-
Date submitted2024-03-20
-
Date accepted2024-11-07
-
Date published2025-02-27
Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation
The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values of pressure drawdown and changes in stress-strain properties depending on the area of mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.
-
Date submitted2024-03-29
-
Date accepted2024-06-03
-
Date published2024-07-04
Potential use of water treatment sludge for the reclamation of small-capacity sludge collectors
- Authors:
- Olga M. Guman
- Irina A. Antonova
In small settlements, collectors for the sludge produced during water treatment processes are small-sized and located in the vicinity of drinking water storage reservoirs or in coastal areas. Sludge removal is not economical. Besides, the relief depressions formed after sludge disposal are required to be reclaimed. In ore mining regions, where the main settlements of the Urals are located, sludge produced in water treatment has high contents of heavy metals typical of ore mining provinces. Consequently, places of sludge accumulation are potential sources of water pollution. The article discusses the possibility to mix sludge with slaked lime and local overburden with the help of special equipment. So far water treatment sludge in the region has been used to reclaim the surface of solid waste landfills by creating anaerobic conditions for waste decomposition. When placed inside the embankment dams as an independent object, sludge needs to be improved for the increase of its bearing capacity and the ability to bind heavy metals. The article aims at the substantiation of the composition and properties of the reclamation material made of the water treatment sludge mixed with local overburden and slaked lime (technosoil). For this reason the paper describes the composition of the sludge in a sludge collector, the composition and properties of the overburden rocks as a component of the mixtures with water treatment sludge, the composition and properties of the mixtures of water treatment sludge with overburden rocks and Ca(OH)2 as a component dewatering sludge and neutralizing toxicants. Furthermore, the research work provides the technology created for the optimal processing of the water treatment sludge in the process of the reclamation of a sludge collector. The research results and the experience obtained in reclamation of disturbed lands in the region have confirmed the possible use of technosoil for the reclamation of small-capacity sludge collectors. The analysis of the chemical composition and physical and mechanical properties of the mixtures under study has shown that the most economical and environmentally sound reclamation material is a mixture of water treatment sludge, loose overburden dump soils and Ca(OH)2 in a ratio of 60 : 30 : 10 %.
-
Date submitted2022-10-29
-
Date accepted2023-10-25
-
Date published2024-04-25
Assessment of rock massif sustainability in the area of the underground research laboratory (Nizhnekanskii Massif, Enisei site)
The study presents the results of the research on geodynamic and geological conditions of the Enisei site (Krasnoyarsk Krai), chosen for the construction of an underground research laboratory. The laboratory is being built at a depth of 500 m to assess the suitability of the rock mass for burying high-level radioactive waste. The rocks consist of weakly fractured gneisses, granites, and dikes of metadolerites. Field observations were conducted on bedrock outcrops. They included the determination of rock mass quality indicators, measurement of rock fracturing, and a rating classification of stability using N.Barton's method. GNSS observations were also made to monitor surface deformations. These data were used to develop a three-dimensional structural model, including lithology, fault disruptions, intrusive bodies, elastic-strength properties of rocks, and the sizes of zones influenced by faulting. It will serve as a basis for boundary conditions and the construction of three-dimensional variational models of stress-strain states, identifying zones of concentration of hazardous stresses, and planning in situ geomechanical experiments in underground mines of the laboratory. The obtained values of the modified QR index for the main types of rocks allowed their classification as stable and moderately stable, corresponding to strong and very strong rocks on Barton's scale and the massif rating according to geomechanical classification.
-
Date submitted2023-03-14
-
Date accepted2023-06-20
-
Date published2023-07-19
The wireless charging system for mining electric locomotives
The electric vehicles development has a high potential for energy saving: an energy-saving traffic control can reduce energy resource consumption, and integration with the power grid provides the ability of daily load pattern adjustment. These features are also relevant for underground mining. The critical element of vehicle-to-grid integration is the charging infrastructure, where wireless charging is promising to develop. The implementation of such systems in underground mining is associated with energy efficiency issues and explosion safety. The article discusses the development and research of a wireless charging system for mining electric locomotive A-5.5-600-U5. The analytic hierarchy process is used for justification of the circuitry and design solution by a comparison of different technical solutions based on energy efficiency and safety criteria. A complex computer model of the wireless charging system has been developed that gives the transients in the electrical circuit of a wireless charging system and the high-frequency field density distribution near the transmitting and receiving coils in a 3D setting. An approach to ignition risk evaluation based on the analysis of high-frequency field density in the charging area between the coils of the wireless charging system is proposed. The approach using a complex computer model is applied to the developed system. The study showed that the wireless charging system for mining electric locomotives operating in the gaseous-and-dusty mine is technically feasible and there are designs in which it is explosion safe.
-
Date submitted2023-04-25
-
Date accepted2023-04-25
-
Date published2023-04-25
Ecological security and sustainability
- Authors:
- Mariya A. Pashkevich
- Alexandr S. Danilov
In 2015, UN Member States adopted the 2030 Agenda for Sustainable Development, aimed at balancing initiatives by the world community and individual countries in the environmental, social, and economic spheres. The global sustainable development goals are to promote the well-being of the world population, preserve the planet’s resources, and maintain ecological security, which is vital in the age of the rapid industrial growth and ever-increasing anthropogenic pressure on the environment. For the successful achievement of sustainability goals in the manufacturing sector, integrated measures should be undertaken for monitoring and assessing the technogenic impact of industrial facilities. Additionally, it is necessary to develop environmentally-friendly technologies in the fields of gas and water treatment, land reclamation, and waste disposal. Therefore, fundamental and applied research in these related spheres is of particular importance. Currently, environmental monitoring of all components of the environment, along with anthropogenic objects and processes, receives considerable attention, which is determined by the vector of development in science and technology. In this regard, the latest innovations in green technology in this area are becoming increasingly significant.
-
Date submitted2022-09-30
-
Date accepted2023-02-13
-
Date published2023-04-25
Hydrogeoecological conditions of technogenic groundwater in waste disposal sites
The specific hydrogeoecological conditions of aquifers of some technogenic formations, mainly iron ore skarn-magnetite and titanium-magnetite formations, are considered. The resulting wastes, which are stored in waste disposal sites during development of deposits, due to the impact of a number of factors (natural and technogenic) form technogenic waters. Waste disposal facilities are complex engineering structures (dumps and sludge storages), which in turn create their own hydrogeoecological conditions, which must be investigated in order to prevent and minimize environmental and economic damage caused by these objects to the aquatic environment. The paper presents long-term field and laboratory studies of the aquatic environment under the influence of a waste disposal facility in the Middle Urals – one of the largest tailings, representing a potential environmental and man-made hazard. This tailing dump contains tens of tons of waste – enrichment tailings and creates specific hydrogeoecological conditions on the territory. Based on many years of monitoring studies, an analysis of these conditions was carried out – the quality of groundwater affected by the tailings was assessed. It is shown that groundwater is of technogenic nature, i.e. are man-made waters that have a significant impact on the surface and underground hydrospheres of the territory.
-
Date submitted2022-07-15
-
Date accepted2022-12-13
-
Date published2023-02-27
Assessment of the efficiency of occupational safety culture management in fuel and energy companies
The results of development, testing and implementation of the process of occupational safety culture management in a fuel and energy company including the assessment of current state, assessment of deviation, formation of control action and its implementation are presented. Using the methods of mathematical analysis, the components of occupational safety culture and criteria for their evaluation were developed. As a control action, a procedure for conducting behavioural safety audit was elaborated and implemented. Proceeding from the results of analysing average ratings of safety culture components among the employees prior to and after the introduction of behavioural safety audit, it was concluded that there was a statistically significant increase in the average values of 12 out of 16 ratings of safety culture components. Analysis of the results of 1,011 audits showed the absence of an “alarm area” at the enterprise. Introduction of the developed process management model promotes an increase in the efficiency of attaining a high level of occupational safety culture in fuel and energy companies.
-
Date submitted2022-09-30
-
Date accepted2022-11-28
-
Date published2022-12-29
Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies
The national strategic goal of the Russian Federation is to ensure the safety of critical technologies and sectors, which are important for the development of the country's oil and gas industry. The article deals with development of national technology for intelligent monitoring of the condition of industrial facilities for transport and storage of oil and gas. The concept of modern monitoring and safety control system is developed focusing on a comprehensive engineering control using integrated automated control systems to ensure the intelligent methodological support for import-substituting technologies. A set of approved algorithms for monitoring and control of the processes and condition of engineering systems is proposed using modular control robotic complexes. Original intelligent models were developed for safety monitoring and classification of technogenic events and conditions. As an example, algorithms for monitoring the intelligent safety criterion for the facilities and processes of pipeline transport of hydrocarbons are presented. The research considers the requirements of federal laws and the needs of the industry.
-
Date submitted2021-04-23
-
Date accepted2021-09-07
-
Date published2021-12-16
Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces
Currently, the determination of the emission rate of suspended solids from a unit of the surface area of a man-made mass at various parameters of the wind flow is not sufficiently described. The analysis of the world experience of researchers shows that existing laboratory installations have various design features that do not allow to correctly determine the mass of the dust being flapped and wind-blown. Based on the analysis results, the concept of an innovative laboratory installation for the study of dust-forming surfaces has been developed. It takes into account the influence of wind shadows, the deturbulization of an artificially created air flow, the possibility of regulating not only the flow velocity mode, but also the creation of a vacuum or disturbance in the area of sample placement, as well as the formation of a certain angle of wind flow attack relative to the surface. The concept provides for the possibility of determining the volume of dust emissions by the values of the lost dust masses in the sample and by the values of dust concentrations in the outgoing stream. The calculation of the main basic elements of the installation using the ANSYS FLUENT software package was carried out. The model and configuration of the wind tunnel have been developed and calculated, the main geometric parameters and functional elements for the possibility of use in scientific work have been determined. For practical use of the empirical roughness value of the underlying surface, its values are recommended in a wide range – from zero for the water surface to 0.44 for large cities with tall buildings and skyscrapers.
-
Date submitted2021-06-01
-
Date accepted2021-07-27
-
Date published2021-10-21
Indicator assessment of the reliability of mine ventilation and degassing systems functioning
- Authors:
- Nina O. Kaledina
- Valentina A. Malashkina
The gas emission control in the mines is operated by ventilation and degassing systems that ensure the aerological safety of the mines or minimize the aerological risks. The ventilation system of the mine and its individual sites includes a significant number of technical devices and equipment, and the air tubes are mainly mining workings, the condition of which determines the quality of the ventilation network (its capacity) and depends on a number of mining factors. Similarly, one of the most important elements of the degassing system, which includes its own chain of technological equipment, are wells, and in some cases, mining workings. Thus, mine ventilation and degassing systems cannot be attributed to purely technical systems, since they include mining elements characterized by high variability of the determining parameters. To assess their reliability, it is necessary to use various combined methods that include additional characteristics in relation to the mining component. At the same time, the reliability of technical devices that ensure the functioning of mine ventilation and degassing systems largely determines the efficiency (stability and reliability) of these systems and, consequently, affects the level of aerological risks. The described approach to assessing the reliability of ventilation and degassing systems of coal mines when analyzing aerological risks is based on the developed system of risk indicators for the methane factor and will allow determining the risk dynamics in automatic mode based on monitoring the parameters of the ventilation and degassing system state.
-
Date submitted2021-06-15
-
Date accepted2021-08-27
-
Date published2021-10-21
Prospects for the use of modern technological solutions in the flat-lying coal seams development, taking into account the danger of the formation of the places of its spontaneous combustion
- Authors:
- Vladimir P. Zubov
- Dmitrii D. Golubev
Spontaneous combustion of coal remains an important problem for coal mines, which can lead to an explosion of methane and coal dust. Accidents associated with spontaneous combustion of coal can cause significant economic losses to coal mining companies, as well as entail social damage – injuries and loss of life. Accidents are known at the Kuzbass mines, which occurred as a result of negligent attitude to the danger of spontaneous combustion of coal, the victims of which were dozens of people. The analysis of emergency situations associated with spontaneous combustion of coal shows that the existing wide range of means of preventing endogenous fires does not provide complete safety when working out coal seams prone to spontaneous combustion, therefore, spontaneous combustion places continue to occur in mines. The consequences that may arise as a result of a methane explosion initiated by a self-ignition place indicate the need to improve the used technologies. The purpose of the work is to determine the impact of modern technological solutions used in functioning mines during underground mining of flat-lying coal seams prone to spontaneous combustion, and to develop new solutions that reduce endogenous fire hazard. Conclusions on the influence of leaving coal pillars in the developed space, isolated air removal from the stoping face through the developed space, the length of the stoping face and the excavation pillar, and other factors on the danger of the formation of spontaneous combustion places are presented. Conclusions about the possibility of using modern technological solutions in future are also drawn.
-
Date submitted2021-01-21
-
Date accepted2021-02-24
-
Date published2021-04-26
Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district)
- Authors:
- Regina E. Dashko
- Ivan S. Romanov
The underground space of the Kupol deposit is analyzed as a multicomponent system – rocks, underground water, microbiota, gases (including the mine atmosphere) and supporting structures – metal support and shotcrete (as an additional type of barring) and also stowing materials. The complex of host rocks is highly disintegrated due to active tectonic and volcanic activity in the Cretaceous period. The thickness of sub-permafrost reaches 250-300 m. In 2014, they were found to contain cryopegs with abnormal mineralization and pH, which led to the destruction of metal supports and the caving formation. The underground waters of the sub-permafrost aquifer are chemically chloride-sulfate sodium-calcium with a mineralization of 3-5 g/dm 3 . According to microbiological analysis, they contain anaerobic and aerobic forms of microorganisms, including micromycetes, bacteria and actinomycetes. The activity of microorganisms is accompanied by the generation of hydrogen sulfide and carbon dioxide. The main types of corrosion – chemical (sulfate and carbon dioxide), electrochemical and biocorrosion are considered. The most hazardous is the biocorrosion associated with the active functioning of the microbiota. Forecasting and systematization of mining and geological processes are carried out taking into account the presence of two zones in depth – sub-permafrost and below the bottom of the sub-permafrost, where mining operations are currently underdone. The importance of assessing the underground space as a multicomponent environment in predicting mining and geological processes is shown, which can serve as the basis for creating and developing specialized monitoring complex in difficult engineering and geological conditions of the deposit under consideration.
-
Date submitted2020-05-12
-
Date accepted2020-09-22
-
Date published2020-11-24
Design features of coal mines ventilation using a room-and-pillar development system
- Authors:
- Sergey S. Kobylkin
- Alexander R. Kharisov
The safety of mining operations in coal mines for aerological factors depends on the quality of accepted and implemented ventilation design solutions. The current “Design Manual of coal mine ventilation” do not take into account the features of room-and-pillar development systems used in Russia. This increases the risk of explosions, fires, and gassing. The detailed study of foreign experience in designing ventilation for the considered development systems e of coal deposits allowed to formulate recommendations on the ventilation scheme organization for coal mines using a room-and-pillar development system and the procedure for ventilation during multi-entry gateroad development. Observations have shown that the use of the existing Russian procedure for airing mining sites with a room-and-pillar development system complicates the emergency rescue operations conduct. Low speeds and multidirectional air movement, difficult heat outflow, and the abandonment of coal pillars increase the risk of occurrence and late detection of endogenous fire. The results of numerical modeling have shown that the installation (parallel to the drifts) of ventilation structures in inter-chamber pillars will increase the reliability of ventilation by transferring the ventilation scheme from a complex diagonal to a complex parallel. It will also reduce the amount of air required for the mine site and the total aerodynamic drag. The research made it possible to formulate requirements for the design procedure for coal mines ventilation using a room-and-pillar development system, which consist in the order of working out blocks in the panel, and also the additional use of ventilation structures (light brattice clothes or blowing line brattice).
-
Date submitted2019-06-22
-
Date accepted2019-09-11
-
Date published2020-04-24
Effective capacity building by empowerment teaching in the field of occupational safety and health management in mining
The paper is dealing with a developed concept named Empowerment Teaching, which is based on practical teaching experience gained in various mining universities. It is demonstrated that this concept can be used to increase the effectiveness of knowledge transfer to mining countries in the world, as well as to overcome cultural barriers between lecturers and their students. The two models of participatory training, which are proposed to be named “physical” and “emotional” models, are portrayed. The authors are convinced that participatory training methods can be an ideal answer to a challenge associated with workers’ competencies in mining, namely – the potential of highly motivated and well-educated young academics is often diminished by a lack of ability to apply their knowledge. A special emphasis is made on the possible application of empowerment teaching for educational and training activities in the field of occupational safety and health (OSH), which is a matter of utmost importance for the mining industry. Several benchmarking initiatives in the field of OSH (“safety culture”, zero-accident vision) are underlined to be encouraged and promoted by means of new teaching methods. The examples of successful international cooperation among universities are given, as well.
-
Date submitted2019-02-01
-
Date accepted2019-09-16
-
Date published2020-02-25
Priority parameters of physical processes in a rock mass when determining the safety of radioactive waste disposal
- Authors:
- V. S. Gupalo
Consideration of geodynamic, hydrogeochemical, erosion and other quantitative characteristics describing evolutionary processes in a rock mass is carried out when choosing a geological formation for the disposal of radioactive waste. However, the role of various process parameters is not equal for safety ensuring and additional percentages of measurement accuracy are far from always being of fundamental importance. This makes it necessary to identify various types of indicators of the geological environment that determine the safety of radioactive waste disposal for their detailed study in the conditions of the burial site. An approach is proposed to determine the priority indicators of physical processes in the rock mass that determine the safety of disposal of various types of radio active waste and require increased attention (accuracy, frequency of measurements) when determining in - situ conditions. To identify such factors, we used the sensitivity analysis method that is a system change in the limits of variable values during securty modeling in order to assess their impact on the final result and determine the role of various physical processes in ensuring safety.
-
Date submitted2019-06-30
-
Date accepted2019-09-10
-
Date published2019-12-24
Industrial safety principles in coal mining
- Authors:
- E. N. Chemezov
The article provides a description of injuries in coal mining enterprises in Russia. The high injury rate causes the need of developing new effective ways and means of improving safety at mining enterprises. Recently in Russia there has been a tendency for a slight decrease in fatal injuries, which indicates some progress in prevention of industrial accidents. At the same time, the problem of improving the working conditions of coal miners, reducing the level of injuries and occupational diseases in this industry remains a very urgent task. Ensuring safe operation and industrial health and safety is not only reasonable economic policy but one of the constitutional human rights. At Russian coal mining enterprises, they take measures to reduce injuries, the supervisory authorities and employees of the enterprises carry out certain work to comply with safety requirements. However, significant success has not yet been achieved. Despite the fatal injuries and accidents, the issue of industrial mining safety is not becoming a top priority. Occupational safety measures are often financed on a «left-over» principle, and therefore remain not implemented. Many managers do not pay enough attention to safety issues and have little control over the planned activities in this area. The article analyzes the causes of injuries and proposes the key directions for creating normal working conditions in coal mining enterprises.
-
Date submitted2018-07-12
-
Date accepted2018-09-16
-
Date published2018-12-21
Environmental Geochemical Assessment of Technogenic Soils
- Authors:
- G. I. Sarapulova
The purpose of this study was to obtain diagnostic features and criteria for the distribution of heavy metals in technogenically altered soils in the area of industrial facilities, depending on their altered geochemical properties, which make it possible to fix chemical elements in landscapes (the formation of geochemical barriers). On the basis of the geoecological assessment, disturbance of the soil buffer properties, which is reflected in the ionic composition change, alkalization, pH increase, and sulfate-chloride salinization have been revealed. This forms the heavy metals alkaline barrier. For example, in case of Cu, Pb, Zn, and N, it contributes to their accumulation and subsequent concentration in the soil layer due to the exchange interactions between chemical elements and Na + , K + , Ca 2+ cations. Soil saturation with sulphates also increases the probability of metals demobilization in the soil layer. It has been shown that intra-sectional soil migration of oil products (one of the most common pollutants of industrial areas) and chemical elements occurs at a depth of 30-50 cm, where the oil products based on a clay sorption layer form a technogenic barrier.
-
Date submitted2018-01-04
-
Date accepted2018-03-08
-
Date published2018-06-22
Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores
- Authors:
- M. N. Overchenko
- S. A. Tolstunov
- S. P. Mozer
The paper presents the results of borehole stability research and considers possible causes of emergencies. The features of the blast hole drilling process are analyzed taking into account the properties of the rock. Based on the distribution of speed of drill fines removal from the well, an algorithm for selecting drilling modes is proposed. The nature of change in the size of the holess over time has been analyzed. This paper investigates the influence of rock fracturing and its water content on borehole stability. Possible options for eliminating the man-made impact on the massif near holes and options for fixing the hole walls with soft shells are suggested. The experimental data on the installation of shells for the conditions of open mining of apatite-nepheline ores are given. The operability and effectiveness of the technology is proved.
-
Date submitted2016-10-27
-
Date accepted2017-01-02
-
Date published2017-04-14
Chemistry as a basis for solving environmental issues
- Authors:
- V. E. Kogan
- T. S. Shakhparonova
The article summarizes over 40 years of authors’ experience in the field of physical chemistry and chemical technology of glassy state of materials. It is shown that environmental issues are caused not by Chemistry as a science but by actions of ecologically illiterate humans using its advances. It is noted that without chemistry humankind cannot live comfortably and solve existing environmental problems. In support these facts we describe several developments made by authors of this article in energy industry, high temperature machinery, glass production technology, glassy phosphate fertilizers, production of non-waste systems and complex research of physical-chemical principles of glassy oil sorbents production of organic and non-organic nature.
-
Date submitted2016-11-16
-
Date accepted2017-01-01
-
Date published2017-04-14
Complex use of heat-exchange tunnels
- Authors:
- A. F. Galkin
The paper presents separate results of complex research (experimental and theoretical) on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.
-
Date submitted2015-08-02
-
Date accepted2015-10-04
-
Date published2016-04-22
Development of innovative technologies of dedusting in mining and advance coal mine faces
- Authors:
- G. I. Korshunov
- S. B. Romanchenko
The article describes the results of the implementation of investment projects in the field of complex dedusting implemented in major coal producing companies in Russia. Experimental study of the processes reduce the levels of dust in the workplace in the application of modern systems of irrigation and aspiration systems. The factors that determine the mass and composition of particulate airborne dust at various ways of dust suppression. The results of the analysis of the laser dispersed composition of particles removed from the air of the working area
-
Date submitted2015-07-13
-
Date accepted2015-09-10
-
Date published2016-02-24
Problems of ensuring energy security for enterprises from the mineral resources sector
- Authors:
- B. N. Abramovich
- Yu. A. Sychev
A complex of technical means and decisions for ensuring adequate level power safety at mineral resources enterprises has been developed, including voltage mode control method, power quality improvement method, method of ensuring dynamic stability for electricity-generating equipment, method of enhancing power supply reliability, distributive network structure control method, and method of combined use of alternative and renewable energy sources. The necessity of ensuring power safety for the objects of the mineral resources sector, from the technical point of view – with the application of modern achievements and developments in the area of electrical complexes and systems, has been proved.
-
Date submitted2009-10-05
-
Date accepted2009-12-05
-
Date published2010-09-22
Control of rock mass state in mining the sections at mines оf the Vorkutaugol JST: up-to-date practice
- Authors:
- O. V. Yamenko
- I. E. Plisko
The article briefly outlines the methods and measures used at mines of the Vorkutaugol JSC to control the stress strain state of rock massif. These measures help to increase face load and to ensure mine safety.
-
Date submitted2009-10-15
-
Date accepted2009-12-30
-
Date published2010-09-22
Geotechnical monitoring in cryolite zone. Ecological or industrial safety
- Authors:
- A. P. Popov
The article contains the principal methodological points of the technology of geotechnical monitoring of engineer constructions in the cryolite zone. By way of practical example it was shown the efficiency of its application for reduction of risks in the industrial and economic activities of Gasprom Co by means of creation of numerical models of stability of ground basements and foundations, timely control of mechanical safety of buildings and constructions, qualitative substantiated numerical forecasting and potential variant modeling of aftereffects of technical decisions for stabilization of a situation. Geotechnical monitoring in contrast to the industrial production ecological monitoring is the technology for control of mechanical safety of buildings and constructions at the stages of their designing, construction and exploitation.
-
Date submitted2009-10-21
-
Date accepted2009-12-15
-
Date published2010-09-22
Geoecological monitoring as an information base of accident-free operation of gas mains under conditions of the Far North
- Authors:
- N. B. Pystina
- A. V. Baranov
The present report considers dangerous destructive processes that may result in serious accidents during operation of gas mains under conditions of the Far North, and also measures to prevent them.