areas of expertise, and especially so for green coal mining. The goal of this paper is to identify patterns that describe non-linear nature of methane release dynamics in the underground boreholes to provide sustainable development of geotechnologies due to quality improvement of the withdrawn methane-air mixture. For the first time in spatial-temporal studies (in the plane of CH 4 - S ) of methane concentration dynamics, according to the designed approach, the parameter of distance from the longwall ( L ) is introduced, which allows to create function space for the analyzed process (CH 4 of S-L ). Results of coalmine measurements are interpreted using the method of local polynomial regression (LOESS). The study is based on using non-linear variations of methane concentration in the underground boreholes and specific features of their implementation to perform vacuum pumping in the most productive areas of the undermined rock mass in order to maintain safe aerogas conditions of the extraction block during intensive mining of deep-lying gassy seams. Identification of patterns in the influence of situational geomechanical conditions of coal mining on the initiation of metastable gas-coal solution transformation and genesis of wave processes in the coal-rock mass allows to improve reliability of predicting methane release dynamics, as well as workflow manageability of mining operations. Presented results demonstrate that development of high-methane Donbass seams is associated with insufficient reliability of gas drainage system operation at distances over 40 m behind the longwall face. Obtained results confirm a working hypothesis about the presence of spatial migration of methane concentration waves in the underground gas drainage boreholes. It is necessary to continue research in the area of estimating deviation angles of “advance fracturing” zone boundaries from the face line direction. Practical significance of research results lies in the possibility to use them in the development of scientific foundation for 3D gas drainage of a man-made coal-methane reservoir, taking into account spatial and temporal advancement of the production face.

How to cite: Dzhioeva A.K., Brigida V.S. Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining // Journal of Mining Institute. 2020. Vol. 245 . p. 522-530. DOI: 10.31897/PMI.2020.5.3
Oil and gas
  • Date submitted
    2019-12-25
  • Date accepted
    2020-06-30
  • Date published
    2020-10-08

Accounting of geomechanical layer properties in multi-layer oil field development

Article preview

Amid the ever-increasing urgency to develop oil fields with complex mining and geological conditions and low-efficiency reservoirs, in the process of structurally complex reservoir exploitation a number of problems arise, which are associated with the impact of layer fractures on filtration processes, significant heterogeneity of the structure, variability of stress-strain states of the rock mass, etc. Hence an important task in production engineering of such fields is a comprehensive accounting of their complex geology. In order to solve such problems, the authors suggest a methodological approach, which provides for a more reliable forecast of changes in reservoir pressure when constructing a geological and hydrodynamic model of a multi-layer field. Another relevant issue in the forecasting of performance parameters is accounting of rock compressibility and its impact on absolute permeability, which is the main factor defining the law of fluid filtration in the productive layer. The paper contains analysis of complex geology of a multi-layer formation at the Alpha field, results of compression test for 178 standard core samples, obtained dependencies between compressibility factor and porosity of each layer. By means of multiple regression, dependencies between permeability and a range of parameters (porosity, density, calcite and dolomite content, compressibility) were obtained, which allowed to take into account the impact of secondary processes on the formation of absolute permeability. At the final stage, efficiency of the proposed methodological approach for construction of a geological and hydrodynamic model of an oil field was assessed. An enhancement in the quality of well-by-well adaptation of main performance parameters, as well as an improvement in predictive ability of the adjusted model, was identified.

How to cite: Galkin S.V., Krivoshchekov S.N., Kozyrev N.D., Kochnev A.A., Mengaliev A.G. Accounting of geomechanical layer properties in multi-layer oil field development // Journal of Mining Institute. 2020. Vol. 244 . p. 408-417. DOI: 10.31897/PMI.2020.4.3
Geoeconomics and Management
  • Date submitted
    2020-04-24
  • Date accepted
    2020-05-20
  • Date published
    2020-10-08

Prospects and social effects of carbon dioxide sequestration and utilization projects

Article preview

The issues of global warming and occurrence of the greenhouse effect are widely discussed on a global scale. Various methods of reducing greenhouse gas emissions are actively being investigated and tested, including technologies for sequestration of carbon dioxide, the implementation of which is carried out in the form of CC(U)S (carbon capture, utilization and storage) projects related to capture, disposal and, in some cases, use of CO 2 . In Russia, CC(U)S technologies are not yet used, but there is a significant potential for their development and distribution. CC(U)S technologies acquire a special role in the context of the development of the energy and industrial sectors of Russia, which are key sources of emissions, and the geological objects belonging to them are potential carbon storages. The purpose of this study is to conceptually analyze the CC(U)S technological cycle and typify such projects, assess the prospects for their implementation in Russia, and identify social effects from the implementation of CC(U)S projects. The main results of the study are presented in the form of a typology of CC(U)S projects, a strategic analysis of the prospects for introduction of such technologies in Russia, as well as development of approaches to assessing social effects with systematization and highlighting a set of indicators for their assessment, which can serve as a basis for re-estimation of the values of CC(U)S projects. The main research methods used were methods of decomposition, systematization and typology, as well as strategic analysis with a focus on relevant practical materials on the topic of the work. Directions for further research are related to the substantiation of the methodology for assessing social effects of CC(U)S projects, including for the conditions of Russia, based on the principles of balancing the interests of key participants.

How to cite: Ilinova A.A., Romasheva N.V., Stroykov G.A. Prospects and social effects of carbon dioxide sequestration and utilization projects // Journal of Mining Institute. 2020. Vol. 244 . p. 493-502. DOI: 10.31897/PMI.2020.4.12
Geoeconomics and Management
  • Date submitted
    2019-10-15
  • Date accepted
    2019-11-19
  • Date published
    2020-10-08

Oilfield service companies as part of economy digitalization: assessment of the prospects for innovative development

Article preview

The digital transformation of the economy as the most important stage of scientific and technological progress and transition to a new technological structure is becoming one of the determining factors in the development and competitiveness of the domestic upstream sector. Prospects for innovative development of oilfield service companies are the key technological areas within the first project of the Hi-Tech Strategy of the German Government until 2020 – “Industry 4.0”. The purpose of this study is to assess the prospects for innovative development of the domestic oilfield service industry in the context of the digitalization of the oil and gas industry. The subject of the research is the process of the formation of key technological lines of “Industry 4.0” and their impact on the domestic oil and gas sector. The research is based on logical-theoretical and empirical analyses. The main factors that determine processes of digital transformation in the oil and gas industry are considered; the results of digitalization processes in the largest foreign and Russian industry companies of the upstream and oilfield services segments are presented. The information base is made up of data from oilfield service and oil and gas producing companies, presented on the official websites of companies in the public domain on the Internet. It has been proven that, unlike the world's leading companies in oilfield services segment, independent domestic oilfield service companies provide mainly traditional service technologies in a fairly narrow range. The limited scope of functioning and technological capabilities of Russian companies is explained by the lack of necessary investment in development and expansion of business, as well as interest on the part of the state and corporate sectors in the development and replication of domestic technologies and the formation of a full-fledged oilfield services market in Russia.

How to cite: Razmanova S.V., Andrukhova O.V. Oilfield service companies as part of economy digitalization: assessment of the prospects for innovative development // Journal of Mining Institute. 2020. Vol. 244 . p. 482-492. DOI: 10.31897/PMI.2020.4.11
Metallurgy and concentration
  • Date submitted
    2019-04-04
  • Date accepted
    2019-08-04
  • Date published
    2020-04-24

Chemical heterogeneity as a factor of improving the strength of steels manufactured by selective laser melting technology

Article preview

The aim of this paper was to establish the causes of the heterogeneity of the chemical composition of the metal obtained by the LC technology. The powdered raw material was made from a monolithic alloy, which was fused by the SLM, the initial raw material was a laboratory melting metal of a low-carbon chromium-manganese-nickel composition based on iron. To determine the distribution pattern of alloying chemical elements in the resulting powder, electron-microscopic images of thin sections were combined with X-ray analysis data on the cross-sections of the powder particles. As a result, it was found that transition (Mn, Ni) and heavy (Mo) metals are uniformly distributed over the powder particle cross-sections, and the mass fraction of silicon (Si) is uneven: in the center of the particles, it is several times larger in some cases. The revealed feature in the distribution of silicon is supposedly due to the formation of various forms of SiO 4 upon the cooling of the formed particles. The internal structure of the manufactured powder is represented by the martensitic structure of stack morphology. After laser fusion, etched thin sections revealed traces of segregation heterogeneity in the form of a grid with cells of ~ 200 μm.

How to cite: Alekseev V.I., Barakhtin B.К., Zhukov A.S. Chemical heterogeneity as a factor of improving the strength of steels manufactured by selective laser melting technology // Journal of Mining Institute. 2020. Vol. 242 . p. 191-196. DOI: 10.31897/PMI.2020.2.191
Geoeconomics and Management
  • Date submitted
    2019-07-11
  • Date accepted
    2019-09-02
  • Date published
    2019-12-24

Stakeholders management of carbon sequestration project in the state – business – society system

Article preview

Prevention of catastrophic effects of climate change is one of the most pressing challenges of this century. A prominent place in the low-carbon development system today is carbon capture and storage technology (CCS). This technology can significantly reduce greenhouse gas emissions, leading to global warming. Effectiveness of technology has been proven through successful implementation of a number of CCS projects. CCS projects are implemented in the context of national and often international interests, consolidating efforts of many parties. Sequestration projects involve government bodies, public, industrial and scientific sectors, as well as a number of other business structures. Each participant presents his own expectations for results of the project, which can compete among themselves, creating threats to its successful implementation. World experience in implementing CCS projects indicates that opposition from a certain group of stakeholders can lead to closure of a project, therefore, interaction with environment is one of the key elements in managing such projects. This study focuses on specifics of stakeholder management in implementation of CO 2 sequestration projects. Based on the analysis of world experience, role of the state, business and society in such projects is determined, their main expectations and interests are summarized. The main groups of stakeholders of CCS and CCUS (carbon capture, utilization and storage) projects were identified, differences in their interests and incentives to participate were analyzed. It is proved that system of interaction with stakeholders should be created at the early stages of the project, while management of stakeholders is a continuous process throughout the life cycle. An author’s tool is proposed for assessing degree of stakeholder interest, the use of which allowed us to determine interaction vectors with various groups of stakeholders.

How to cite: Cherepovitsyn A.E., Ilinova A.A., Evseeva O.O. Stakeholders management of carbon sequestration project in the state – business – society system // Journal of Mining Institute. 2019. Vol. 240 . p. 731-742. DOI: 10.31897/PMI.2019.6.731
Oil and gas
  • Date submitted
    2018-11-20
  • Date accepted
    2019-01-14
  • Date published
    2019-04-23

Low-density cement compositions for well cementing under abnormally low reservoir pressure conditions

Article preview

The paper considers variants of lightweight cement compositions with additives of various substances, such as clay components, ash systems, silica additives, kerogen, gilsonite, microspheres, as well as the process of cement slurry aeration. Recommendations on the use of compositions in different conditions are presented. A decrease in the density of the solution is achieved not only due to the low density of the materials used, but also as a result of an increase in the water-cement ratio. In such conditions, it is not possible to ensure the formation of a durable and impermeable cement stone in the well, which creates high quality inter-reservoir insulation. The characteristics of the physical and mechanical properties of existing lightening additives are given, which allows determining the most rational conditions for the use of cement slurries for improvement of the well cementing quality.

How to cite: Nikolaev N.I., Leusheva E.L. Low-density cement compositions for well cementing under abnormally low reservoir pressure conditions // Journal of Mining Institute. 2019. Vol. 236 . p. 194-200. DOI: 10.31897/PMI.2019.2.194
Metallurgy and concentration
  • Date submitted
    2018-01-14
  • Date accepted
    2018-03-08
  • Date published
    2018-06-22

Development of research of low-dimension metal-containing systems from P.P. Weymarn to our days

Article preview

The article analyzes main laws discovered by P.P.Weymarn (1879-1935) during his work at the Saint-Petersburg Mining University, they are connected with obtaining metal-containing disperse substances with nanometer particle size. It enlists priority papers in this field (1906-1915) and describes peculiarities of P.P.Weymarn scientific school which has several connections to modern research being conducted at the Saint-Petersburg Mining University in the field of «nanotechnology» as well as by foreign scientists. The paper reveals continuity in the field of several objects (disperse metals) and the methodology of studying the properties and stoichiometry of substances depending on dispersity. It provides information on achievements in synthesis of surface nanostructured metals and low-dimension forms of substances in various porous matrixes. Among the studies of the XXI century developing Weymarn’s ideas there can be noted solid-state hydride synthesis of metals, layering of different-sized molecules of ammonium compounds on metals (Al, Cu, Ni, Fe), as well as synthesis of metal nanostructures (Ag, Cu, Bi) using porous glass as a particle size stabilizing matrix. In the latter case, the dispersity of the metal increases while its melting point decreases.

How to cite: Pleskunov I.V., Syrkov A.G. Development of research of low-dimension metal-containing systems from P.P. Weymarn to our days // Journal of Mining Institute. 2018. Vol. 231 . p. 287-291. DOI: 10.25515/PMI.2018.3.287