-
Date submitted2023-12-15
-
Date accepted2024-06-13
-
Date published2025-02-25
Development of equipment and improvement of technology for inertial thickening of backfill hydraulic mixtures at the final stages of transportation
The results of the study of the functioning of the developed thickening equipment as part of the stowing complex for the formation of a flow of high-concentration hydromixture are presented. To explain the operation of the hydrotransport system of the stowing complex, equipped with a thickener of the developed design, its basic diagram is presented. A mathematical model has been created that describes the mechanism of inertial sedimentation of a solid component of a hydraulic mixture in a working chamber equipped with hydrodynamic profiles. Interaction with the profile leads to flow stratification due to a change in the trajectory of movement and a decrease in speed. The interval of rational velocity of primary pulp entering the input of the working chamber of the inertial thickener is substantiated. The synthesis of solutions of the thickening process model is performed in the COMSOL Multiphysics and Ansys Fluent programs. This made it possible to eliminate physical contradictions in the operation of the equipment and justify the overall dimensions of its main elements, ensuring the implementation of the mechanism of inertial sedimentation of the slurry. It was found that the concentration of the thickened flow at the outlet branch pipe of the thickener working chamber is determined by the level of the primary hydraulic fluid velocity, the characteristic length of the section of interaction with the deflecting profile, and the ratio of the flow and attack angles. A nomogram of the dynamics of the change in the hydraulic fluid concentration in the section of the outlet branch pipe depending on the ratios of the overall dimensions of the deflecting profile of the working chamber was compiled. The results of the study allowed formulating recommendations for selecting the dimensions of the thickener's deflecting hydrodynamic profile to form a flow of hydraulic mixture with a concentration of about 50 % by weight. The developed equipment can be used in a stowage complex and will increase the range of supply of the stowage mixture. This is due to the fact that a flow of primary slurry with a low concentration, due to lower pressure losses, can be moved in a pipeline system over a greater distance than a flow with a high filler content. The use of a thickener at the final stage of transportation is intended to increase the concentration of the hydraulic mixture immediately before production.
-
Date submitted2024-04-22
-
Date accepted2024-06-13
-
Date published2024-07-04
Comprehensive utilization of urban wastewater sludge with production of technogenic soil
The article presents the analysis of the existing approach to wastewater sludge treatment and justifies the selection of the most promising management technology that allows maximum use of wastewater sludge resource po-tential. To obtain a useful product (biocompost) suitable for use as part of technogenic soil, experimental studies of aerobic stabilization of organic matter of dehydrated urban wastewater sludge with the addition of other waste by using passive composting technology were carried out. The technology is included in the list of best available technologies (BAT). The selection of the most optimal components for the mixture was based on the results of determining the C and N content, humidity and pH of the components used that ensured the composting of organic waste. The results of laboratory studies of the obtained biocompost according to the main agrochemical and sanitary-epidemiological indicators are presented. Testing was carried out according to the criterion of toxicity of the biocompost’s aqueous extract. The assessment of the technogenic soil was performed when using biocompost in its composition for compliance with existing hygienic requirements for soil quality in the Russian Federation. Based on the results of the vegetation experiment, optimal formulations of the technogenic soil were determined, i.e., the ratio of biocompost and sand, under which the most favorable conditions for plant growth are observed according to a combination of factors such as the number of germinated seeds, the maximum height of plants and the amount of biomass. The conducted research makes it possible to increase the proportion of recycled urban wastewater sludge in the future to obtain soils characterized by a high degree of nutrient availability for plants and potentially suitable for use in landscaping, the biological stage of reclamation of technogenically disturbed lands, as well as for growing herbaceous plants in open and protected soil.
-
Date submitted2023-03-20
-
Date accepted2023-09-20
-
Date published2023-10-27
Experimental simulation of a system of swamp biogeocenoses to improve the efficiency of quarry water treatment
Mining activities were producing large quantities of wastewater contaminated with nitrogen compounds and metals. With insufficient treatment, these pollutants are released into the environment and have a toxic effect on living organisms. Constructed wetlands are now widely adopted as wastewater treatment systems because of the combination of physical, chemical and biological processes for the removal of contaminants. In this study, an experimental system was modeled to improve the efficiency of the quarry wastewater treatment of a mining enterprise by sharing the higher aquatic vegetation: broad-leaved cattail (Typha latifolia L.), common water-plantain (Alisma plantago-aquatica L.), jointed rush (Juncus articulatus L.) and lower aquatic vegetation (Chlorella sp.). Concentrations of nitrogen compounds and metal were analyzed both in the model and in the treated solution of quarry wastewater for calculation of treatment efficiency. Concentrations of the pollutants in the tissues of the higher aquatic vegetation were analyzed to assess the accumulation capacity and efficiency of translocation of the pollutants. The results of the experimental study showed the practical applicability of the constructed integrated treatment system to reduce the concentration of pollutants in quarry wastewater, as well as increasing the efficiency of treatment by introducing lower aquatic vegetation into the system
-
Date submitted2022-05-20
-
Date accepted2023-06-20
-
Date published2024-02-29
Increasing the quality of zeolite-bearing rocks from Eastern Transbaikalia by applying directed energy
This paper presents the use of accelerated electrons to treat zeolite-bearing rocks from Eastern Transbaikalia to increase the efficiency of separating zeolites from rock-forming minerals via electromagnetic separation. The effectiveness of the liberation of zeolite minerals using accelerated electrons was analyzed. The results of dry electromagnetic separation of zeolite-bearing rocks are presented. The dependence of the extraction of iron-bearing minerals from zeolite-bearing rocks by electromagnetic separation on the magnetic field intensity for different particle sizes has been established. The main methods of zeolite-bearing rock enrichment and ore preparation were determined. A technological scheme for processing zeolite-bearing rocks, based on the use of accelerated electron treatment at the ore preparation stage, is presented, significantly improving the zeolite production quality.
-
Date submitted2023-03-14
-
Date accepted2023-06-20
-
Date published2023-07-19
The wireless charging system for mining electric locomotives
The electric vehicles development has a high potential for energy saving: an energy-saving traffic control can reduce energy resource consumption, and integration with the power grid provides the ability of daily load pattern adjustment. These features are also relevant for underground mining. The critical element of vehicle-to-grid integration is the charging infrastructure, where wireless charging is promising to develop. The implementation of such systems in underground mining is associated with energy efficiency issues and explosion safety. The article discusses the development and research of a wireless charging system for mining electric locomotive A-5.5-600-U5. The analytic hierarchy process is used for justification of the circuitry and design solution by a comparison of different technical solutions based on energy efficiency and safety criteria. A complex computer model of the wireless charging system has been developed that gives the transients in the electrical circuit of a wireless charging system and the high-frequency field density distribution near the transmitting and receiving coils in a 3D setting. An approach to ignition risk evaluation based on the analysis of high-frequency field density in the charging area between the coils of the wireless charging system is proposed. The approach using a complex computer model is applied to the developed system. The study showed that the wireless charging system for mining electric locomotives operating in the gaseous-and-dusty mine is technically feasible and there are designs in which it is explosion safe.
-
Date submitted2022-10-31
-
Date accepted2023-03-02
-
Date published2023-12-25
Lightweight ash-based concrete production as a promising way of technogenic product utilization (on the example of sewage treatment waste)
- Authors:
- Tatyana E. Litvinova
- Denis V. Suchkov
The study is devoted to the development of a method for the technogenic raw materials utilization. Special attention is paid to the prospect of involving products based on them in the production of new building materials. The results of Russian and foreign studies on the reuse of wastes, such as phosphogypsum, metallurgical slag, waste from municipal and industrial wastewater treatment, etc., in the building materials industry are considered. It has been established that the use of incinerated sewage sludge ash in construction is a promising direction in terms of environmental and economic efficiency. The research confirmed the compliance of the lightweight ash-based concrete components to the regulatory documentation requirements for a number of indicators. As a result of the research, the composition of the raw mixture for the lightweight concrete production with incinerated sewage sludge ash as a replacement for a part of the cement has been developed. In terms of parameters, the developed concrete corresponds to standard lightweight concrete, marked in accordance with the regulatory documents of the Russian Federation as D1300 (density not less than 1.3 g/cm3), Btb2 (flexural strength not less than 2 MPa), M200/B15 (compressive strength not less than 15 MPa). Lightweight ash-based concrete is suitable for use in construction, repair of roads and improvement of urban areas.
-
Date submitted2021-03-05
-
Date accepted2021-10-18
-
Date published2021-12-16
Physical and mathematical model of rock destruction by a milling machine cutter
As a result of the analysis of the work on rock destruction by cutters of milling of machines, it was found that the existing developments do not allow us to proceed to the derivation of calculation d dependencies for determining fracture resistance, or can be used only in preliminary calculations of the known by design parameters of milling machines. To eliminate these disadvantages, a combined physical and mathematical model of the process of interaction of a single milling cutter with a spherical tip with the rock has been developed. Consideration of the physical picture of the action of forces and stresses acting from the cutter with spherical tips on the separating rock element in the limiting condition allowed to describe analytically the components of total resistance, which are the mathematical part of the physical and mathematical model of rock destruction by cutters. Analytical dependences for determining the tangential and normal components of fracture resistance of rocks of medium hardness have been obtained. The adequacy of the physical and mathematical model to the physical process of destruction of rocks of different hardness by cutters on a universal stand was tested both in the field and in the laboratory conditions. Technical evaluation of the results of experimental studies confirms the reliability of the developed physical and mathematical model.
-
Date submitted2021-02-20
-
Date accepted2021-05-21
-
Date published2021-09-20
Analysis of the screw press mouthpiece parameters for 3D extrusion of peat pieces of tubular type
The results of theoretical and experimental studies on the creation of a screw press composite mouthpiece screw press for 3D-forming of peat pieces of a tubular type in the field for intensifying the process of field drying of material in a complex mechanized pit are presented. The main purpose of the study was to substantiate the geometric and design parameters of the screw press composite mouthpiece of the spread machine for the production of peat-agglomerated products of the tubular type. The parameters of the mouthpiece are selected based on the geometric characteristics of the peat pieces. An increase in moisture loss during drying of peat-agglomerated products is provided by forming a peat piece in the form of a thick-walled pipe made of a peat raw materials composed of low and high decomposition degrees in a ratio of 1:3. Additive production of polymer-fiber peat composites by extrusion allows to produce products with improved mechanical properties in comparison with non-reinforced raw materials. The vertical arrangement of the peat tubular piece on the drying field allows to increase the loading of the field area by 10 %, increase the convective heat supply to the piece and reduce the contact coefficient of the piece with the field by three times in comparison with the peat spreading of the pieces in the form of a horizontal tape. Based on the analysis of the shape and size of the agglomerated products, the design of a screw press composite mouthpiece consisting of two conditional molding zones of various configurations has been developed. The article presents a parametric analysis of the volumetric productivity of a screw press with a composite mouthpiece of a tubular type, the energy intensity of mechanical processing is determined, the degree of mechanical processing of peat raw materials is estimated with the optimization of the screw parameters for the production of agglomerated products of a tubular type.
-
Date submitted2019-07-11
-
Date accepted2019-09-11
-
Date published2020-04-24
Research of lithium sorption by KU-2-8 cation exchanger from model solutions simulating geothermal fluids in the dynamic mode
- Authors:
- Tatiana P. Belova
- Tatiana I. Ratchina
The extraction of chemical compounds from hydromineral raw materials is currently a promising objective. The geothermal deposits in the Kamchatka Territory should be considered as possible sources of lithium, boron and other chemical compounds. Their economic efficiency is justified by the complexity of the use of resources of geothermal fluids. The article presents data obtained as a result of experimental studies of lithium sorption by KU-2-8 cation exchanger from model solutions that simulate geothermal fluids in the dynamic mode. It was shown that in the first phase of sorption, ion exchange results in the absorption of lithium and sodium ions by the hydrogen form of cation exchanger up to the degree of cation exchanger saturation by 78 %. After that, the displacement of lithium ions by sodium ions is observed. The intermediate solutions were obtained in which the molar ratio of Li/Na is 80 times higher than in the initial solution. To separate sodium and lithium, it is proposed to use the lithium form of cation exchanger obtained using a portion of lithium chloride concentrate. The separation occurs due to the displacement of lithium ions by sodium ions. The effluent has a molar ratio of Li/Na = 10.4. The regeneration is carried out with 1 n hydrochloric acid, while the concentration coefficient of sodium chloride equals three.
-
Date submitted2019-07-24
-
Date accepted2019-09-13
-
Date published2019-12-24
Integrated mining projects in underdeveloped territories of Russia: substantiation of implementation parameters
- Authors:
- T. V. Ponomarenko
- E. A. Khan-Tsai
- Ch. Bavuu
Complex mining projects, as a rule, have significant economic and social impact on the territory, sometimes entire regions where they are implemented. Consumers of their implementation effects are population, government, buyers, lenders and other stakeholders. Therefore, development of transport infrastructure in integrated projects for development of mineral deposits should have state support, forms of which are very diverse. In Russia parameters of concession agreements for construction of transport infrastructure, carried out in conjunction with projects for development of mineral deposits, are not regulated or justified. Aim of the work is to develop an organizational model and justify parameters of concession agreement for construction of the railway as a key element of transport infrastructure necessary for successful implementation of the project for development of a large coal deposit in a low-developed region. Research methods are: strategic, institutional, investment analysis, modeling and forecasting methods. The article proposes an approach to justification of technical, economic and financial parameters of concession agreement implemented during realization of an integrated mining project. As a result of the study, a concession agreement model was developed for construction of railway section as part of an integrated mining project, including development of a deposit and construction of a mining and concentrating company.
-
Date submitted2019-03-24
-
Date accepted2019-05-13
-
Date published2019-08-23
Calculation of Oil-saturated Sand Soils’ Heat Conductivity
- Authors:
- J. Sobota
- V. I. Malarev
- A. V. Kopteva
Nowadays, there are significant heavy high-viscosity oil reserves in the Russian Federation with oil recovery coefficient not higher than 0.25-0.29 even with applying modern and efficient methods of oil fields development. Thermal methods are the most promising out of the existing ways of development, main disadvantage of which is large material costs, leading to the significant rise in the cost of extracted oil. Thus, creating more efficient thermal methods and improving the existing ones, is the task of great importance in oil production. One of the promising trends in enhancing thermal methods of oil recovery is the development of bottomhole electric steam generators. Compared to the traditional methods of thermal-steam formation treatment, which involve steam injection from surface, well electrothermal devices can reduce energy losses and improve the quality of steam injected into the formation. For successful and efficient organization of oil production and rational development of high-viscosity oil fields using well electrothermal equipment, it is necessary to take into account the pattern of heat propagation, both in the reservoir and in the surrounding space, including the top and bottom. One of the main values characterizing this process is the heat conductivity λ of oil-bearing rocks. The article describes composition of typical oil-saturated sand soils, presents studies of heat and mass transfer in oil-saturated soils, reveals the effect of various parameters on the heat conductivity of a heterogeneous system, proposes a method for calculating the heat conductivity of oil-bearing soils by sequential reduction of a multicomponent system to a two-component system and proves the validity of the proposed approach by comparing acquired calculated dependencies and experimental data.
-
Date submitted2018-08-30
-
Date accepted2018-10-26
-
Date published2019-02-22
Study of bearing units wear resistance of engines career dump trucks, working in fretting corrosion conditions
- Authors:
- Ju. Olt
- V. V. Maksarov
- V. A. Krasnyy
The occurrence of fretting corrosion on nominally fixed surfaces of high-loaded parts of mining machines and mechanisms is considered. Examples of wear and damage of critical parts, bearing assemblies of engines of dump trucks in fretting conditions are given. The mechanisms of fretting corrosion when using wear-resistant coatings are considered. It is noted that when choosing protective thin-layer coatings that provide an increase in the fretting-resistance of surfaces of tightly contacting parts, it is necessary to take into account both their wear resistance and the ability to resist shear. At the same time, the thickness of such coatings allows preserving, during operation, those provided during the assembly of the tension, without disturbing the maintainability of the nodes. The results of research of fretting wear of a number of coatings on a special installation are given. The mechanisms of wear of a number of thin-layer coatings based on friction-mechanical brazing, polymer fluorocarbon composition, solid lubricant coating using scanning electron microscopy were studied. Recommendations on the use of the studied thin-layer coatings for high-loaded parts of mining machines operating in fretting corrosion conditions have been developed. The aim of the work was to study the effect of a number of thin-layer coatings on the wear of highly loaded connections of the mechanisms of mining machines, in particular bearing assemblies of quarry dump trucks operating under fretting corrosion conditions.
-
Date submitted2018-09-08
-
Date accepted2018-10-27
-
Date published2019-02-22
Special strategy of treatment of difficulty-profile conical screw surfaces of single-screw compressors working bodies
- Authors:
- A. S. Vasilev
- A. A. Goncharov
The article deals with the problems arising during the shaping of complex profile tapered helical surfaces. These surfaces form the geometry of the working bodies of single-screw miniature compressors, which have great prospects for use in mobile miniature compressor plants, which is especially important for medical and space technology, robotics, oil and gas and mining industries. Due to the fact that the capabilities of existing CAD systems do not allow obtaining three-dimensional models of these surfaces, the problem of preparing a control program for a CNC machine arises, since the calculation of the tool path in CAM systems when processing complex surfaces is impossible without a three-dimensional surface model. To solve the problem, an automated programming system was developed that implements a formalized toolpath calculation in accordance with the proposed special processing strategy for conical helical surfaces. As the initial data for calculating the toolpath, the system needs information about the tool geometry and the helical surface in a parametric form, which makes it possible to abandon the construction of a three-dimensional surface model. The results of processing prototypes for the proposed strategy are given.
-
Date submitted2015-10-19
-
Date accepted2015-12-27
-
Date published2016-08-22
Key directions in processing carbonaceous rocks
- Authors:
- T. N. Aleksandrova
Mathematical statistics techniques and the data from laboratory mineral and technological studies of samples were used to identify the most common natural and technological associations of microelements in carbonaceous rocks which could be of industrial value if extracted in the form of commercial products. The discovered structures of spheroidal and ring ferrocarbonaceous clusters are respective formations of the class of metal fullerens with expressed magnetic properties. Such clusters may serve as construction blocks for new magnetic structures since each of them is a separate magnetic domain. Extracting such structures and their practical use opens the way to future technologies. It is expected to employ such results in the future in the course of designing new techniques and technologies for benefication of carbonaceous raw materials while developing comprehensively solid mineral resources in the mining industry regions of Russia.
-
Date submitted2015-08-23
-
Date accepted2015-10-26
-
Date published2016-04-22
Low-voltage electrical apparatus
- Authors:
- S. M. Apollonskii
- Yu. V. Kuklev
The article describes the main trends in the development of low-voltage electrical appliances and related accessories, as well as issues of efficiency, reliability and safety. According to the authors, the main trends in the development of low-voltage apparatus can be considered: the transition from the use of certain devices to the system devices, unified by the process of installation and running in standard modules and comply with all the functional requirements of control systems; improving the standardization and normalization of the EA on an international scale; unification of constructive elements of the EA; increase the volume of production of complete device management and contactless application logic control systems and specialized computers for management purposes; increase the proportion of contactor relay equipment DC, performs a variety of control functions. Improved security service low voltage, through the use of low voltage (24 V DC, 110 V AC), voltage presence signaling devices; increase the proportion of and the use of combined control and protection devices as well as devices for the automation of recruitment and duty cycles of machines: differentsequencer, track control devices, relays, pulse counting, and so on. n.
-
Date submitted2015-08-26
-
Date accepted2015-10-16
-
Date published2016-04-22
Reserch of modernized perforator-hammer for drifting special roadway the underground mines «Metrostroy»
- Authors:
- D. A. Yungmeister
The article describes the design of modernized hammer-perforators for tunnel complexes for construction of auxiliary mine workings of «Metrostroi», St Petersburg, protected by patents. The article deals with assembly variants of the executive device of percussion type for breaking faces of complicated structure. Particular attention is paid to hammers working in the mode of the «counter-shearing» accomplished by dual jackhammers. The results of experimental tests to determine pike penetration into rock array for different values of rock hardness and pressing force. It is noted that the proposed solution replaces manual labor, reduces working cycle time.
-
Date submitted2014-11-24
-
Date accepted2015-01-02
-
Date published2015-10-26
Complex processing of apatite-nepheline ores based on the creation of closed-loop process flow sheets
- Authors:
- A. I. Alekseev
The article presents the chemical and engineering fundamentals of processing apatite and nepheline concentrates directly on the Kola Peninsula. Implementation of the existing separate processing of nepheline and apatite concentrates demonstrates inefficiency of these technologies due to the formation of waste calcium sulfate and calcium silicate, which have so far not found a practical use and are wastes stored in sludge repositories of the Russian Federation. Suggested new scientific and technical solutions will allow enterprises to significantly increase the volume of production of new in-demand marketable products due to rational and complex use of mineral raw materials of the Kola Peninsula, reduce their costs while decreasing the volume of rock extraction and eliminate waste creating a closed-loop technological cycle of processing apatite and nepheline ores.
-
Date submitted2014-07-14
-
Date accepted2014-08-29
-
Date published2014-12-22
The development of ideas for improving explosive destruction of rock masses – the basis of progress in mining
- Authors:
- S. D. Viktorov
- V. M. Zakalinskii
The article describes the main areas of research in the field of the explosive destruction of rocks used in mining. The results of studies carried out in recent years are presented. Information on possi-ble applications for breaking up rocks of various energy sources is provided. Ideas are given on the possibility of raising the efficiency of explosives for mining rock by increasing the scale of the ex-plosive destruction. Information about the widespread adoption of these methods at Russia’s biggest iron ore companies is presented. Recent results on the fracture processes at different levels of scale up to destruction to form particles of submicron size are shown. Studying the structural transforma-tions of rock mass at the micro and macro features of allocation and distribution of energy in the charges of various designs allowed us to control the action of a new explosion by breaking up rock masses and the complex structure of multicomponent fields.
-
Date submitted2010-07-28
-
Date accepted2010-09-30
-
Date published2011-03-21
Ingineering geological problems of high-rise construction with underground space development in Saint-Petersburg
- Authors:
- R. E. Dashko
- A. M. Zhukova
The history of high-rise construction is considered summarily. The main features of high-rise buildings and difficulties connected with theirs engineering and construction especially with underground space development and deep excavations in soft water saturated soils are characterized. Territorial construction guides «Residential and social high-rise buildings» prevail in Saint-Petersburg are analyzed in the context of recommendations for reliable basement choice. Brief description of Pre-Quanernary clays (Upper Vendian clays and Lower Cambrian clays) as basement for high-rise constructions are given. It is placed emphasis that the main feature of Pre-Quaternary clays is zone sequence of physical and mechanical properties and fissuring in depth. Physical and mechanical properties of Upper Vendian clays, Lower Cambrian clays and glacial clays are given. In addition, it is confirmed that glacial soils is not recommended to use as a basement for high-rise buildings.
-
Date submitted2009-09-16
-
Date accepted2009-11-04
-
Date published2010-06-25
Working out an experimental programme of uninterrupted foreign language training for students at higher technical schools
- Authors:
- A. N. Spiridonov
- K. V. Fedorov
The paper justifies the necessity to work out a programme of uninterrupted foreign language training for students at higher technical schools; it reviews goals, tasks and a possible structure of the course, principles to select teaching materials as well as ways to assess the efficiency of training.
-
Date submitted2008-11-08
-
Date accepted2009-01-08
-
Date published2009-12-11
The main targets of strategic planning of the Russian vertically-integrated oil-gas companies
- Authors:
- A. V. Zhimirova
The article discusses main goals and targets of strategic planning in oil companies considering the example of leading vertically-integrated oil-gaz companies. The impact of oil industry on the country’s macroeconomic indices is shown. Besides, main directions of big companies’ activity are analyzed. Special corporate features considered in the companies’ strategic plans should be correlated with the State Energy strategy.
-
Date submitted2008-11-17
-
Date accepted2009-01-28
-
Date published2009-12-11
Rating indicators of the financial condition estimation of mining enterprise
- Authors:
- J. V. Luebeck
The method of receiving of united factor is considered to be the foundation of system development monitoring factors based on integrations of private factors of financial analysis, that is to say calculation of rating for different variants of investment activity a mining enterprise. Calculation of rating of borrower and rating of financial stability has the most importance while developing the investment strategy of development a mining enterprise. Rating analysis will allow to motivate the possibility for calculating the real investments, defining the value of rational growth of production volumes, motivating the borders of rational increase the volumes of production within the framework of investment activity.
-
Date submitted2008-10-13
-
Date accepted2008-12-15
-
Date published2009-12-11
A complex of gravi-, magneto-, electroprospecting аnd geoelectrochemical methods for local prediction and prospecting for hydrocarbon deposits
It is proposed to use interpretational spatial distributions of effective parameters of the medium under investigation instead of measured fields in the process of comprehensive prediction-prospecting investigations. There are used effectively: effective density, effective magnetization, intensity of probable sources of geochemical anomalies.
-
Date submitted1948-07-11
-
Date accepted1948-09-13
-
Date published1949-11-04
On the influence of the cost of transport on the floor crosscuts on the most advantageous dimensions of the mine field
- Authors:
- O. B. Bokii
This article is devoted to the assessment of the impact of the cost of hauling minerals along floor crosscuts on the most advantageous longwall dimensions of the mine field of a vertical shaft opening a suite of steeply dipping seams, determined by the method of L. D. Shevyakov. The cost of hauling minerals along crosscuts during the development of a suite of steeply dipping seams by a vertical shaft with floor crosscuts increases with the increase in the number of floors in the mine field and decreases the most advantageous number of floors against the values given by L. D. Shevyakov's formulas derived without taking this factor into account. In exceptional cases (location of the mine outside the suite with a small angle of dip of the seams), the number of floors determined without taking into account the cost of transport along floor crosscuts may exceed their most advantageous number by 50% or more.