Experimental simulation of a system of swamp biogeocenoses to improve the efficiency of quarry water treatment
- 1 — Ph.D., Dr.Sci. Head of the Department of Geoecology Saint Petersburg Mining University ▪ Orcid ▪ Elibrary ▪ Scopus ▪ ResearcherID
- 2 — Postgraduate Student Saint Petersburg Mining University ▪ Orcid
- 3 — Ph.D. Director of the Scientific Center Saint Petersburg Mining University ▪ Orcid ▪ Elibrary ▪ Scopus ▪ ResearcherID
Abstract
Mining activities were producing large quantities of wastewater contaminated with nitrogen compounds and metals. With insufficient treatment, these pollutants are released into the environment and have a toxic effect on living organisms. Constructed wetlands are now widely adopted as wastewater treatment systems because of the combination of physical, chemical and biological processes for the removal of contaminants. In this study, an experimental system was modeled to improve the efficiency of the quarry wastewater treatment of a mining enterprise by sharing the higher aquatic vegetation: broad-leaved cattail ( Typha latifolia L.), common water-plantain ( Alisma plantago-aquatica L.), jointed rush ( Juncus articulatus L.) and lower aquatic vegetation ( Chlorella sp.). Concentrations of nitrogen compounds and metal were analyzed both in the model and in the treated solution of quarry wastewater for calculation of treatment efficiency. Concentrations of the pollutants in the tissues of the higher aquatic vegetation were analyzed to assess the accumulation capacity and efficiency of translocation of the pollutants. The results of the experimental study showed the practical applicability of the constructed integrated treatment system to reduce the concentration of pollutants in quarry wastewater, as well as increasing the efficiency of treatment by introducing lower aquatic vegetation into the system
References
- Chukaeva M.A., Povarov V.G., Sverchkov I.P. Iron-Containing Metalworking Wastes as a Chemosorbent for Wastewater Treatment from Molybdenum Ions // Moscow University Chemistry Bulletin. 2020. Vol. 75. Iss.1. P. 36-42. DOI: 10.3103/S0027131420010058
- Летуев К.В., Ковшов С.В., Гридина Е.Б. Технология гидрообеспыливания автомобильных дорог угольных разрезов с применением очищенных сточных и дренажных вод // Экология и промышленность России. 2020. Т. 24. № 1. C. 30-33. DOI: 10.18412/1816-0395-2020-1-30-33
- Литвинова Т.Е., Сучков Д.В. Комплексный подход к утилизации техногенных отходов минерально-сырьевого комплекса // Горный информационно-аналитический бюллетень. 2022. № 6-1. С. 331-348. DOI: 10.25018/0236_1493_2022_61_0_331
- Chukaeva M.A., Petrov D.S. Assessment and analysis of metal bioaccumulation in freshwater gastropods of urban river habitats, Saint Petersburg (Russia) // Environmental Science and Pollution Research. 2023. Vol. 30. Iss. 3. P. 7162-7172. DOI: 10.1007/s11356-022-21955-8
- Алексеенко В.А., Швыдкая Н.В., Бек Дж. и др. Аккумуляция химических элементов почвенно-растительным покровом Северо-Кавказской геохимической провинции // Записки Горного института. 2021. Т. 247. С. 141-153. DOI: 10.31897/PMI.2021.1.15
- Sergeev V.V., Cheremisina O.V., Fedorov A.T. et al. Interaction features of sodium oleate and oxyethylated phosphoric acid esters with the apatite surface // ACS Omega. 2022. Vol. 7. № 3. P. 3016-3023. DOI: 10.1021/acsomega.1c06047
- Nizam N.U.M., Hanafiah M.M., Noor I.M., Karim H.I.A. Efficiency of Five Selected Aquatic Plants in Phytoremediation of Aquaculture Wastewater // Applied Sciences. 2020. Vol. 10. Iss. 8. № 2712. DOI: 10.3390/APP10082712
- Dhir B. Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. India: Springer India, 2013. 111 p. DOI: 10.1007/978-81-322-1307-9
- Choudhury M.I., Segersten J., Hellman M. et al. Importance of plant species for nitrogen removal using constructed floating wetlands in a cold climate // Ecological Engineering. 2019. Vol. 138. P. 126-132. DOI: 10.1016/j.ecoleng.2019.07.012
- Kosolapova S.M., Smal M.S., Rudko V.A. et al. A new approach for synthesizing fatty acid esters from linoleic-type vegetable oil // Processes. 2023. Vol. 11. № 5. № 1534. DOI: 10.3390/pr11051534
- Wu S., Kuschk P., Brix H. et al. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review // Water Research. 2014. Vol. 57. P. 40-55. DOI: 10.1016/j.watres.2014.03.020
- Etteieb S., Zolfaghari M., Magdouli S. et al. Performance of constructed wetland for selenium, nutrient and heavy metals removal from mine effluents // Chemosphere. 2021. Vol. 281. № 130921. DOI: 10.1016/j.chemosphere.2021.130921
- Shammazov I.A., Batyrov A.M., Sidorkin D.I., Van Nguyen T. Study of the Effect of Cutting Frozen Soils on the Supports of Above-Ground Trunk Pipelines // Applied Sciences. 2023. Vol. 13. № 3139. DOI: 10.3390/app13053139
- Pavlinery N., Skoulikidis N.Th., Tsihrintzis V.A. Constructed Floating Wetlands: A review of research, design, operation and management aspects, and data meta-analysis // Chemical Engineering Journal. 2017. Vol. 308. P. 1120-1132. DOI: 10.1016/j.cej.2016.09.140
- Kataki S., Chatterjee S., Vairale M.G. et al. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate) // Journal of Environmental Management. 2021. Vol. 283. № 111986. DOI: 10.1016/j.jenvman.2021.111986
- Rozema E.R., VanderZaag A.C., Wood J.D. et al. Constructed Wetlands for Agricultural Wastewater Treatment in Northeastern North America: A Review // Water. 2016. Vol. 8. № 173. DOI: 10.3390/w8050173
- Vymazal J., Březinová T. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review // Chemical Engineering Journal. 2016. Vol. 290. P. 232-242. DOI: 10.1016/j.cej.2015.12.108
- Zhang Lingling, Sun Zhenzhong, Xie Jia et al. Nutrient removal, biomass accumulation and nitrogen-transformation functional gene response to different nitrogen forms in enhanced floating treatment wetlands // Ecological Engineering. 2018. Vol. 112. P. 21-25. DOI: 10.1016/j.ecoleng.2017.12.021
- Fernandez-Fernandez M.I., de la Vega P.T.M., Jaramillo-Morán M.A., Garrido M. Hybrid Constructed Wetland to Improve Organic Matter and Nutrient Removal // Water. 2020. Vol. 12. № 2023. DOI: 10.3390/w12072023
- White S.A. Plant Nutrient Uptake in Full-Scale Floating Treatment Wetlands in a Florida Stormwater Pond: 2016-2020 // Water. 2021. Vol. 13. № 569. DOI: 10.3390/w13040569
- Sandoval L., Zamora-Castro S.A., Vidal-Álvarez M., Marín-Muñiz J.L. Role of Wetland Plants and Use of Ornamental Flowering Plants in Constructed Wetlands for Wastewater Treatment: A review // Applied Sciences. 2019. Vol. 9. № 685. DOI: 10.3390/app9040685
- Sabreena, Hassan S., Bhat S.A. et al. Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology // Plants. 2022. Vol. 11. № 1255. DOI: 10.3390/plants11091255
- Chamba-Eras I., Griffith D.M., Kalinhoff C. et al. Native Hyperaccumulator Plants with Differential Phytoremediation Potential in an Artisanal Gold Mine of the Ecuadorian Amazon // Plants. 2022. Vol. 11. № 1186. DOI: 10.3390/plants11091186
- Голик В.И., Маринин М.А. Практика подземного выщелачивания урана в блоках // Горный информационно-аналитический бюллетень. 2022. № 6-1. С. 5-20. DOI: 10.25018/0236_1493_2022_61_0_5
- Zubkova O., Alexeev A., Polyanskiy A. et al. Complex Processing of Saponite Waste from a Diamond-Mining Enterprise // Applied Sciences. 2021. Vol. 11. № 6615. DOI: 10.3390/app11146615
- Sladkovska T., Wolski K., Bujak H. et al. A Review of Research on the Use of Selected Grass Species in Removal of Heavy Metals // Agronomy. 2022. Vol. 12. № 2587. DOI: 10.3390/agronomy12102587
- Khan S., Ahmad I., Shah M.T. et al. Use of constructed wetland for the removal of heavy metals from industrial wastewater // Journal of Environmental Management. 2009. Vol. 90. P. 3451-3457. DOI: 10.1016/j.jenvman.2009.05.026
- Kataki S., Chatterjee S., Vairale M.G. et al. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate) // Journal of Environmental Management. 2021. Vol. 283. № 111986. DOI: 10.1016/j.jenvman.2021.111986
- Wang Kunlun, Hu Qian, Wei Yumin et al. Uptake Kinetics of NH4+, NO3− and H2PO4− by Typha orientalis, Acorus calamus L., Lythrum salicaria L., Sagittaria trifolia L. and Alisma plantago-aquatica Linn // Sustainability. 2021. Vol. 13. P. 434. DOI: 10.3390/su13010434
- Reddy K.R., DeLaune R.D., Inglett P.W. Biogeochemistry of Wetlands: Science and Applications. Boca Raton: CRC Press, 2022. 734 p. DOI: 10.1201/9780429155833
- Gonçalves A.L., Pires J.C.M., Simões M. A review on the use of microalgal consortia for wastewater treatment // Algal Research. 2017. Vol. 24. P. 403-415. DOI: 10.1016/j.algal.2016.11.008
- Randrianarison G., Ashraf M.A. Microalgae Plant (Chlorella sp.) for Wastewater Treatment and Energy Production // Ekoloji. 2018. Vol. 27. Iss.106. P. 1455-1465.
- Rearte T.A., Celis-Plá P.S.M., Neori A. et al. Photosynthetic performance of Chlorella vulgaris R117 mass culture is moderated by diurnal oxygen gradients in an outdoor thin layer cascade // Algal Research. 2021. Vol. 54. № 102176. DOI: 10.1016/j.algal.2020.102176
- Doucha J., Straka F., Lívanský K. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor // Journal of Applied Phycology. 2005. Vol. 17. P. 403-412. DOI: 10.1007/s10811-005-8701-7
- Doucha J., Lívanský K. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate // Journal of Applied Phycology. 2006. Vol. 18. P. 811-826. DOI: 10.1007/s10811-006-9100-4
- Pearsall W.H. Nitrogen Metabolism in Plants: Methods and Protocols. New York: Humana Press, 2020. 178 p. DOI: 10.1007/978-1-4939-9790-9
- Petrov D.S., Korotaeva A.E., Pashkevich M.A., Chukaeva M.A. Assessment of heavy metal accumulation potential of aquatic plants for bioindication and bioremediation of aquatic environment // Environmental Monitoring and Assessment. 2023. Vol. 195. № 122. DOI: 10.1007/s10661-022-10750-0
- Wan Shuming, Pang Jun, Li Yiwei et al. Hydroponic Phytoremediation of Ni, Co, and Pb by Iris Sibirica L. // Sustainability. 2021. Vol. 13. № 9400. DOI: 10.3390/su13169400
- Olguín E.J., Sánchez-Galván G. Phytofiltration of Heavy Metals: Assessment of the Key Factors Involved in the Design of a Sustainable Process // Comprehensive Biotechnology. 2011. Vol. 6. P. 207-213. DOI: 10.1016/B978-0-08-088504-9.00379-2
- Rezania S., Taib S.M., Md Din M.F. et al. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater // Journal of Hazardous Materials. 2016. Vol. 318. P. 587-599. DOI: 10.1016/j.jhazmat.2016.07.053
- Yan An, Wang Yamin, Tan Swee Ngin et al. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land // Frontiers in Plant Science. 2020. Vol. 11. P. 1-15. DOI: 10.3389/fpls.2020.00359