-
Date submitted2024-05-17
-
Date accepted2025-01-28
-
Date published2025-04-25
Determination of impact hazard potential of rocks in the Norilsk Industrial Region
The deeper the mineral deposits developments are, the worse the mining and geological conditions become. Significant growth of stress level in the rock mass contributes to possible manifestation of rock pressure in dynamic form. The resulting task of assessment of rock impact hazard is closely related to the task of obtaining more accurate results of compression tests of samples in rigid or servohydraulic test presses using graphs of their full deformation. This approach requires special expensive equipment, considerable time resources, and sufficient core material. Therefore, it is important to have an approach that allows to assess the propensity of rocks to brittle fracture with research methods simple enough not to result in the loss of quality and reliability of the obtained results. This paper presents the results of laboratory tests of rocks from the Norilsk Industrial Region to determine their tensile and compressive strengths. Test methods involved both domestic and foreign standards for determining the value of the brittleness coefficient. The impact hazard potential of rocks was determined using the Kaiser criterion. It is found that the tested lithological types (rich sulfide ores, hornblende, disseminated ores, and gabbro-dolerite rocks), with the exception of anhydrite, have a low impact hazard potential.
-
Date submitted2024-07-28
-
Date accepted2024-11-26
-
Date published2024-12-12
From import substitution to technological leadership: how local content policy accelerates the development of the oil and gas industry
- Authors:
- Oleg V. Zhdaneev
- Ivan R. Ovsyannikov
Achieving technological sovereignty implies accelerating innovation and reducing import dependence. An effective tool for addressing these challenges is local content policy (LCP). The purpose of this study is to assess the impact of LCP on innovation activity in oil and gas companies and to provide recommendations for enhancing the effectiveness of this policy in Russia. The paper analyzes the influence of LCP on innovation levels in the oil and gas sector, drawing on examples from 10 countries. A positive short-term impact of LCP on innovation was identified in Brazil, Malaysia, and Saudi Arabia, with long-term effects observed in China and South Africa. Recommendations for improving the effectiveness of LCP in Russia are supplemented with a methodology for calculating the level of technological sovereignty. A refinement of the method for solving the «responsiveness» problem, incorporating the level of localization, has been proposed.
-
Date submitted2021-12-20
-
Date accepted2024-05-02
-
Date published2024-08-26
A new formula for calculating the required thickness of the frozen wall based on the strength criterion
- Authors:
- Mikhail А. Semin
- Lev Yu. Levin
The study delves into the elastoplastic deformation of a frozen wall (FW) with an unrestricted advance height, initially articulated by S.S.Vyalov. It scrutinizes the stress and displacement fields within the FW induced by external loads across various boundary scenarios, notably focusing on the inception and propagation of a plastic deformation zone throughout the FW's thickness. This delineation of the plastic deformation zone aligns with the FW's state of equilibrium, for which S.S.Vyalov derived a formula for FW thickness based on the strength criterion. These findings serve as a pivotal launchpad for the shift from a one-dimensional (1D) to a two-dimensional (2D) exploration of FW system deformation with finite advance height. The numerical simulation of FW deformation employs FreeFEM++ software, adopting a 2D axisymmetric approach and exploring two design schemes with distinct boundary conditions at the FW cylinder's upper base. The initial scheme fixes both vertical and radial displacements at the upper base, while the latter applies a vertical load equivalent to the weight of overlying soil layers. Building upon the research outcomes, a refined version of S.S.Vyalov's formula emerges, integrating the Mohr – Coulomb strength criterion and introducing a novel parameter – the advance height. The study elucidates conditions across various soil layers wherein the ultimate advance height minimally impacts the calculated FW thickness. This enables the pragmatic utilization of S.S.Vyalov's classical formula for FW thickness computation, predicated on the strength criterion and assuming an unrestricted advance height.
-
Date submitted2023-03-16
-
Date accepted2023-06-20
-
Date published2023-07-19
Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator
In the steady state of operation, the temperature of a mining excavator hydraulic fluid is determined by the ambient temperature, hydraulic system design, and power losses. The amount of the hydraulic system power loss depends on the hydraulic fluid physical and thermodynamic properties and the degree of wear of the mining excavator hydraulic system working elements. The main causes of power losses are pressure losses in pipelines, valves and fittings, and leaks in pumps and hydraulic motors. With an increase in the temperature of hydraulic fluid, its viscosity decreases, which leads, on the one hand, to a decrease in power losses due to pressure losses in pipelines, valves and fittings, and, on the other hand, to an increase in volumetric leaks and associated power losses. To numerically determine the level of power losses occurring in the hydraulic system on an example of the Komatsu PC750-7 mining excavator when using Shell Tellus S2 V 22, 32, 46, 68 hydraulic oils with the corresponding kinematic viscosity of 22, 32, 46, 68 cSt at 40 °C, the developed calculation technique and software algorithm in the MatLab Simulink environment was used. The power loss coefficient, obtained by comparing power losses at the optimum temperature for a given hydraulic system in the conditions under consideration with the actual ones is proposed. The use of the coefficient will make it possible to reasonably select hydraulic fluids and set the values of the main pumps limit state and other hydraulic system elements, and evaluate the actual energy efficiency of the mining hydraulic excavator. Calculations have shown that the implementation of measures that ensure operation in the interval with a deviation of 10 % from the optimal temperature value for these conditions makes it possible to reduce energy losses from 3 to 12 %.
-
Date submitted2023-03-16
-
Date accepted2023-06-20
-
Date published2023-07-19
Energy efficiency of the linear rack drive for sucker rod pumping units
- Authors:
- Oksana Yu. Ganzulenko
- Ani P. Petkova
At present, in order to increase oil production and reduce economic costs in the development of marginal fields, the development of a cluster method using compact mobile drives of sucker rod pumping units (SRPU) is relevant. The aim of the work is to analyze the ways to improve the energy efficiency of the SRPU by reducing the loss of mechanical and electrical energy, to select the most energy-efficient compact drive for the development of marginal fields in the cluster method, to carry out the kinematic and strength calculations of the drive of the selected size, to develop an adaptive control system for a group of drives in the cluster development of drillings. According to the results of the performed calculations, the linear rack-and-gear drive has the highest efficiency of the drive mechanism. The kinematic and strength calculations of a linear rack-and-gear drive with a stroke length of 1120 mm and a load of up to 8 tons are presented. It was shown that the usage of a direct torque control system and a kinetic energy storage system for the SRPU drive elements and a rod string is an effective means of reducing energy costs in oil production from marginal fields. The use of the developed system for storing and redistributing the potential energy of the rods between the SRPUs that lift oil made it possible to eliminate fluctuations in the power consumption, reduce the power peak value by three times, the peak value of the current consumed from the electric network by two times, and reduce losses in the input converter and cables by three times.
-
Date submitted2021-05-13
-
Date accepted2022-11-28
-
Date published2022-12-29
Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing
Hydraulic fracturing is an effective way to stimulate oil production, which is currently widely used in various conditions, including complex carbonate reservoirs. In the conditions of the considered field, hydraulic fracturing leads to a significant differentiation of technological efficiency indicators, which makes it expedient to study in detail the crack formation patterns. For all affected wells, the assessment of the resulting fractures spatial orientation was performed using the developed indirect technique, the reliability of which was confirmed by geophysical methods. In the course of the analysis, it was found that in all cases the fracture is oriented in the direction of the development system element area, which is characterized by the maximum reservoir pressure. At the same time, reservoir pressure values for all wells were determined at one point in time (at the beginning of hydraulic fracturing) using machine learning methods. The reliability of the used machine learning methods is confirmed by high convergence with the actual (historical) reservoir pressures obtained during hydrodynamic studies of wells. The obtained conclusion about the influence of the formation pressure on the patterns of fracturing should be taken into account when planning hydraulic fracturing in the considered conditions.
-
Date submitted2022-06-20
-
Date accepted2022-09-06
-
Date published2022-11-03
Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition
In this paper, an adaptive approach has been developed for automatic initialization of the thickening curve using machine vision technology, which makes it possible to determine with high accuracy the material parameters necessary for the design of thickening and clarification apparatuses. Software has been developed that made it possible to search for the coordinates of the condensation critical point in automatic mode. Studies on two samples of materials (tailings of apatite-containing ores and gold-bearing concentrate) were carried out and made it possible to statistically prove the reproducibility of the results obtained using the parametric criteria of Fisher and Bartlett. It has been established that the deposition curves are approximated with high accuracy by the Weibull model, which, together with the piecewise linear approximation, makes it possible to formalize the method for determining the critical point coordinates. The empirical coefficients of the Weibull model for two samples are found, and the final liquefaction and settling rates of the studied materials are determined.
-
Date submitted2022-03-17
-
Date accepted2022-10-04
-
Date published2022-11-10
Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data
Landslides are among the most dangerous geological processes, posing a threat to all engineering structures. In order to assess the stability of slopes, complex engineering surveys are used, the results of which are necessary to perform computations of the stability of soil masses and assess the risks of landslide development. The results of integ-rated geological and geophysical studies of a typical landslide slope in the North-Western Caucasus spurs, composed of clayey soils, are presented. The purpose of the work is to increase the reliability of assessing the stability of a landslide mass by constructing a 3D model of the slope, including its main structural elements, identified using modern methods of engineering geophysics. Accounting for geophysical data in the formation of the computed 3D model of the slope made it possible to identify important structural elements of the landslide, which significantly affected the correct computation of its stability.
-
Date submitted2021-10-15
-
Date accepted2022-09-06
-
Date published2022-11-10
Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter
- Authors:
- Danil V. Serbin
- Andrey N. Dmitriev
During the seasonal work of the 64th Russian Antarctic Expedition in 2018-2019 at the “Vostok” drilling facility named after B.B.Kudryashov (“Vostok” station, Antarctic) specialists of Saint Petersburg Mining University conducted experimental investigations on the process of drilling by melting with simultaneous expansion of wells in the ice mass. A test bench and a full-scale model of a thermohydraulic reamer-drilling tool were developed, manufactured and tested for the research. The first bench tests of the full-scale model proved its efficiency and suitability for experimental drilling with simultaneous expansion of wells in ice mass; its operational capabilities were determined and the drawbacks that will be taken into account in future were found out. The article substantiates the choice of constructive elements for thermohydraulic reamer-drilling tool. It is determined that the technology of full diameter drilling with simultaneous expansion of the well in ice mass can be implemented by combining contact drilling by melting and convective expansion with creation of forced near-bottomhole annular circulation of the heated heat carrier. Dependencies of expansion rate on main technological parameters were determined: active heat power of heating elements in penetrator and circulation system, mechanical drilling rate, pump flow rate. According to the results of investigations, the experimental model of thermohydraulic reamer-drilling tool will be designed and manufactured for testing in conditions of well 5G.
-
Date submitted2021-04-20
-
Date accepted2022-04-26
-
Date published2022-07-13
Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass
The article presents a numerical solution of the spatial elastic-plastic problem of determining the stability of the tunnel face soils at the intersection of disturbed zones of the soil mass. The relevance of the study is related to the need to take into account the zones of disturbed soils when assessing the face stability to calculate the parameters of the support. Based on the finite element method implemented in the PLAXIS 3D software package, the construction of a finite element system "soil mass-disturbance-face support" and modeling of the intersection of the disturbed zones of the soil mass were performed. To assess the condition of soils, deformation and strength criteria are taken. The deformation criterion is expressed by the value of the calculated displacement of the tunnel contour in the face, and the strength criterion - by the safety coefficient until the maximum values of the stress state are reached according to the Coulomb–Mohr criterion. The results of the study are presented in the form of histograms of the safety coefficient dependences on the distance to the disturbance at different bending stiffness of the face support structure, as well as the isofields of deformation development. The parameters of rockfall formation in the face zone at the intersection of zones of disturbed soils were determined. The local decrease in strength and deformation properties in the rock mass along the tunnel track should be taken into account when assessing the stability of the tunnel face and calculating the parameters of the support. Within the framework of the constructed closed system, a qualitative agreement of the simulation results with the case of a collapse in the face during the construction of the Vladimirskaya-2 station of the St. Petersburg Metro was obtained.
-
Date submitted2021-09-17
-
Date accepted2022-04-07
-
Date published2022-12-29
Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover
Technique for automated calculation of technological parameters for non-Newtonian liquids injection into a well during workover is presented. At the first stage the algorithm processes initial flow or viscosity curve in order to determine rheological parameters and coefficients included in equations of rheological models of non-Newtonian fluids. At the second stage, based on data from the previous stage, the program calculates well design and pump operation modes, permissible values of liquid flow rate and viscosity, to prevent possible hydraulic fracturing. Based on the results of calculations and dependencies, a decision is made on the necessity of changing the technological parameters of non-Newtonian liquid injection and/or its composition (components content, chemical base) in order to prevent the violation of the technological operation, such as unintentional formation of fractures due to hydraulic fracturing. Fracturing can lead to catastrophic absorptions and, consequently, to increased consumption of technological liquids pumped into the well during workover. Furthermore, there is an increased risk of uncontrolled gas breakthrough through highly conductive channels.
-
Date submitted2021-03-23
-
Date accepted2022-01-24
-
Date published2022-04-29
Justification of the technological scheme parameters for the development of flooded deposits of construction sand
- Authors:
- Vladimir V. Ivanov
- Denis O. Dzyurich
The article describes the main types of technological schemes for working out the flooded strata of sand deposits using hydraulic shovel excavators. The analysis of scientific and technical literature describing the experience of using hydraulic shovel excavators in the open-pit mining, including pits for the extraction of construction sand, has been carried out. The proposed technological scheme is that the development of reserves of the flooded strata without preliminary water reduction is carried out by a hydraulic shovel excavator from under water by a downward digging with the storage of the extracted rock mass in bulk (for dewatering), placed in such a way that when working out the next mining bench width, it is located within the working area of the excavator for simultaneous processing of the next bench width and loading of dewatered sand from the pile. Calculations of the parameters of the operating platform and the excavator block of the proposed technological scheme for conducting open-pit mining were carried out. The dependence for determining the minimum length of the mining operations front of an excavator for drawing up a technological scheme of operation of a backhoe hydraulic excavator on working out the flooded strata with the pile formation for dewatering sand and its subsequent uploading from the pile by the same excavator is presented.
-
Date submitted2021-02-28
-
Date accepted2021-11-30
-
Date published2021-12-27
Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation
- Authors:
- Alexander K. Nikolaev
- Natalia А. Zaripova
One of the development priorities in oil and gas industry is to maintain gas and oil pipeline networks and develop pipeline-connected gas and oil fields of the Arctic zone of the Russian Federation, a promising region the resource potential of which will not only meet a significant portion of internal and external demand for various types of raw materials and primary energy carriers, but will also bring great economic benefits to subsoil users and the state. The mineral and raw material centers of the Nadym-Purskiy and Pur-Tazovskskiy oil and gas bearing areas are among the most attractive regions of the Arctic zone. It is necessary to develop a scientifically substantiated approach to improve the methods of oil transportation from the field to the existing pipelines. As it is known, the task of increasing the efficiency of pipeline transportation of high-viscosity oil is inseparably connected with solving problems in the field of thermal and hydraulic calculation of pipeline system. The article presents the substantiation of dependencies for hydraulic calculation of pipelines transporting high-viscosity oil exhibiting complex rheological properties. Based on the laws of hydraulics for non-Newtonian fluids, the formulas for calculating head losses for fluids obeying Ostwald's law are proposed, their relationship to the classical equations of hydraulics is shown. The theoretical substantiation of looping installation for increasing the efficiency of pipeline transportation of high-viscosity oil taking into account the received dependences for power fluid is considered.
-
Date submitted2021-01-25
-
Date accepted2021-02-22
-
Date published2021-04-26
Conducting industrial explosions near gas pipelines
The problem to ensure the safety of objects which are in the area of blasting operations, ensuring the destruction of hard rocks, remains relevant. The article presents the results of a large-scale experiment to determine the safe conditions for conducting drilling and blasting operations near the active gas pipeline. The simplest and most reliable way to ensure the safety of the protected object from seismic impact is to reduce the intensity of the seismic wave, which is achieved by changing the parameters of drilling and blasting operations. This requires research to determine the impact of blasting operations on the parameters of seismic waves and the development of methods for measuring these parameters. The paper presents a detailed analysis of the seismic blast wave impact on the displacement of the ground and the model gas pipeline. The features of seismic monitoring during blasting operations near the active gas pipeline are shown. The seismic coefficients and attenuation coefficient of seismic waves are determined. It is proved that the readings of the seismic receivers on the surface and in the depth of the massive differ by two or more times.
-
Date submitted2021-01-21
-
Date accepted2021-04-19
-
Date published2021-04-26
Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives
Equipment with diesel engines is used in all mining enterprises. Monorail diesel transport is of great importance in coal mines, as it facilitates the heavy labor of workers when transporting materials and people, fixing mining workings, refueling and repairing equipment, which leads to an increase in the speed of tunneling operations. Reducing the concentration of harmful gases from diesel-hydraulic locomotives at the workplaces of coal mine locomotive drivers can be ensured by the use of additives to diesel fuel that reduce the volume of harmful gas emissions during the operation of diesel-hydraulic locomotives. Additive ester-based on vegetal oil in the amount of 5 mass % in a mixture with hydrotreated diesel fuel reduces the concentration of carbon monoxide by 19-60 %, nitrogen oxides by 17-98 %, depending on the operating mode of the engine, the smoke content of the exhaust gases is reduced to 71 %. There is an improvement in working conditions at the workplace of the driver of a diesel-hydraulic locomotive by the chemical factor due to the reduction of the class of working conditions from 3.1. to 2.
-
Date submitted2020-06-16
-
Date accepted2020-11-09
-
Date published2020-12-29
Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology
To solve the problems accompanying the development of forecasting methods, a probabilistic method of data analysis is proposed. Using a carbonate object as an example, the application of a probabilistic technique for predicting the effectiveness of proppant hydraulic fracturing (HF) technology is considered. Forecast of the increase in the oil production of wells was made using probabilistic analysis of geological and technological data in different periods of HF implementation. With the help of this method, the dimensional indicators were transferred into a single probabilistic space, which allowed performing a comparison and construct individual probabilistic models. An assessment of the influence degree for each indicator on the HF efficiency was carried out. Probabilistic analysis of indicators in different periods of HF implementation allowed identifying universal statistically significant dependencies. These dependencies do not change their parameters and can be used for forecasting in different periods of time. Criteria for the application of HF technology on a carbonate object have been determined. Using individual probabilistic models, integrated indicators were calculated, on the basis of which regression equations were constructed. Equations were used to predict the HF efficiency on forecast samples of wells. For each of the samples, correlation coefficients were calculated. Forecast results correlate well with the actual increase (values of the correlation coefficient r = 0.58-0.67 for the examined samples). Probabilistic method, unlike others, is simple and transparent. With its use and with careful selection of wells for the application of HF technology, the probability of obtaining high efficiency increases significantly.
-
Date submitted2019-07-23
-
Date accepted2019-09-19
-
Date published2019-12-24
Estimation of abrasiveness impact on the parameters of rock-cutting equipment
Development of equipment, which provides access to underground mineral deposits and their extraction, requires the use of all the accumulated experience and advanced scientific research in the area of mechanical rock cutting. The most important issues of using mechanical rock cutting tools are their wearability and consumption, which have an impact on technical and economic indicators of project efficiency. The paper describes Russian and foreign practices of estimating tool wear resistance, expressions to determine critical cutting speed, methods to evaluate tool consumption. It is demonstrated that wearability of mechanical tools and associated effects are to a large extent defined by rock abrasiveness. It is highlighted that in Russia the index is calculated using Baron-Kuznetsov method, which is briefly described in the paper. In many countries with a highly-developed mining industry, rock abrasiveness is estimated with a Cerchar Abrasiveness Index (CAI), recommended by the International Society for Rock Mechanics. Its description is also presented in the paper.
-
Date submitted2018-11-03
-
Date accepted2019-01-21
-
Date published2019-04-23
Estimation of critical depth of deposits by rock bump hazard condition
- Authors:
- V. N. Tyupin
During the development of minerals by the underground method, dynamic manifestations of rock pressure occur at a certain depth, which significantly reduces the safety of mining operations. Regulatory documents prescribe at the exploration and design stages to establish the critical depth for classifying a deposit as liable to rock bumps. Currently, there are a number, mainly instrumental, methods for determining the liability of rock mass to rock bumps and methods based on the determination of physical and technical properties and the stress-strain state of rock massifs. The paper proposes a theoretical method for determining the critical depth for classifying a deposit as liable to rock bumps. A formula for determining the critical depth of the rock bump hazard condition is obtained. A mathematical analysis of the influence of the physical and technical parameters of the formula on the critical depth is carried out. Its physical and mathematical validity is substantiated. The numerical calculations of the critical depth for 17 developed fields were carried out using a simplified formula. It also provides a comparison of calculated and actual critical depth values. It is established that the variation of the actual and calculated critical depth is due to the lack of actual data on the value of the friction coefficient and parameters of fracturing of the rock mass in the simplified formula. A simplified calculation formula can be used to estimate the critical depth of a field at the survey and design stages. More accurate results can be obtained if there are actual data on fracture parameters, friction coefficients and stress concentration near the working areas.
-
Date submitted2017-09-20
-
Date accepted2017-10-29
-
Date published2018-02-22
Substantiation of strength of the filling mass by taking a blast effect into account for the room-and-pillar methods
- Authors:
- E. T. Voronov
- V. N. Tyupin
The development of the uranium ore bodies at the ore mines of PJSC «Priargunsky Industrial Mining and Chemical Union» (PJSC «PIMCU») by room-and-pillar method as high as a pillar between the levels (60 m) without fill, as a rule, leads to the fall of the adjoining rock, to the strong contamination of the ore and to the high yield of the oversize pieces of the barren rock. A longstanding industrial and theoretical research shows that the sizes of the self-sustaining rock escarpments at the ore mines of PJSC «PIMCU» in the solid mass of trachydacites, conglomerates, sandstones, felsites are equal to 20-40 m. Moreover, the sizes of the self-sustaining rock escarpments depend to a great extent on the intensity of fracturing of the adjoining rocks. The stable size of the escarpment does not exceed 5-10 m for the rocks with the size of a jointing up to 0.05 m. Consequently, timely performance of the filling operations of the worked-out space of the chamber is important. However, the question then arises: which characteristic strength should the filling mass have? The calculations of the characteristics of the filling mass in compliance with the reference guide «Shaft filling operations» show underestimated values of the characteristic compressive strength of the fill (1.4 MPa) for the room-and-pillar method, which leads to the increase of the ore contamination by the fill and provokes the additional costs for refilling of the volumes of the rock fall. On the basis of the Russian experience of using of the consolidated fill for the development of the ore bodies of 15 m thickness by chamber method the strength of the fill is taken as 3-5 MPa under the resultant value of the static stresses without taking into account the character of the dynamic loading stresses induced by the sequence blasthole ring initiating in a chamber. Overestimating the characteristic strength of the filling mass results in the high consumption of the cementing materials. On the basis of the theoretical research the authors suggested the theoretical dependence of calculation of the characteristic strength of the filling material with respect to compressive stresses of the fill induced by the blasting operations. The process of designing of the filling mass with the zones of diverse strength for the room-and-pillar extraction with the consolidated rock fill is proven to be economically reasonable. The bottom zone of the solid mass should have high strength (3-4 MPa), and the strength of the upper zone should be up to 2-2.5 MPa.
-
Date submitted2016-09-05
-
Date accepted2016-10-27
-
Date published2017-02-22
Impact of the shape of geological contact on mining losses in the process of near-contact zone development
- Authors:
- G. S. Kurchin
- S. A. Vokhmin
- A. A. Kytmanov
In Russia development of mineral resources is carried out on a truly grand scale, and mining industry is in its essence a basic sector, supporting and facilitating the development of national economy. It predetermines the need of safe and responsible attitude towards riches of our subsoil – mineral resources. With this in mind, one of the key requirements to extraction technologies is minimization of mining losses and ore dilution. The biggest ore losses in the mining block take place in the process of development of contact areas between the ore body and surrounding rocks, due to differences between development pattern and surface of geological contact. Complexity of the contact between ore and surrounding rocks is traditionally characterized by so called «stochastic contact zone». Technological difficulty of extracting ore from the ore – wallrock contact is determined by volatility of geometric parameters in «stochastic contact zone» in the plane of geological contact. Current paper focuses on the issues of standard-setting for mining losses and ore dilution in the process of near-contact zone development. A method is suggested to estimate standard values of losses and ore dilution in stochastic zones. Authors have developed an algorithm of defining the shape of the contact. In the stochastic zone the contact can have a rectangular, sinusoidal, serrate and straight-line shapes. Research has established a relation between the contact shape and amounts of mining losses and ore dilution, formulas to calculate standard values are presented. Using suggested method, standard values for contact ore losses can be obtained in a quicker and more reliable way.
-
Date submitted2014-11-19
-
Date accepted2015-01-12
-
Date published2015-10-26
Scientific heritage of academician Nikolay Semenovich Kurnakov
- Authors:
- O. A. Dubovikov
Once N.V.Lipin, a professor of mathematics at the Leningrad Mining Institute, told N.S.Kurnakov that M.V.Lomonosov had complained about his lack of familiarity with mathematics. The outstanding scientist replied «That’s absolutely true, and I have already told you about it: we all need mathematics, and the more chemistry develops, the more it needs a mathematical justification». According to one scenario of the international nongovernmental organization, the Club of Rome, there will be a three-fold decrease in the world’s raw materials resources and multifold volume reduction in industrial production by the middle of the 21st century. Another scenario claims that raw materials will reduce only by one third, and the volume of industrial production will remain at the level of the beginning of the century. Not only the first scenario, but also the second one forecasts industrial stagnation. It is unacceptable for dynamic and sustainable development of the technological civilization. Intensively developing economies in China, India, Brazil and Russia defy the forecast of the Club of Rome, as it has not taken into account the possibility of scientific and technological progress in reducing energy consumption and using alternative sources, as well as the increased technological potential of the humanity. Due to depletion of the main sources of energy (oil and gas), many experts link the future of the world’s power industry with the possible use of solid energy resources. From the environmental point of view solid fuel gasification technology is the most preferable. As the calorific value of producer gas is relatively low in comparison with natural gas, some research of possible use of producer gas (as an alternative to natural gas which is available not in all regions) at Russian industrial enterprises has been conducted.
-
Date submitted2014-11-05
-
Date accepted2015-01-24
-
Date published2015-10-26
Use of geoinformation technologies for otpimized distribution of stations of atmospheric air quality monitoring
- Authors:
- M. V. Volkodaeva
The article deals with possible applications of modern geographic information systems for optimized distribution of stations of atmospheric air quality monitoring. Due to the fact that estimation of atmospheric pollutant concentrations is a reason for decisions to improve air quality, costly measures to protect the atmosphere and monitoring effectiveness of these actions, atmospheric air quality indicators, and therefore the proper distribution of monitoring stations, are of great importance. Results of model calculations of atmospheric air pollution, which have been recently developed in our country, in combination with GIS solutions, should be used for optimized distribution of stations of atmospheric air quality monitoring. One of the major factors of objective estimation of urban atmospheric air quality is proper reference of industrial and transport pollutant emission sources to the city’s topographic base (both in citywide and local coordinate systems), as well as distribution of stations of atmospheric air quality monitoring and selection of high-priority pollutants for a particular city district. Some recommendations for monitoring stations distribution and pollutants selection based on the GIS analysis of spatial distribution of maximum ground level concentrations of pollutants are given.
-
Date submitted2014-07-21
-
Date accepted2014-09-19
-
Date published2014-12-22
Preliminary preparation of oil for primary processing
Oil supplied for primary processing always undergoes preliminary preparation, the purpose of which is to eliminate the harmful effect of water and salt contained in the oil. It is thought that corrosion of the equipment is connected mainly with chlorides of magnesium and calcium, which are subjected to hydrolysis with the formation of hydrochloric acid. Under the influence of hydrochloric acid the destruction (corrosion) of metal equipment at technological plants occurs (especially refrigerating-condensing and heatexchange equipment, furnaces of rectification units etc.). The authors of the article, on the basis of thermodynamic calculations, provide their point of view on this process and give a methodology by which the process of preliminary oil dehydration and desalting can be controlled. The thermodynamic calculations executed for standard conditions on the basis of refer-enced data confirm a high probability of chemical interaction of iron with hydrogen ions, hy-drogen sulphide and especially with carbonic acid. This testifies to high activity of the carbon dioxide dissolved in water and the impossibility of hydrolysis of ions of magnesium, calcium and iron. The calculations show that only the hydrolysis of magnesium chloride is possible tak-ing into account the ionic composition of the water phase in the oil. It should be noted that the presence of ions of chlorine shifts the iron potential in a nega-tive direction and increases the speed of corrosion of petrochemical equipment. The solution of this problem is in the development of modern methods of crude oil dehydration and desalting. It is also, however, in an intensification of the processes of mixing water-oil emulsions with wash-ing water by using various physical fields (for example, ultrasound) and creating new effective mixing devices on the basis of them.
-
Date submitted2009-09-12
-
Date accepted2009-11-03
-
Date published2010-06-25
One variant of boundary element method application to calculation of bearing pressure on conditions to coal and salt deposits
- Authors:
- L. A. Bespalov
- A. P. Gospodarikov
The analysis of stress-strain state near excavations was carried out in this work as applies to coal and salt deposits. The indirect boundary element method was used as a tool of research.
-
Date submitted2009-08-02
-
Date accepted2009-10-10
-
Date published2010-02-01
The analyses of influence of goafs on the state of developmental excavations as applies to Starobinsky potassium salt deposit
- Authors:
- A. P. Gospodarikov
- L. A. Bespalov
The analysis of stress-strain state near excavations and influence of goafs on its redistribution were carried out in this work as applies to coal and salt deposits. The indirect boundary element method was chosen as a tool of research.