Submit an Article
Become a reviewer

Search articles for by keywords:
пожарная опасность

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-07
  • Date accepted
    2023-12-27
  • Date published
    2024-08-26

Landslide hazard assessment in Tinh Tuc town, Cao Bang province, Vietnam using Frequency ratio method and the combined Fractal-frequency ratio method

Article preview

Landslides are one of the most frequent natural disasters that cause significant damage to property in Vietnam, which is characterized by mountainous terrain covering three-quarters of the territory. In 17 northern mountainous provinces of the country, over 500 communes are at a high to very high landslide hazard. The main goal of this study was to establish landslide hazard maps and conduct a comparative evaluation of the efficiency of the methods employed in Tinh Tuc town, Cao Bang province. The landslide hazard assessment was carried out in this study using the combined Fractal-frequency ratio (FFR) and the Frequency ratio (FR) methods. The FR method is based on the actualist principle, which assumes that future landslides may be caused by the same factors that contributed to slope failure in the past and present. The FFR method is based on the determination of the fractal dimension, which serves as a measure of the landslide filling density in the study area. Eight landslide-related factors were considered and presented in cartographic format: elevation, distance to roads, slope, geology, distance to faults, land use, slope aspect, and distance to drainage. Determining the area under the receiver operating characteristic curve (ROC-AUC) and verification index (LRclass) was performed to assess the performance of prediction models and the accuracy of the obtained maps. As a result, five zones were identified for the study area, characterized by very low, low, moderate, high, and very high landslide hazards. The analysis of the reliability of the obtained landslide hazard maps using the AUC and LRclass indices revealed that the FFR model has a higher degree of reliability (AUC = 86 %, LRclass = 86 %) compared to the FR model (AUC = 72 %, LRclass = 73 %); therefore, its use is more effective.

How to cite: Duong B.V., Fomenko I.K., Nguyen K.T., Zerkal O.V., Sirotkina O.N., Vu D.H. Landslide hazard assessment in Tinh Tuc town, Cao Bang province, Vietnam using Frequency ratio method and the combined Fractal-frequency ratio method // Journal of Mining Institute. 2024. Vol. 268 . p. 613-624. EDN HTDPXJ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-29
  • Date accepted
    2024-06-03
  • Date published
    2024-07-04

Potential use of water treatment sludge for the reclamation of small-capacity sludge collectors

Article preview

In small settlements, collectors for the sludge produced during water treatment processes are small-sized and located in the vicinity of drinking water storage reservoirs or in coastal areas. Sludge removal is not economical. Besides, the relief depressions formed after sludge disposal are required to be reclaimed. In ore mining regions, where the main settlements of the Urals are located, sludge produced in water treatment has high contents of heavy metals typical of ore mining provinces. Consequently, places of sludge accumulation are potential sources of water pollution. The article discusses the possibility to mix sludge with slaked lime and local overburden with the help of special equipment. So far water treatment sludge in the region has been used to reclaim the surface of solid waste landfills by creating anaerobic conditions for waste decomposition. When placed inside the embankment dams as an independent object, sludge needs to be improved for the increase of its bearing capacity and the ability to bind heavy metals. The article aims at the substantiation of the composition and properties of the reclamation material made of the water treatment sludge mixed with local overburden and slaked lime (technosoil). For this reason the paper describes the composition of the sludge in a sludge collector, the composition and properties of the overburden rocks as a component of the mixtures with water treatment sludge, the composition and properties of the mixtures of water treatment sludge with overburden rocks and Ca(OH)2 as a component dewatering sludge and neutralizing toxicants. Furthermore, the research work provides the technology created for the optimal processing of the water treatment sludge in the process of the reclamation of a sludge collector. The research results and the experience obtained in reclamation of disturbed lands in the region have confirmed the possible use of technosoil for the reclamation of small-capacity sludge collectors. The analysis of the chemical composition and physical and mechanical properties of the mixtures under study has shown that the most economical and environmentally sound reclamation material is a mixture of water treatment sludge, loose overburden dump soils and Ca(OH)2 in a ratio of 60 : 30 : 10 %.

How to cite: Guman O.M., Antonova I.A. Potential use of water treatment sludge for the reclamation of small-capacity sludge collectors // Journal of Mining Institute. 2024. Vol. 267 . p. 466-476. EDN MSIDNU
Geology
  • Date submitted
    2022-10-29
  • Date accepted
    2023-10-25
  • Date published
    2024-04-25

Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site)

Article preview

The study presents the results of the research on geodynamic and geological conditions of the Enisei site (Krasnoyarsk Krai), chosen for the construction of an underground research laboratory. The laboratory is being built at a depth of 500 m to assess the suitability of the rock mass for burying high-level radioactive waste. The rocks consist of weakly fractured gneisses, granites, and dikes of metadolerites. Field observations were conducted on bedrock outcrops. They included the determination of rock mass quality indicators, measurement of rock fracturing, and a rating classification of stability using N.Barton's method. GNSS observations were also made to monitor surface deformations. These data were used to develop a three-dimensional structural model, including lithology, fault disruptions, intrusive bodies, elastic-strength properties of rocks, and the sizes of zones influenced by faulting. It will serve as a basis for boundary conditions and the construction of three-dimensional variational models of stress-strain states, identifying zones of concentration of hazardous stresses, and planning in situ geomechanical experiments in underground mines of the laboratory. The obtained values of the modified QR index for the main types of rocks allowed their classification as stable and moderately stable, corresponding to strong and very strong rocks on Barton's scale and the massif rating according to geomechanical classification.

How to cite: Akmatov D.Z., Manevich A.I., Tatarinov V.N., Shevchuk R.V., Zabrodin S.M. Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site) // Journal of Mining Institute. 2024. Vol. 266 . p. 167-178. EDN ECCWUV
Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

The wireless charging system for mining electric locomotives

Article preview

The electric vehicles development has a high potential for energy saving: an energy-saving traffic control can reduce energy resource consumption, and integration with the power grid provides the ability of daily load pattern adjustment. These features are also relevant for underground mining. The critical element of vehicle-to-grid integration is the charging infrastructure, where wireless charging is promising to develop. The implementation of such systems in underground mining is associated with energy efficiency issues and explosion safety. The article discusses the development and research of a wireless charging system for mining electric locomotive A-5.5-600-U5. The analytic hierarchy process is used for justification of the circuitry and design solution by a comparison of different technical solutions based on energy efficiency and safety criteria. A complex computer model of the wireless charging system has been developed that gives the transients in the electrical circuit of a wireless charging system and the high-frequency field density distribution near the transmitting and receiving coils in a 3D setting. An approach to ignition risk evaluation based on the analysis of high-frequency field density in the charging area between the coils of the wireless charging system is proposed. The approach using a complex computer model is applied to the developed system. The study showed that the wireless charging system for mining electric locomotives operating in the gaseous-and-dusty mine is technically feasible and there are designs in which it is explosion safe.

How to cite: Zavyalov V.M., Semykina I.Y., Dubkov E.A., Velilyaev A.- han S. The wireless charging system for mining electric locomotives // Journal of Mining Institute. 2023. Vol. 261 . p. 428-442. EDN JSNTAQ
Editorial
  • Date submitted
    2023-04-25
  • Date accepted
    2023-04-25
  • Date published
    2023-04-25

Ecological security and sustainability

Article preview

In 2015, UN Member States adopted the 2030 Agenda for Sustainable Development, aimed at balancing initiatives by the world community and individual countries in the environmental, social, and economic spheres. The global sustainable development goals are to promote the well-being of the world population, preserve the planet’s resources, and maintain ecological security, which is vital in the age of the rapid industrial growth and ever-increasing anthropogenic pressure on the environment. For the successful achievement of sustainability goals in the manufacturing sector, integrated measures should be undertaken for monitoring and assessing the technogenic impact of industrial facilities. Additionally, it is necessary to develop environmentally-friendly technologies in the fields of gas and water treatment, land reclamation, and waste disposal. Therefore, fundamental and applied research in these related spheres is of particular importance. Currently, environmental monitoring of all components of the environment, along with anthropogenic objects and processes, receives considerable attention, which is determined by the vector of development in science and technology. In this regard, the latest innovations in green technology in this area are becoming increasingly significant.

How to cite: Pashkevich M.A., Danilov A.S. Ecological security and sustainability // Journal of Mining Institute. 2023. Vol. 260 . p. 153-154.
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-09-30
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies

Article preview

The national strategic goal of the Russian Federation is to ensure the safety of critical technologies and sectors, which are important for the development of the country's oil and gas industry. The article deals with development of national technology for intelligent monitoring of the condition of industrial facilities for transport and storage of oil and gas. The concept of modern monitoring and safety control system is developed focusing on a comprehensive engineering control using integrated automated control systems to ensure the intelligent methodological support for import-substituting technologies. A set of approved algorithms for monitoring and control of the processes and condition of engineering systems is proposed using modular control robotic complexes. Original intelligent models were developed for safety monitoring and classification of technogenic events and conditions. As an example, algorithms for monitoring the intelligent safety criterion for the facilities and processes of pipeline transport of hydrocarbons are presented. The research considers the requirements of federal laws and the needs of the industry.

How to cite: Zemenkova M.Y., Chizhevskaya E.L., Zemenkov Y.D. Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies // Journal of Mining Institute. 2022. Vol. 258 . p. 933-944. DOI: 10.31897/PMI.2022.105
Geology
  • Date submitted
    2021-11-30
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Innovative ways to control dust and explosion safety of mine workings

Article preview

Ensuring dust and explosion safety during underground coal mining is one of the most important tasks of industrial safety and labor protection departments. The main method of preventing explosions of coal dust settled in mine workings is to process them with stone dust (rock dusting). The traditional methods of quality control of rock dusting include radioisotope, optical and chemical methods. To implement them, the devices are equipped with environmentally harmful radioactive elements, expensive optical sensors, desiccants and replaceable flasks with chemical reagents, which increases the cost of analysis and its duration. The measurement error of these devices is 10 % or more. The main purpose of the study is to develop and substantiate a new method for monitoring the dust and explosion safety of mine workings, which will be devoid of the disadvantages of the methods mentioned above. It is proposed to evaluate the quality of rock-dust distribution by a fundamentally new way – thermogravimetric. The method was tested on the dust of coal mines in Kuzbass and the Vorkuta basin, including dust samples taken in mines with actual explosions. The article presents the results of experimental studies of the processes of thermal destruction of coal and stone dust mixtures. The non-overlapping intervals of the thermogravimetric reaction are identified: moisture yield (35-132 °С); volatile matter yield from coal (380-580 °С); thermal degradation of limestone with carbon dioxide yield (650-850 °С). Methods and mathematical dependencies for processing significant and qualitative identification characteristics of thermogravimetric curves in determining the content of non-combustible components in a sample of mine dust are considered.

How to cite: Romanchenko S.B., Naganovskiy Y.K., Kornev A.V. Innovative ways to control dust and explosion safety of mine workings // Journal of Mining Institute. 2021. Vol. 252 . p. 927-936. DOI: 10.31897/PMI.2021.6.14
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-04-23
  • Date accepted
    2021-09-07
  • Date published
    2021-12-16

Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces

Article preview

Currently, the determination of the emission rate of suspended solids from a unit of the surface area of a man-made mass at various parameters of the wind flow is not sufficiently described. The analysis of the world experience of researchers shows that existing laboratory installations have various design features that do not allow to correctly determine the mass of the dust being flapped and wind-blown. Based on the analysis results, the concept of an innovative laboratory installation for the study of dust-forming surfaces has been developed. It takes into account the influence of wind shadows, the deturbulization of an artificially created air flow, the possibility of regulating not only the flow velocity mode, but also the creation of a vacuum or disturbance in the area of sample placement, as well as the formation of a certain angle of wind flow attack relative to the surface. The concept provides for the possibility of determining the volume of dust emissions by the values of the lost dust masses in the sample and by the values of dust concentrations in the outgoing stream. The calculation of the main basic elements of the installation using the ANSYS FLUENT software package was carried out. The model and configuration of the wind tunnel have been developed and calculated, the main geometric parameters and functional elements for the possibility of use in scientific work have been determined. For practical use of the empirical roughness value of the underlying surface, its values are recommended in a wide range – from zero for the water surface to 0.44 for large cities with tall buildings and skyscrapers.

How to cite: Ivanov A.V., Smirnov Y.D., Chupin S.A. Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces // Journal of Mining Institute. 2021. Vol. 251 . p. 757-766. DOI: 10.31897/PMI.2021.5.15
Mining
  • Date submitted
    2021-06-01
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Indicator assessment of the reliability of mine ventilation and degassing systems functioning

Article preview

The gas emission control in the mines is operated by ventilation and degassing systems that ensure the aerological safety of the mines or minimize the aerological risks. The ventilation system of the mine and its individual sites includes a significant number of technical devices and equipment, and the air tubes are mainly mining workings, the condition of which determines the quality of the ventilation network (its capacity) and depends on a number of mining factors. Similarly, one of the most important elements of the degassing system, which includes its own chain of technological equipment, are wells, and in some cases, mining workings. Thus, mine ventilation and degassing systems cannot be attributed to purely technical systems, since they include mining elements characterized by high variability of the determining parameters. To assess their reliability, it is necessary to use various combined methods that include additional characteristics in relation to the mining component. At the same time, the reliability of technical devices that ensure the functioning of mine ventilation and degassing systems largely determines the efficiency (stability and reliability) of these systems and, consequently, affects the level of aerological risks. The described approach to assessing the reliability of ventilation and degassing systems of coal mines when analyzing aerological risks is based on the developed system of risk indicators for the methane factor and will allow determining the risk dynamics in automatic mode based on monitoring the parameters of the ventilation and degassing system state.

How to cite: Kaledina N.O., Malashkina V.A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning // Journal of Mining Institute. 2021. Vol. 250 . p. 553-561. DOI: 10.31897/PMI.2021.4.8
Mining
  • Date submitted
    2021-06-15
  • Date accepted
    2021-08-27
  • Date published
    2021-10-21

Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion

Article preview

Spontaneous combustion of coal remains an important problem for coal mines, which can lead to an explosion of methane and coal dust. Accidents associated with spontaneous combustion of coal can cause significant economic losses to coal mining companies, as well as entail social damage – injuries and loss of life. Accidents are known at the Kuzbass mines, which occurred as a result of negligent attitude to the danger of spontaneous combustion of coal, the victims of which were dozens of people. The analysis of emergency situations associated with spontaneous combustion of coal shows that the existing wide range of means of preventing endogenous fires does not provide complete safety when working out coal seams prone to spontaneous combustion, therefore, spontaneous combustion places continue to occur in mines. The consequences that may arise as a result of a methane explosion initiated by a self-ignition place indicate the need to improve the used technologies. The purpose of the work is to determine the impact of modern technological solutions used in functioning mines during underground mining of flat-lying coal seams prone to spontaneous combustion, and to develop new solutions that reduce endogenous fire hazard. Conclusions on the influence of leaving coal pillars in the developed space, isolated air removal from the stoping face through the developed space, the length of the stoping face and the excavation pillar, and other factors on the danger of the formation of spontaneous combustion places are presented. Conclusions about the possibility of using modern technological solutions in future are also drawn.

How to cite: Zubov V.P., Golubev D.D. Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion // Journal of Mining Institute. 2021. Vol. 250 . p. 534-541. DOI: 10.31897/PMI.2021.4.6
Mining
  • Date submitted
    2021-01-21
  • Date accepted
    2021-02-24
  • Date published
    2021-04-26

Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district)

Article preview

The underground space of the Kupol deposit is analyzed as a multicomponent system – rocks, underground water, microbiota, gases (including the mine atmosphere) and supporting structures – metal support and shotcrete (as an additional type of barring) and also stowing materials. The complex of host rocks is highly disintegrated due to active tectonic and volcanic activity in the Cretaceous period. The thickness of sub-permafrost reaches 250-300 m. In 2014, they were found to contain cryopegs with abnormal mineralization and pH, which led to the destruction of metal supports and the caving formation. The underground waters of the sub-permafrost aquifer are chemically chloride-sulfate sodium-calcium with a mineralization of 3-5 g/dm 3 . According to microbiological analysis, they contain anaerobic and aerobic forms of microorganisms, including micromycetes, bacteria and actinomycetes. The activity of microorganisms is accompanied by the generation of hydrogen sulfide and carbon dioxide. The main types of corrosion – chemical (sulfate and carbon dioxide), electrochemical and biocorrosion are considered. The most hazardous is the biocorrosion associated with the active functioning of the microbiota. Forecasting and systematization of mining and geological processes are carried out taking into account the presence of two zones in depth – sub-permafrost and below the bottom of the sub-permafrost, where mining operations are currently underdone. The importance of assessing the underground space as a multicomponent environment in predicting mining and geological processes is shown, which can serve as the basis for creating and developing specialized monitoring complex in difficult engineering and geological conditions of the deposit under consideration.

How to cite: Dashko R.E., Romanov I.S. Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district) // Journal of Mining Institute. 2021. Vol. 247 . p. 20-32. DOI: 10.31897/PMI.2021.1.3
Mining
  • Date submitted
    2020-05-16
  • Date accepted
    2020-07-30
  • Date published
    2020-12-29

Results of the study of kinetic parameters of spontaneous combustion of coal dust

Article preview

The article is devoted to the study of the problem of spontaneous combustion of energy grades of coal not only during storage, but also during transportation. As the main samples for the study, the energy grades of SS and Zh coals were selected. The main task of the scientific research was to study the rate of cooling and heating of coal depending on their thermophysical parameters and environmental parameters. To solve this problem, the authors used both the author's installations designed to study the thermophysical parameters of the spontaneous combustion process (the Ya.S.Kiselev method), and the NETZSCH STA 449 F3 Jupiter synchronous thermal analysis device, the NETZSCH Proteus Termal Analysis software package. On the basis of a complex study of the spontaneous combustion process, the authors of the article obtained the kinetic characteristics of the spontaneous heating process (activation energy and pre-exponential multiplier). Nomograms of the permissible size of coal density of different types and shapes of accumulation depending on the ambient temperature are presented, practical recommendations for the prevention (avoidance) of spontaneous combustion of coal fuel are given.

How to cite: Rodionov V.A., Tursenev S.A., Skripnik I.L., Ksenofontov Y.G. Results of the study of kinetic parameters of spontaneous combustion of coal dust // Journal of Mining Institute. 2020. Vol. 246 . p. 617-622. DOI: 10.31897/PMI.2020.6.3
Mining
  • Date submitted
    2020-05-12
  • Date accepted
    2020-09-22
  • Date published
    2020-11-24

Design features of coal mines ventilation using a room-and-pillar development system

Article preview

The safety of mining operations in coal mines for aerological factors depends on the quality of accepted and implemented ventilation design solutions. The current “Design Manual of coal mine ventilation” do not take into account the features of room-and-pillar development systems used in Russia. This increases the risk of explosions, fires, and gassing. The detailed study of foreign experience in designing ventilation for the considered development systems e of coal deposits allowed to formulate recommendations on the ventilation scheme organization for coal mines using a room-and-pillar development system and the procedure for ventilation during multi-entry gateroad development. Observations have shown that the use of the existing Russian procedure for airing mining sites with a room-and-pillar development system complicates the emergency rescue operations conduct. Low speeds and multidirectional air movement, difficult heat outflow, and the abandonment of coal pillars increase the risk of occurrence and late detection of endogenous fire. The results of numerical modeling have shown that the installation (parallel to the drifts) of ventilation structures in inter-chamber pillars will increase the reliability of ventilation by transferring the ventilation scheme from a complex diagonal to a complex parallel. It will also reduce the amount of air required for the mine site and the total aerodynamic drag. The research made it possible to formulate requirements for the design procedure for coal mines ventilation using a room-and-pillar development system, which consist in the order of working out blocks in the panel, and also the additional use of ventilation structures (light brattice clothes or blowing line brattice).

How to cite: Kobylkin S.S., Kharisov A.R. Design features of coal mines ventilation using a room-and-pillar development system // Journal of Mining Institute. 2020. Vol. 245 . p. 531-538. DOI: 10.31897/PMI.2020.5.4
Mining
  • Date submitted
    2019-06-30
  • Date accepted
    2019-09-10
  • Date published
    2019-12-24

Industrial safety principles in coal mining

Article preview

The article provides a description of injuries in coal mining enterprises in Russia. The high injury rate causes the need of developing new effective ways and means of improving safety at mining enterprises. Recently in Russia there has been a tendency for a slight decrease in fatal injuries, which indicates some progress in prevention of industrial accidents. At the same time, the problem of improving the working conditions of coal miners, reducing the level of injuries and occupational diseases in this industry remains a very urgent task. Ensuring safe operation and industrial health and safety is not only reasonable economic policy but one of the constitutional human rights. At Russian coal mining enterprises, they take measures to reduce injuries, the supervisory authorities and employees of the enterprises carry out certain work to comply with safety requirements. However, significant success has not yet been achieved. Despite the fatal injuries and accidents, the issue of industrial mining safety is not becoming a top priority. Occupational safety measures are often financed on a «left-over» principle, and therefore remain not implemented. Many managers do not pay enough attention to safety issues and have little control over the planned activities in this area. The article analyzes the causes of injuries and proposes the key directions for creating normal working conditions in coal mining enterprises.

How to cite: Chemezov E.N. Industrial safety principles in coal mining // Journal of Mining Institute. 2019. Vol. 240 . p. 649-653. DOI: 10.31897/PMI.2019.6.649
Geoeconomics and Management
  • Date submitted
    2019-03-17
  • Date accepted
    2019-05-21
  • Date published
    2019-08-23

Impact of External Factors on National Energy Security

Article preview

The article examines both external and internal threats to national energy security, formulates the tasks of increasing energy security, discloses modern challenges, as well as measures to level them. In recent years, Russian economy has felt the growing influence of external threats and risks: unfair competition in world markets, high politicization of energy issues, and attempts to prevent Russia from monetizing national energy reserves. Influence of the use of renewable energy sources on national energy security, growth of liquefied natural gas production, stricter environmental requirements, changes in the demand for petroleum products, and introduction of anti-Russian sanctions are analyzed. The influence of internal risks is no less significant: quality of hydrocarbon reserves in the Russian Federation is declining, effectiveness of geological exploration is insufficient, and the share of hard-to-recover reserves is increasing. Energy security assessments are recommended taking into account modern challenges and on the basis of parameters such as ratio of the annual increase in the balance values of primary fuel and energy resources to the volume of their production, share of natural gas in the balance structure of primary fuel and energy resources, implementation of investment programs by fuel and energy sectors, change in the specific energy intensity of GDP, prices and etc.

How to cite: Ulanov V.L., Ulanova E.Y. Impact of External Factors on National Energy Security // Journal of Mining Institute. 2019. Vol. 238 . p. 474-480. DOI: 10.31897/PMI.2019.4.474
Mining
  • Date submitted
    2019-03-25
  • Date accepted
    2019-05-23
  • Date published
    2019-08-23

Assessment of Rock-Burst Hazard in Deep Layer Mining at Nikolayevskoye Field

Article preview

The paper presents results of conducted research using regional and local methods of forecast and control over geomechanical state of the rock mass at burst-hazardous Nikolayevskoye field, located in a geodynamically active region. The study subject is the ore mass of Nikolayevskoye field, characterized by man-induced and tectonic disturbances and high geodynamic activity. The aim of research was practical implementation of methods and instruments of forecast and control over geomechanical state of the burst-hazardous rock mass and safety improvement of mining operations. Exploitation practice of burst-hazardous fields demonstrates that forecast accuracy of hazardous rock pressure demands cutting-edge multi-level systems, where local methods and tools complement regional ones. A regional forecast of rock-burst hazard at Nikolayevskoye field was performed by means of seismoacoustic method using automated control system for rock pressure (ACSRP) «Prognoz-АDS». Local forecast was carried out using «Prognoz-L» device, geophysical (sample disking) method and visual observations of dynamic pressure manifestations in the mining tunnels. Quality assessment of stress-strain and burst state of the rock mass was performed using specialized software «PRESS 3D URAL». Integration of engineering and geomechanical data in the process of conducting research guarantees a relevant assessment of rock-burst hazard in various areas of the field at various stages of its development. Practical verification of the system, where local methods and tools complement regional ones, demonstrated satisfactory results at Nikolayevskoye mining plant, which makes it recommendable for other mining facilities extracting ore at great depths under similar conditions of active geodynamic processes.

How to cite: Sidorov D.V., Potapchuk M.I., Sidlyar A.V., Kursakin G.A. Assessment of Rock-Burst Hazard in Deep Layer Mining at Nikolayevskoye Field // Journal of Mining Institute. 2019. Vol. 238 . p. 392-398. DOI: 10.31897/PMI.2019.4.392
Mining
  • Date submitted
    2018-11-03
  • Date accepted
    2019-01-21
  • Date published
    2019-04-23

Estimation of critical depth of deposits by rock bump hazard condition

Article preview

During the development of minerals by the underground method, dynamic manifestations of rock pressure occur at a certain depth, which significantly reduces the safety of mining operations. Regulatory documents prescribe at the exploration and design stages to establish the critical depth for classifying a deposit as liable to rock bumps. Currently, there are a number, mainly instrumental, methods for determining the liability of rock mass to rock bumps and methods based on the determination of physical and technical properties and the stress-strain state of rock massifs. The paper proposes a theoretical method for determining the critical depth for classifying a deposit as liable to rock bumps. A formula for determining the critical depth of the rock bump hazard condition is obtained. A mathematical analysis of the influence of the physical and technical parameters of the formula on the critical depth is carried out. Its physical and mathematical validity is substantiated. The numerical calculations of the critical depth for 17 developed fields were carried out using a simplified formula. It also provides a comparison of calculated and actual critical depth values. It is established that the variation of the actual and calculated critical depth is due to the lack of actual data on the value of the friction coefficient and parameters of fracturing of the rock mass in the simplified formula. A simplified calculation formula can be used to estimate the critical depth of a field at the survey and design stages. More accurate results can be obtained if there are actual data on fracture parameters, friction coefficients and stress concentration near the working areas.

How to cite: Tyupin V.N. Estimation of critical depth of deposits by rock bump hazard condition // Journal of Mining Institute. 2019. Vol. 236 . p. 167-171. DOI: 10.31897/PMI.2019.2.167
Mining
  • Date submitted
    2018-07-18
  • Date accepted
    2018-09-22
  • Date published
    2018-12-21

Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit

Article preview

The subject of the research is the stress-strain and rock burst hazardous state of the ore massif of the Nikolaevskoe polymetallic deposit, formed under the influence of complex mining-geological and mining-technical factors. The purpose of the research is to establish the peculiarities of the formation of technogenic stress fields at the deposit, which is characterized by a block structure, a complex tectonic system and the presence of a large volume of developed spaces. Volumetric geodynamic modeling of the stress-strain state of the massif at different stages of the development of the deep horizons of the deposit was carried out by collecting information on the structure, properties and geodynamic state of the rock mass. The assessment of stress changes taking into account the effect of hypsometry, the configuration of the selvages, the physical-mechanical properties of the ore deposit and host rocks, the presence of tectonic disturbances was made using the developed numerical algorithms, the automation equipment of the initial data and the PRESS 3D URAL software. The simulation made it possible to establish that tectonic faults in the massif lead to a qualitative change in the stress-strain state in certain parts of the ore massif and in the pillars, namely, the reduction of stresses along the tectonic faults and their growth in nearby pillars. The identified features of the distribution of stresses in the tectonically disturbed rock massif of the Nikolaevskoe deposit will allow to identify in advance potentially hazardous areas both at the planning stage of mining operations and during development, as well as to work out effective rock burst measures to increase the safety of mining. The results of research can be used in enterprises with similar mining-geological and mining-technical conditions.

How to cite: Sidorov D.V., Potapchuk M.I., Sidlyar A.V. Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit // Journal of Mining Institute. 2018. Vol. 234 . p. 604-611. DOI: 10.31897/PMI.2018.6.604
Mining
  • Date submitted
    2018-01-04
  • Date accepted
    2018-03-08
  • Date published
    2018-06-22

Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores

Article preview

The paper presents the results of borehole stability research and considers possible causes of emergencies. The features of the blast hole drilling process are analyzed taking into account the properties of the rock. Based on the distribution of speed of drill fines removal from the well, an algorithm for selecting drilling modes is proposed. The nature of change in the size of the holess over time has been analyzed. This paper investigates the influence of rock fracturing and its water content on borehole stability. Possible options for eliminating the man-made impact on the massif near holes and options for fixing the hole walls with soft shells are suggested. The experimental data on the installation of shells for the conditions of open mining of apatite-nepheline ores are given. The operability and effectiveness of the technology is proved.

How to cite: Overchenko M.N., Tolstunov S.A., Mozer S.P. Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores // Journal of Mining Institute. 2018. Vol. 231 . p. 239-244. DOI: 10.25515/PMI.2018.3.239
Geoecology and occupational health and safety
  • Date submitted
    2017-11-22
  • Date accepted
    2018-01-04
  • Date published
    2018-04-24

Justification of a methodical approach of aerologic evaluation of methane hazard in development workings at mines of Vietnam

Article preview

The methods of evaluation of the aerological conditions to be performed for the purpose of normalization of mining conditions are provided in the present review; the location of possible accumulations of explosive gases during the drift of the development workings are taken into account. To increase the safety of the development working regarding the gas factor, a complex evaluation of a working was developed with respect to the dynamics of methane emission and air coursing along the working which is strongly affected by the character of the leakages from the ventilation ducting. Thereby, there occurs a necessity of the enhancement of a methodical approach of calculation of ventilation of a working which consists in taking into consideration a total aerodynamic resistance of the booster fan including the local resistances of the zones of the working. An integer simulation of the gas-air flows realized on the basis of a software package FLowVision allows to evaluate a change in the methane concentration in the zones of local accumulations.

How to cite: Smirnyakov V.V., Fen N.M. Justification of a methodical approach of aerologic evaluation of methane hazard in development workings at mines of Vietnam // Journal of Mining Institute. 2018. Vol. 230 . p. 197-203. DOI: 10.25515/PMI.2018.2.197
Metallurgy and concentration
  • Date submitted
    2016-10-27
  • Date accepted
    2017-01-02
  • Date published
    2017-04-14

Chemistry as a basis for solving environmental issues

Article preview

The article summarizes over 40 years of authors’ experience in the field of physical chemistry and chemical technology of glassy state of materials. It is shown that environmental issues are caused not by Chemistry as a science but by actions of ecologically illiterate humans using its advances. It is noted that without chemistry humankind cannot live comfortably and solve existing environmental problems. In support these facts we describe several developments made by authors of this article in energy industry, high temperature machinery, glass production technology, glassy phosphate fertilizers, production of non-waste systems and complex research of physical-chemical principles of glassy oil sorbents production of organic and non-organic nature.

How to cite: Kogan V.E., Shakhparonova T.S. Chemistry as a basis for solving environmental issues // Journal of Mining Institute. 2017. Vol. 224 . p. 223-228. DOI: 10.18454/PMI.2017.2.223
Mining
  • Date submitted
    2016-11-16
  • Date accepted
    2017-01-01
  • Date published
    2017-04-14

Complex use of heat-exchange tunnels

Article preview

The paper presents separate results of complex research (experimental and theoretical) on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

How to cite: Galkin A.F. Complex use of heat-exchange tunnels // Journal of Mining Institute. 2017. Vol. 224 . p. 209-214. DOI: 10.18454/PMI.2017.2.209
Mining
  • Date submitted
    2016-09-04
  • Date accepted
    2016-11-14
  • Date published
    2017-02-22

Methodology of reducing rock bump hazard during room and rillar mining of North Ural deep bauxite deposits

Article preview

The article describes practical experience of using room and pillar mining (RAPM) under conditions of deep horizons and dynamic overburden pressure. It was identified that methods of rock pressure control efficient at high horizons do not meet safety requirements when working at existing depths, that is explained by changes in geodynamic processes during mining. With deeper depth, the geodynamic processes become more intensive and number of pillar and roof failures increase. When working at 800 m the breakage of mine structures became massive and unpredictable, which paused a question of development and implementation of tools for compliance assessment of used elements of RAPM and mining, geological, technical and geodynamic conditions of North Ural bauxite deposits and further development of guidelines for safe mining under conditions of deep horizons and dynamic rock pressure. It describes reasons of mine structure failures in workings depending on natural and man-caused factors, determines possible hazards and objects of geomechanic support. It also includes compliance assessment of tools used for calculations of RAPM structures, forecast and measures for rock tectonic bursts at mines of OAO “Sevuralboksitruda” (SUBR). It describes modernization and development of new geomechanic support of RAPM considering natural and technogenic hazards. The article presents results of experimental testing of new parameters of RAPM construction elements of SUBR mines. It has data on industrial implementation of developed regulatory and guideline documents at these mines for identification of valid parameters of RAPM elements at deep depths.

How to cite: Sidorov D.V. Methodology of reducing rock bump hazard during room and rillar mining of North Ural deep bauxite deposits // Journal of Mining Institute. 2017. Vol. 223 . p. 58-69. DOI: 10.18454/PMI.2017.1.58
Geoecology and occupational health and safety
  • Date submitted
    2015-08-24
  • Date accepted
    2015-10-16
  • Date published
    2016-04-22

Ways to ensure reliability, safety and efficiency of the costruction and installation works when buildings and structures erecting by stabilizing process of the rocking cargo suspension

Article preview

Nondestructive optical methods for measuring of the «thick» films thickness of the order of 0,001-1,00 mm are analyzed. It is shown that using the laser beam radiation and modern optical and electronic schemes possible to decrease the time of single measurement to 1ms and less at the measuring frequency of 10-50 hz. The possibility of measuring thickness and spreading coefficient and evaporation kinetics of liquid films is demonstrated. A new computer method of the data processing aimed to determine the film thickness from the angle dependence of the laser beam reflection coefficient by the film is offered. The offered procedure and the experimental technique realizing it permits to decrease the thickness determination uncertainty to the order of ten.

How to cite: Goldobina L.A., Orlov P.S. Ways to ensure reliability, safety and efficiency of the costruction and installation works when buildings and structures erecting by stabilizing process of the rocking cargo suspension // Journal of Mining Institute. 2016. Vol. 218 . p. 322-330.
Geoecology and occupational health and safety
  • Date submitted
    2015-08-02
  • Date accepted
    2015-10-04
  • Date published
    2016-04-22

Development of innovative technologies of dedusting in mining and advance coal mine faces

Article preview

The article describes the results of the implementation of investment projects in the field of complex dedusting implemented in major coal producing companies in Russia. Experimental study of the processes reduce the levels of dust in the workplace in the application of modern systems of irrigation and aspiration systems. The factors that determine the mass and composition of particulate airborne dust at various ways of dust suppression. The results of the analysis of the laser dispersed composition of particles removed from the air of the working area

How to cite: Korshunov G.I., Romanchenko S.B. Development of innovative technologies of dedusting in mining and advance coal mine faces // Journal of Mining Institute. 2016. Vol. 218 . p. 339-344.