Submit an Article
Become a reviewer

Search articles for by keywords:
подземные скважины

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2024-03-20
  • Date accepted
    2024-11-07
  • Date published
    2025-04-25

Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation

Article preview

The article presents an overview of the assessment and modelling of the stress state of rocks in the near-wellbore zone of horizontal wells during acid stimulation of the formation for improving the efficiency of oil and gas field development. A numerical finite element model of near-wellbore zone of the reservoir drilled by a horizontal section was compiled using one of oil fields in the Perm Territory as an example. The distribution of physical and mechanical properties of the terrigenous reservoir near the well was determined considering transformation under the action of mud acid for different time periods of its injection. Multivariate numerical simulation was performed and the distribution of horizontal and vertical stresses in near-wellbore zone was determined with regard for different values ​​of pressure drawdown and changes in stress-strain properties depending on the area of ​​mud acid infiltration. It was found that a change in elastic modulus and Poisson's ratio under the influence of acid led to a decrease in stresses in near-wellbore zone. Analysis of the stress distribution field based on the Coulomb – Mohr criterion showed that the minimum safety factor of rock even after the effect of mud acid was 1.5; thus, under the considered conditions of horizontal well modelling, the reservoir rock remained stable, and no zones of rock destruction appeared.

How to cite: Popov S.N., Chernyshov S.E., Wang X. Analysis of the stress state of rocks transformation near a horizontal well during acid treatment based on numerical simulation // Journal of Mining Institute. 2025. Vol. 272 . p. 110-118. EDN VOBTXU
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-27
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Normalized impulse response testing in underground constructions monitoring

Article preview

Impulse Response testing is a widespread geophysical technique of monolithic plate-like structures (foundation slabs, tunnel lining, and supports for vertical, inclined and horizontal mine shafts, retaining walls) contact state and grouting quality evaluation. Novel approach to data processing based on normalized response attributes analysis is presented. It is proposed to use the energy of the normalized signal calculated in the time domain and the normalized spectrum area and the average-weighted frequency calculated in the frequency domain as informative parameters of the signal. The proposed technique allows users a rapid and robust evaluation of underground structure’s grouting or contact state quality. The advantage of this approach is the possibility of using geophysical equipment designed for low strain impact testing of piles length and integrity to collect data. Experimental study has been carried out on the application of the technique in examining a tunnel lining physical model with a known position of the loose contact area. As examples of the application of the methodology, the results of the several monolitic structures of operating municipal and transport infrastructure underground structures survey are presented. The applicability of the technique for examining the grouting of the tunnel lining and the control of injection under the foundation slabs is confirmed. For data interpretation the modified three-sigma criteria and the joint analysis of the attribute’s behavior were successfully used. The features of the field work methodology, data collection and analysis are discussed in detail. Approaches to the techniques' development and its application in the framework of underground constructions monitoring are outlined. The issues arising during acoustic examination of reinforced concrete plate-like structures are outlined.

How to cite: Churkin A.A., Kapustin V.V., Pleshko M.S. Normalized impulse response testing in underground constructions monitoring // Journal of Mining Institute. 2024. Vol. 270 . p. 963-976. EDN BPIOTO
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-09
  • Date accepted
    2023-09-20
  • Date published
    2024-02-29

Analysis of experience in the use of preformed particle polymer gels in the development of high-water-cut production facilities in low-temperature oil reservoirs

Article preview

Foreign practice of oil production in high-water-cut conditions suggests using the technology of injection of preformed particle gel (PPG) suspension into injection wells. After swelling, the polymer particles become elastic and are able to penetrate through highly permeable watered intervals into the remote reservoir zone, forming a polymer “plug”. Thus far, the domestic experience of application of this technology boiled down to testing foreign compounds. We have looked into the possibilities of PPG technology application in geological and technological conditions of high-water-cut fields of Perm Krai. The paper proposes PPG reagents effective in low-temperature reservoirs (20-35 °С) and at relatively high salinity of formation water (more than 200 g/l). The world experience of PPG technology application was analyzed to identify the principal scheme of reagent injection, to establish variants of sequence of injection of PPG particles of different sizes, as well as the possibility of regulating the morphological characteristics of polymer gel particles during synthesis depending on the porosity and permeability of the reservoir. A prerequisite for the technology is the ability to remove PPG particles after treatment from the bottom-hole zone of the formation; for this purpose, tests were carried out on a breaker compound based on sodium persulfate with synergizing additives. PPG technology is effective in reservoirs with high permeability heterogeneity. Two types of high-water-cut production facilities potentially promising for PPG realization have been identified for oil fields of Perm Krai. The first type includes carbonate Tournaisian-Famennian reservoirs with pronounced macrofracturing, in which the PPGs are used for colmatation of flushed large fractures. The second type is terrigenous Visean deposits with increased oil viscosity from 5 to 100 mPa∙s and high permeability of reservoirs (> 0.5 μm2). For both types of reservoirs, areas have been selected that are promising for the implementation of PPG technology.

How to cite: Galkin S.V., Rozhkova Y.A. Analysis of experience in the use of preformed particle polymer gels in the development of high-water-cut production facilities in low-temperature oil reservoirs // Journal of Mining Institute. 2024. Vol. 265 . p. 55-64. EDN CNCFIW
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-30
  • Date accepted
    2023-02-13
  • Date published
    2023-04-25

Hydrogeoecological conditions of technogenic groundwater in waste disposal sites

Article preview

The specific hydrogeoecological conditions of aquifers of some technogenic formations, mainly iron ore skarn-magnetite and titanium-magnetite formations, are considered. The resulting wastes, which are stored in waste disposal sites during development of deposits, due to the impact of a number of factors (natural and technogenic) form technogenic waters. Waste disposal facilities are complex engineering structures (dumps and sludge storages), which in turn create their own hydrogeoecological conditions, which must be investigated in order to prevent and minimize environmental and economic damage caused by these objects to the aquatic environment. The paper presents long-term field and laboratory studies of the aquatic environment under the influence of a waste disposal facility in the Middle Urals – one of the largest tailings, representing a potential environmental and man-made hazard. This tailing dump contains tens of tons of waste – enrichment tailings and creates specific hydrogeoecological conditions on the territory. Based on many years of monitoring studies, an analysis of these conditions was carried out – the quality of groundwater affected by the tailings was assessed. It is shown that groundwater is of technogenic nature, i.e. are man-made waters that have a significant impact on the surface and underground hydrospheres of the territory.

How to cite: Semyachkov A.I., Pochechun V.A., Semyachkov K.A. Hydrogeoecological conditions of technogenic groundwater in waste disposal sites // Journal of Mining Institute. 2023. Vol. 260 . p. 168-179. DOI: 10.31897/PMI.2023.24
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-09-15
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production

Article preview

The oil and gas industry has been an integral and fundamental sector of the Russian economy for the past few years. The main problems of this industry have traditionally been the deteriorating structure of oil reserves; depreciation of main assets; slowdown and decline in oil production. Recently these have been complicated by a number of new negative trends related to underinvestment, limited financial resources, deteriorating access to new equipment and technologies. The task of the research is to make a comprehensive assessment of hydraulic fracturing technology during well construction and to increase the recovery and intensification of hydrocarbons production. In this research, modeling techniques were used to assess the productivity of each fracture. Geophysical methods (seismic survey) were used to determine the geomechanical properties of the formation. Comprehensive assessment of hydraulic fracturing technology during well construction was carried out, which allowed to increase vertical permeability and unite disparate parts of the reservoir in practice, and to determine the development efficiency of the hydrocarbon field.

How to cite: Bosikov I.I., Klyuev R.V., Мayer А.V. Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production // Journal of Mining Institute. 2022. Vol. 258 . p. 1018-1025. DOI: 10.31897/PMI.2022.98
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-07-05
  • Date accepted
    2022-11-17
  • Date published
    2022-12-29

Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation

Article preview

A large amount of gas is emitted during underground mining processes, so mining productivity decreases and safety risks increase. Efficient methane drainage from the coal seam and surrounding rocks in underground mines not only improves safety but also leads to higher productivity. Methane drainage must be performed when the ventilation air cannot dilute the methane emissions in the mine to a level below the allowed limits. The cross-measure borehole method is one of the methane drainage methods that involves drilling boreholes from the tailgate roadway to an un-stressed zone in the roof or floor stratum of a mined seam. This is the main method used in Tabas coal mine N 1. One of the effective parameters in this method is the distance between methane drainage stations, which has a direct effect on the length of boreholes required for drainage. This study was based on the measurement of ventilation air methane by methane sensors and anemometers placed at the longwall panel as well as measuring the amount of methane drainage. Moreover, in this study, the obtained and analyzed data were used to determine the suitable distance between methane drainage stations based on the cross-measure borehole method. In a field test, three borehole arrangements with different station distances in Panel E4 of Tabas coal mine N 1 were investigated. Then, the amounts of gas drained from these arrangements were compared with each other. The highest methane drainage efficiency was achieved for distances in the range of 9-12 m between methane drainage stations.

How to cite: Hosseini A., Najafi M., Morshedy A.H. Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation // Journal of Mining Institute. 2022. Vol. 258 . p. 1050-1060. DOI: 10.31897/PMI.2022.106
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-12-19
  • Date accepted
    2022-05-13
  • Date published
    2022-07-13

Development of a pump-ejector system for SWAG injection into reservoir using associated petroleum gas from the annulus space of production wells

Article preview

Implementation of SWAG technology by means of water-gas mixtures is a promising method of enhanced oil recovery. The use of associated petroleum gas as a gas component in the water-gas mixture allows to significantly reduce the amount of irrationally consumed gas and carbon footprint. Relevant task is to choose a simple, reliable and convenient equipment that can operate under rapidly changing operating conditions. Such equipment are pump-ejector systems. In order to create water-gas mixture it is proposed to use associated gas from the annulus space. This solution will reduce the pressure in the annulus space of the production well, prevent supply disruption and failure of well equipment. The paper presents a principal technological scheme of the pump-ejector system, taking into account the withdrawal of gas from the annulus space of several production wells. The layout of the proposed system enables more efficient implementation of the proposed technology, which expands the area of its application. Experimental investigations of pressure and energy characteristics of the ejector have been carried out. Analysis of the obtained data showed that it was possible to increase the value of maximum efficiency. The possibility of adapting the system in a wide range of changes in operating parameters has been established. Recommendations on selection of a booster pump depending on the values of working pressure and gas content are given.

How to cite: Drozdov A.N., Gorelkina Е.I. Development of a pump-ejector system for SWAG injection into reservoir using associated petroleum gas from the annulus space of production wells // Journal of Mining Institute. 2022. Vol. 254 . p. 191-201. DOI: 10.31897/PMI.2022.34
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-01-24
  • Date accepted
    2022-04-26
  • Date published
    2023-04-25

Forecast of radionuclide migration in groundwater of the zone affected by construction drainage at the Leningrad NPP-2

Article preview

The distribution of natural (at the level of global background) and technogenic radionuclides in groundwater of the industrial zone in Sosnovy Bor town, where several nuclear power facilities are operating, was analyzed. The main technogenic radionuclides recorded in groundwater samples are cesium ( 137 Cs), strontium ( 90 Sr), and tritium isotopes. The first two aquifers from the surface are subject to contamination: the Quaternary and the upper zone of the Lomonosov aquifer. Based on extensive material on the engineering and geological studies of the work area, a 3D geological model and hydrodynamic and geomigration models of the industrial zone were constructed. By means of modeling, the extent and nature of changes in hydrogeological conditions of area resulting from the construction and operational drainage of the new stage of the Leningrad Nuclear Power Plant (LNPP-2) were determined. The “historical” halo of radioactive contamination of groundwater forming (1970-1990) at the site adjacent to the NPP, where the storage facility of low- and medium-level radioactive waste is located, falls into the zone of influence. Interpretation of monitoring data allowed obtaining the migration parameters for predictive estimates. Modeling has shown that during the time of the LNPP-2 operation there was no intake of contaminated water by the drainage system of the new power plant.

How to cite: Erzova V.A., Rumynin V.G., Nikulenkov A.M., Vladimirov K.V., Sudarikov S.M., Vilkina M.V. Forecast of radionuclide migration in groundwater of the zone affected by construction drainage at the Leningrad NPP-2 // Journal of Mining Institute. 2023. Vol. 260 . p. 194-211. DOI: 10.31897/PMI.2022.27
Mining
  • Date submitted
    2020-11-16
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Determination and verification of the calculated model parameters of salt rocks taking into account softening and plastic flow

Article preview

The article suggests using a combination of the modified Burgers model and the Mohr – Coulomb model with the degradation of the adhesion coefficient and the increase in the friction coefficient to determine the parameters of salt rocks. A comparative analysis of long-term laboratory tests and field observations in underground mine workings with the results obtained using a calculated model with certain parameters is carried out. The parameters of the Mohr – Coulomb model with the degradation of the adhesion coefficient and the increase in the friction coefficient were obtained from the statistically processed data of laboratory tests, and the parameters of the modified Burgers model were determined. Using numerical methods, virtual (computer) axisymmetric triaxial tests, both instantaneous and long-term, were performed on the basis of the proposed model with selected parameters. A model problem is solved for comparing the behavior of the model with the data of observation stations in underground mine workings obtained from borehole rod extensometers and contour deformation marks. The analytically obtained coefficients of the nonlinear viscous element of the modified Burgers model for all the analyzed salt rocks did not need to be corrected based on the monitoring results. At the same time, optimization was required for the viscoelastic element coefficients for all the considered rocks. The analysis of the model studies showed a satisfactory convergence with the data on the observation stations. The comparative analysis carried out on the models based on laboratory tests and observations in the workings indicates the correct determination of the parameters for salt rocks and the verification of the model in general.

How to cite: Kozlovskiy E.Y., Zhuravkov M.A. Determination and verification of the calculated model parameters of salt rocks taking into account softening and plastic flow // Journal of Mining Institute. 2021. Vol. 247 . p. 33-38. DOI: 10.31897/PMI.2021.1.4
Oil and gas
  • Date submitted
    2020-06-15
  • Date accepted
    2020-06-15
  • Date published
    2020-06-30

Description of steady inflow of fluid to wells with different configurations and various partial drilling-in

Article preview

There are many equations of steady inflow of fluid to the wells depending on the type of well, presence or absence of artificial or natural fractures passing through the well, different degrees of drilling-in of the wellbores. For some complex cases, analytical solutions describing the inflow of fluid to the well have not yet been obtained. An alternative to many equations is the use of numerical methods, but this approach has a significant disadvantage – a considerable counting time. In this regard, it is important to develop a more general analytical approach to describe different types of wells with different formation drilling-in and presence or absence of fractures. Creation of this method is possible during modeling of fractures by a set of nodes-vertical wells passing from a roof to floor, and modeling of a wellbore (wellbores, perforation) by a set of nodes – spheres close to each other. As a result, based on this approach, a calculation algorithm was developed and widely tested, in which total inflow to the well consists of the flow rate of each node taking into account the interference between the nodes and considering the impermeable roof and floor of the formation. Performed modeling confirmed a number of known patterns for horizontal wells, perforation, partial drilling-in of a formation, and also allowed solving a number of problems.

How to cite: Iktissanov V.A. Description of steady inflow of fluid to wells with different configurations and various partial drilling-in // Journal of Mining Institute. 2020. Vol. 243 . p. 305-312. DOI: 10.31897/PMI.2020.3.305
Oil and gas
  • Date submitted
    2019-08-08
  • Date accepted
    2019-09-16
  • Date published
    2020-02-25

Testing of preformed particles polymer gel technology on core filtration models to limit water inflows

Article preview

In order to reduce watering of wells and equalize their injectivity profiles, the prospects of introducing PPG technology in Russian fields are considered, in which preformed particles polymer gel are pumped into the injection well. These particles, being a supersorbent based on polyacrylamide, absorb water, become elastic, which allows them to shrink and tear in narrow filtration channels. When the polymer is filtered along permeable layers saturated with water, polymer particles accumulate in waterlogged intervals and thus they form a polymer plug, which redistributes the filtration flows and increases the coverage of the formation by the process of oil displacement. More than 4000 downhole operations have been carried out in the fields of China and the USA using PPG technology by now. In domestic fields in Western Siberia, there is limited experience in applying a similar technology in high-temperature formations with low mineralization of formation water. Due to the absence of hydrolytic processes in polyacrylamide, well-known domestic compositions are not applicable due to the low absorption capacity in the conditions of low-temperature deposits with increased mineralization of formation water. The authors synthesized a polymer based on polyacrylamide by block polymerization, which allows to obtain a high absorption capacity, including for low-temperature formations with high mineralization of formation water, which is typical for Perm Territory fields. Filtration experiments were carried out on core models with the composition developed by the authors, this composition focused on low formation temperatures and high mineralization of formation water. As a result of the experiments, it was found that the swollen particles of the gel are able to pass into fractures with a diameter less than their own size at least 20 times. With a significant increase in the viscosity of the dispersion medium, the stability of the suspension increases. Particles of polymer gel have the necessary strength for injection in the field conditions. The fracture permeability during polymer injection decreases by several times and becomes comparable with the permeability of pore collectors.

How to cite: Ketova Y.A., Bai B., Khizhnyak G.P., Gladkikh Y.A., Galkin S.V. Testing of preformed particles polymer gel technology on core filtration models to limit water inflows // Journal of Mining Institute. 2020. Vol. 241 . p. 91-96. DOI: 10.31897/PMI.2020.1.91
Mining
  • Date submitted
    2019-05-26
  • Date accepted
    2019-07-23
  • Date published
    2019-10-23

Ensuring Stability of Undermining Inclined Drainage Holes During Intensive Development of Multiple Gas-Bearing Coal Layers

Article preview

At high rates of production face advance, requirements towards reliable operation of undermining drainage holes get raised. The issue of maintaining high intensity of gaseous seams development under naturally increasing gas content, mining depth and capacity of production equipment poses a problem. The greatest threat comes from the loss of hole stability in the bearing pressure affected zone (in front of the face) and in the intensive shift area of overhanging rock corbels (behind the face). Intensification of air leaks due to deformation of borehole channel leads to impoverishment of removed methane-air mixture and an increasing risk to disturb safe aerogas regime in the mining area. The paper describes a mechanism of how coal-face operations affect the state of underground holes and formation of overhanging rock corbels. A typification of basic kinds of borehole deformations is presented. Authors point out critical disadvantages of the most widely-used technological schemes of gaseous seams development under high load on the production face, which hinder normal operation of a gas drainage system. As a result of research, a dependency of shot hole number, as well as the distance between shot hole axes and the borehole, on the stress state of the borehole outline has been defined more precisely. Basing on that, a formula to calculate drilling parameters of the discharge hole system has been suggested. Implementation of these measures will allow to increase the efficiency of underground gas drainage and to maintain growing intensity of gaseous coal seam development.

How to cite: Brigida V.S., Golik V.I., Dmitrak Y.V., Gabaraev O.Z. Ensuring Stability of Undermining Inclined Drainage Holes During Intensive Development of Multiple Gas-Bearing Coal Layers // Journal of Mining Institute. 2019. Vol. 239 . p. 497-501. DOI: 10.31897/PMI.2019.5.497
Mining
  • Date submitted
    2019-01-11
  • Date accepted
    2019-03-17
  • Date published
    2019-06-25

Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells

Article preview

Development of mineral deposits under complex geological and hydrogeological conditions is often associated with the need to utilize specific approaches to mine shaft construction. The most reliable and universally applicable method of shaft sinking is artificial rock freezing – creation of a frozen wall around the designed mine shaft. Protected by this artificial construction, further mining operations take place. Notably, mining operations are permitted only after a closed-loop frozen section of specified thickness is formed. Beside that, on-line monitoring over the state of frozen rock mass must be organized. The practice of mine construction under complex hydrogeological conditions by means of artificial freezing demonstrates that modern technologies of point-by-point and distributed temperature measurements in test wells do not detect actual frozen wall parameters. Neither do current theoretical models and calculation methods of rock mass thermal behavior under artificial freezing provide an adequate forecast of frozen wall characteristics, if the input data has poor accuracy. The study proposes a monitoring system, which combines test measurements and theoretical calculations of frozen wall parameters. This approach allows to compare experimentally obtained and theoretically calculated rock mass temperatures in test wells and to assess the difference. Basing on this temperature difference, parameters of the mathematical model get adjusted by stating an inverse Stefan problem, its regularization and subsequent numerical solution.

How to cite: Levin L.Y., Semin M.A., Parshakov O.S. Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells // Journal of Mining Institute. 2019. Vol. 237 . p. 268-274. DOI: 10.31897/PMI.2019.3.274
Oil and gas
  • Date submitted
    2018-11-18
  • Date accepted
    2019-01-17
  • Date published
    2019-04-23

Calculation of elastoviscoplastic displacement of well walls in transversal and isotropic rocks

Article preview

The relevance of the work is justified by the need to improve the technical and economic indicators of well construction based on forecasting and preventing drilling tools sticking due to the narrowing of an open well bore in the intervals of transversely isotropic rocks. A mathematical model of elastic-viscous-plastic displacement of the walls of inclined and horizontal wells has been developed during the narrowing of the open borehole due to rock creep in the intervals of transversely isotropic rocks. In the program developed based on this mathematical model, the calculation of the elastic-viscous-plastic displacement of the walls of an obliquely directed and horizontal well in the reservoir of argillite from the Western Siberia deposit was carried out. As a result of the calculation, it was established that after opening the rock with bits, the cross-section of the open borehole due to the rock creep eventually takes the form of an ellipse, the small axis of which is in the plane of the upper wall of the well and decreases with time.

How to cite: Gubaidullin A.G., Moguchev A.I. Calculation of elastoviscoplastic displacement of well walls in transversal and isotropic rocks // Journal of Mining Institute. 2019. Vol. 236 . p. 180-184. DOI: 10.31897/PMI.2019.2.180
Oil and gas
  • Date submitted
    2018-11-09
  • Date accepted
    2019-01-22
  • Date published
    2019-04-23

Determining the stability of the borehole walls at drilling intervals of loosely coupled rocks considering zenith angle

Article preview

During development of drilling projects, a whole array of data is needed considering the properties of rocks and the conditions of their bedding. Accounting for geomechanical processes occurring in the near-wellbore zone allows avoiding many complications associated with the violation of the wellbore walls stability at all stages of its construction and operation. Technological and technical factors such as vibration and rotation of the drilling string, formation of launders during the descent and ascent of the assembly, pressure pulsation during the start and stop of pumps, hydrostatic and hydrodynamic pressure of the drilling fluid, its composition and properties, have a great influence on the stress-strain state of the medium opened by the well. The washing fluid circulating in the well should provide backpressure to the reservoir, not interact with the rocks chemically, colmatage channels in porous and fractured rocks, preventing penetration of the mud into the medium, by creating an impermeable barrier at drilling clay seams that are prone to swelling, cracking, etc. The article discusses the method for determining the stability of the directed well walls, taking into account the penetration of drilling mud into the pores and fractures of rocks. The technique will allow adjusting the zenith angle of the well during the workout of an unstable interval at the design stage, or selecting a drilling fluid composition to ensure fail-safe drilling.

How to cite: Blinov P.A. Determining the stability of the borehole walls at drilling intervals of loosely coupled rocks considering zenith angle // Journal of Mining Institute. 2019. Vol. 236 . p. 172-179. DOI: 10.31897/PMI.2019.2.172
Mining
  • Date submitted
    2018-05-14
  • Date accepted
    2018-07-01
  • Date published
    2018-10-24

Method for forecast of surface deformation during excavation operations in restraint urban conditions using the slurry trench technique

Article preview

The article suggests the method for forecast of surface deformation during excavation operations in restraint urban conditions using the slurry trench technique based on FEM simulation. The results of numerical simulation of the construction of a semi-underground structure with slurry trench technique are given. The regularities of the change in the stress-strain state are determined depending on the trench parameters and the physical-mechanical properties of the soils. The work presents the troughs of surface subsidence during the construction of an excavation using the slurry trench technique, the diagrams of bending moments, transverse and longitudinal forces arising in the trench. Numerical experiments in Plaxis 2D and 3D were performed to estimate the discrepancy between modeling results in a plane and volumetric formulation of the problem.

How to cite: Demenkov P.A., Goldobina L.A., Trushko O.V. Method for forecast of surface deformation during excavation operations in restraint urban conditions using the slurry trench technique // Journal of Mining Institute. 2018. Vol. 233 . p. 480-486. DOI: 10.31897/PMI.2018.5.480
Oil and gas
  • Date submitted
    2018-01-17
  • Date accepted
    2018-03-09
  • Date published
    2018-06-22

Control and regulation of the hydrochloric acid treatment of the bottomhole zone based on field-geological data

Article preview

The analysis results of the hydrochloric acid treatment of the bottomhole zone efficiency along the deposits of high-viscosity oil in the carbonate reservoirs of the Tournaisian stage are presented in the paper. Based on the use of the non-parametric Kulbak criterion, the most informative geological and technological parameters, which affect most the success of hydrochloric acid treatments, assessed by the criteria of increased oil production and reduced water cut, are revealed. The generalization of the hydrochloric acid treatments experience in the conditions of the high-viscosity oil reservoirs of the Tournaisian Stage allows for efficient forecasting, selection of wells, control and regulation of the treatment process to reduce the number of inefficient operations and improve the technical and economic parameters of fuel and energy enterprises at the investigated sites and the ones with similar field-geological characteristics.

How to cite: Rogachev M.K., Mukhametshin V.V. Control and regulation of the hydrochloric acid treatment of the bottomhole zone based on field-geological data // Journal of Mining Institute. 2018. Vol. 231 . p. 275-280. DOI: 10.25515/PMI.2018.3.275
Oil and gas
  • Date submitted
    2018-01-15
  • Date accepted
    2018-03-24
  • Date published
    2018-06-22

Designing of well trajectory for efficient drilling by rotary controlled systems

Article preview

The main directions of increasing the efficiency of drilling wells by improving methods for designing profiles of directional and horizontal wells are identified. The feasibility and necessity of using at drilling with rotary controlled systems the trajectories of directed wells' profiles with continuous curving, that do not contain conjugated sections, on the basis of plane transcendental curves are theoretically substantiated and experimentally confirmed. An algorithm and software are developed that allow optimal selection of a profile or a trajectory section, taking into account minimization of twisting, bending, compressive and tensile stresses that ensure the efficiency of technical and technological parameters of well drilling.

How to cite: Dvoinikov M.V. Designing of well trajectory for efficient drilling by rotary controlled systems // Journal of Mining Institute. 2018. Vol. 231 . p. 254-262. DOI: 10.25515/PMI.2018.3.254
Geology
  • Date submitted
    2016-10-30
  • Date accepted
    2017-01-02
  • Date published
    2017-04-14

Result of combining data from impulse electrical prospecting and aeromagnetic prospecting for groundwater exploration in the south of Yakutia

Article preview

In 2014 in the south of Yakutia in the course of groundwater exploration works a complex of geophysical methods was tested: aeromagnetic and electrical prospecting was carried out using near-field transient sounding and electromagnetic sounding with induced polarization. Prospective structures for hydrogeological drilling are zones of discontinuous tectonic faults. In order to identify them, data from aeromagnetic and electrical prospecting were used. Results of drilling confirmed the presence of watered areas; however, analysis of obtained information allowed to come to the conclusion that the amount of water in the faults has no direct connection to electrical conductivity.

How to cite: Davydenko A.Y., Aikasheva N.A., Bukhalov S.V., Davydenko Y.A. Result of combining data from impulse electrical prospecting and aeromagnetic prospecting for groundwater exploration in the south of Yakutia // Journal of Mining Institute. 2017. Vol. 224 . p. 156-162. DOI: 10.18454/PMI.2017.2.156
Mining
  • Date submitted
    2016-09-22
  • Date accepted
    2016-11-14
  • Date published
    2017-02-22

Technological problems and fundamental principles of methods of engineering-geocryological exploration during construction and exploitation of wells in permafrost rock mass

Article preview

The article describes peculiarities and complicating factors when constructing wells in cryolithic zones. It also presents fundamental principles of methods of pilot parametric drilling for complex exploration of engineering-geocryological conditions of multiple-well gas production platforms. The article describes peculiarities of geophysical examinations within the complex of parametric drilling for clarification and correlation of log sheet, and identifying non-commercial gas reservoirs and interpermafrost head oil-filed water horizons in permafrost rock mass. We defined main ecological issues of parametric drilling and presented potential environment pollutants from well drilling in cryolithic zones. It concludes a list of factors, which should be considered during gas well drilling in northern zones for meeting the «safety – sustainability – low waste» criteria.

How to cite: Cherkai Z.N., Gridina E.B. Technological problems and fundamental principles of methods of engineering-geocryological exploration during construction and exploitation of wells in permafrost rock mass // Journal of Mining Institute. 2017. Vol. 223 . p. 82-85. DOI: 10.18454/PMI.2017.1.82
Geoeconomics and Management
  • Date submitted
    2014-06-23
  • Date accepted
    2014-09-15
  • Date published
    2014-12-22

Topical issues of the management of extraction of underground waters on the territory of the Russian Federation

Article preview

Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides for the economic, social, and environmental well-being of the population. The modern system of taxation and regulation of subsoil use in the extraction of groundwater is currently imperfect and has definite disadvantages, among them not enough control of natural resources by the state, the commercialization stage of licensing, and the budget deficit, which is passed on to other areas of the national economy. General information about the state of the underground water supply in Russia, and the negative trends of underground water use are presented. The system of licensing underground water intakes in Germany is briefly described; some measures to improve the system of man-agement of Russia’s underground waters fund are suggested.

How to cite: Pashkevich N.V., Golovina E.I. Topical issues of the management of extraction of underground waters on the territory of the Russian Federation // Journal of Mining Institute. 2014. Vol. 210 . p. 99-107.
Geotechnology for development of solid mining fields
  • Date submitted
    2013-07-07
  • Date accepted
    2013-09-17
  • Date published
    2014-03-17

Ways of improving waste disposal in the workings of salt mines

Article preview

Address the major aspects of waste disposal in underground space. Are key problems of isolation of wastes in underground salt deposits? Proposed waste disposal technology, based on the use of waste for immobilization of natural mineral salts.

How to cite: Kovalev O.V., Mozer S.P. Ways of improving waste disposal in the workings of salt mines // Journal of Mining Institute. 2014. Vol. 207 . p. 50-54.
Geotechnology for development of solid mining fields
  • Date submitted
    2013-07-18
  • Date accepted
    2013-09-02
  • Date published
    2014-03-17

Rock mechanics problems decision algorithm for bottom layers of potash salt deposits

Article preview

Decision algorithm for rock mechanics problems for bottom layers of potash deposits is suggested. Flow chart for the algorithm and it’s parts is shown. The algorithm represents the method to choose excavation technology for multi-layer potash deposits.

How to cite: Kovalev O.V., Mozer S.P., Tkhorikov I.Y., Sankovskii A.A. Rock mechanics problems decision algorithm for bottom layers of potash salt deposits // Journal of Mining Institute. 2014. Vol. 207 . p. 60-62.
Problems in geodynamic safety in the exploration of solid deposits
  • Date submitted
    2009-10-12
  • Date accepted
    2009-12-19
  • Date published
    2010-09-22

Preventive measures of gas-dynamic phenomena in the workings drivage on the rockburst- outburst-hazardous seams under extremely complicated geological and mining conditions

Article preview

A complex of measures preventing the manifestation of rockbursts and sudden outbursts of coal and gas has been developed. Criteria of forecasting, an assessment of efficiency of the preventive measures are suggested, as well as the necessary technical facilities and technologies.

How to cite: Kostromin V.P. Preventive measures of gas-dynamic phenomena in the workings drivage on the rockburst- outburst-hazardous seams under extremely complicated geological and mining conditions // Journal of Mining Institute. 2010. Vol. 188 . p. 109-111.
Problems in geodynamic and ecological safety in the exploration of fields of oil and das, their storage and transporta
  • Date submitted
    2009-10-06
  • Date accepted
    2009-12-30
  • Date published
    2010-09-22

Research of deformation, strength and filtration characteristics of Nizhnechutinskoe oil field’s reservoirs in case of depression making in the process of oilwells exploitation

Article preview

It is determined that main reasons of permeability reservoirs decrease in Nizhnechutinskoe oil field are capillary pressures and elastic stresses, appearing at depression making. It is displayed that to reduce tangential stresses in oil bearing reservoirs it is expedient to make vertical slits in oilwells’ open holes.

How to cite: Petukhov A.V., Petukhov A.A. Research of deformation, strength and filtration characteristics of Nizhnechutinskoe oil field’s reservoirs in case of depression making in the process of oilwells exploitation // Journal of Mining Institute. 2010. Vol. 188 . p. 195-202.