Submit an Article
Become a reviewer

Search articles for by keywords:
geomechanical monitoring

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-10
  • Date accepted
    2024-11-07
  • Date published
    2025-02-25

Consideration of the geomechanical state of a fractured porous reservoir in reservoir simulation modelling

Article preview

This paper presents reservoir simulation modeling of a hydrocarbon accumulation with a fractured porous reservoir, incorporating the geomechanical effects of fracture closure during variations in formation pressure. The fracture permeability parameter is derived from the impact of stress on fracture walls. The fracturing parameter is determined based on 3D seismic data analysis. A permeability reduction model is implemented in the tNavigator reservoir simulation platform. The proposed approach improves the convergence of formation pressure dynamics in well data while maintaining flow rate and water cut adaptation accuracy. This results in enhanced formation pressure prediction and optimization of the pressure maintenance system.

How to cite: Kashnikov Y.A., Shustov D.V., Yakimov S.Y. Consideration of the geomechanical state of a fractured porous reservoir in reservoir simulation modelling // Journal of Mining Institute. 2025. Vol. 271. p. 42-52. EDN BANZQB
Editorial
  • Date submitted
    2024-07-04
  • Date accepted
    2024-07-04
  • Date published
    2024-07-04

Environmental safety and sustainable development: new approaches to wastewater treatment

Article preview

In 2015, the UN member states adopted the 2030 Agenda for Sustainable Development. Despite significant progress, billions of people – one in three people – do not have access to safe, clean drinking water. Modern wastewater treatment methods include a wide range of biological, chemical and physical processes, each having its own advantages and applications. This thematic volume considers the latest achievements in wastewater treatment technologies, wastewater purification and treatment as well as their potential applications at the local level. The problem of surface water pollution is relevant for all regions of the world. One of the largest sources of pollutants is mining and processing industry. The first stage in the development of wastewater treatment technologies is monitoring of anthropogenically modified water bodies.

How to cite: Pashkevich M.A., Danilov A.S., Matveeva V.A. Environmental safety and sustainable development: new approaches to wastewater treatment // Journal of Mining Institute. 2024. Vol. 267. p. 341-342.
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-07-04
  • Date accepted
    2023-09-20
  • Date published
    2023-10-27

Structure maintenance experience and the need to control the soils thermal regime in permafrost areas

Article preview

The risks of reducing the stability of buildings and structures are increasing in conditions of climate change and the active development of the territories under the influence of natural and anthropogenic factors. The main causes include: loss of the bearing capacity of frozen soils, various geocryological processes, errors at the stages of design, construction and operation of facilities. Main actual task when conducting research and industrial operations in the cryolithozone is monitoring and, if necessary, managing thermal processes in the permafrost layers interacting with facilities. In this article the obtained positive experience of various technologies applying at various stages of the life cycle of civil and industrial facilities was analyzed. It helps to eliminate or prevent the structure deformation or destruction under the influence of climate change. The methods of permafrost stabilization used in the oil and gas industry in process of industrial infrastructure development of the fields have been studied – freezing (cooling) of foundation soils during construction on heterogeneous foundations. The solution to the problems of minimizing accidents when locating production wells in the permafrost zone of the Yamal Peninsula is considered using the example of an oil and gas condensate field and restoring of the temperature regime of perennial unfrozen soils in areas of valve units of main gas pipelines. An assessment of methods used to maintain the industrial and residential infrastructure within the northern municipalities that ensure the functioning of the fuel and energy complex of the Russian Federation in the Arctic was made. The systems of thermal stabilization in the foundations of buildings and industrial facilities built and operated on permafrost soils allow to fully use the high strength and low deformability of frozen grounds. It ensures the state's long-term plans of the industrial development in the Arctic.

How to cite: Brushkov A.V., Alekseev A.G., Badina S.V., Drozdov D.S., Dubrovin V.A., Zhdaneev O.V., Zheleznyak M.N., Melnikov V.P., Okunev S.N., Osokin A.B., Ostarkov N.A., Sadurtinov M.R., Sergeev D.O., Fedorov R.Y., Frolov K.N. Structure maintenance experience and the need to control the soils thermal regime in permafrost areas // Journal of Mining Institute. 2023. Vol. 263. p. 742-756. EDN IMQTQY
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-04-11
  • Date accepted
    2023-09-20
  • Date published
    2023-10-27

Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability

Article preview

The Alexander Column as a compositional center of the architectural ensemble of Palace Square in Saint Petersburg, Russia, has always been a matter of concern for both the public and specialists due to progressive deterioration of its granite shaft caused by crack formation. The article examines previous studies related to the inspection and restoration of the column's shaft and other parts above ground level, as well as reasons for crack initiation and propagation in the column. An analysis was performed on the anomalies in the Fennoscandian Shield and the structural-tectonic conditions at the Montferrand quarry site, revealing the presence of faults and circular features within the studied area. The research considers N.Hast's measurements of excess tectonic stresses in anomaly zones (southeastern Finland), which acted horizontally and resulted in the development of tensile cracks within the granite massif and later in the column’s shaft after its installation. The most dangerous type of deformation for the Alexander Column is its tilt in the northeast direction, recorded in 1937 and 2000. The article analyzes the construction features of the column's foundations and additional underground elements, as well as soil and groundwater characteristics based on archival data. The contamination history of the underground space is taken into account, and an analogy-based method is used to assess the engineering-geological and hydrogeological conditions of the underground load-bearing structures within the placement zone of the Alexander Column and the New Hermitage buildings. The results of visual observations on the nature of deterioration and deformation of the pavement around the monument, as well as its pedestal, indicating the development of uneven settlement of the foundation, are presented. The article concludes with general recommendations for organizing and implementing comprehensive monitoring to forecast the deformation dynamics of the Alexander Column.

How to cite: Dashko R.E., Karpenko A.G. Current state of above-ground and underground structures of the Alexander Column: an integral basis for its stability // Journal of Mining Institute. 2023. Vol. 263. p. 757-773. EDN OSYEHQ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-06-20
  • Date accepted
    2023-01-10
  • Date published
    2023-08-28

Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir

Article preview

Results are discussed for evaluation of effectiveness of the cyclic geomechanical treatment (CGT) on a Tournaisian carbonate reservoir. Analysis of laboratory experiments performed according to a special program to assess permeability changes for Tournaisian samples under cyclic changes in pore pressure is presented. The main conclusion is the positive selectivity of the CGT: an increase in permeability is observed for samples saturated with hydrocarbons (kerosene) with connate water, and maximal effect is related to the tightest samples. For water-saturated samples, the permeability decreases after the CGT. Thus, the CGT improves the drainage conditions for tight oil-saturated intervals. It is also confirmed that the CGT reduces the fracturing pressure in carbonate reservoirs. Using flow simulations on detailed sector models taking into account the results of laboratory experiments, a possible increase in well productivity index after CGT with different amplitudes of pressure variation was estimated. Results of a pilot CGT study on a well operating a Tournaisian carbonate reservoir are presented, including the interpretation of production logging and well testing. The increase in the well productivity index is estimated at 44-49 % for liquid and at 21-26 % for oil, with a more uniform inflow profile after the treatment. The results of the field experiment confirm the conclusions about the mechanisms and features of the CGT obtained from laboratory studies and flow simulations.

How to cite: Indrupskiy I.M., Ibragimov I.I., Tsagan-Mandzhiev T.N., Lutfullin A.A., Chirkunov A.P., Shakirov R.I., Alekseeva Y.V. Laboratory, numerical and field assessment of the effectiveness of cyclic geomechanical treatment on a tournaisian carbonate reservoir // Journal of Mining Institute. 2023. Vol. 262. p. 581-593. DOI: 10.31897/PMI.2023.5
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-03-24
  • Date accepted
    2022-12-15
  • Date published
    2023-08-28

Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit

Article preview

Geomechanical monitoring of the rock mass state is an actively developing branch of geomechanics, in which it is impossible to distinguish a single methodology and approaches for solving problems, collecting and analyzing data when developing seismic monitoring systems. During mining operations, all natural factors are subject to changes. During the mining of a rock mass, changes in the state of structural inhomogeneities are most clearly manifested: the existing natural structural inhomogeneities are revealed; there are movements in discontinuous disturbances (faults); new man-made disturbances (cracks) are formed, which are accompanied by changes in the natural stress state of various blocks of the rock mass. The developed method for evaluating the results of monitoring geomechanical processes in the rock mass on the example of the United Kirovsk mine of the CF AO Apatit allowed to solve one of the main tasks of the geomonitoring system – to predict the location of zones of possible occurrence of dangerous manifestations of rock pressure.

How to cite: Gospodarikov A.P., Revin I.E., Morozov K.V. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of AO Apatit // Journal of Mining Institute. 2023. Vol. 262. p. 571-580. DOI: 10.31897/PMI.2023.9
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2022-09-30
  • Date accepted
    2022-11-28
  • Date published
    2022-12-29

Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies

Article preview

The national strategic goal of the Russian Federation is to ensure the safety of critical technologies and sectors, which are important for the development of the country's oil and gas industry. The article deals with development of national technology for intelligent monitoring of the condition of industrial facilities for transport and storage of oil and gas. The concept of modern monitoring and safety control system is developed focusing on a comprehensive engineering control using integrated automated control systems to ensure the intelligent methodological support for import-substituting technologies. A set of approved algorithms for monitoring and control of the processes and condition of engineering systems is proposed using modular control robotic complexes. Original intelligent models were developed for safety monitoring and classification of technogenic events and conditions. As an example, algorithms for monitoring the intelligent safety criterion for the facilities and processes of pipeline transport of hydrocarbons are presented. The research considers the requirements of federal laws and the needs of the industry.

How to cite: Zemenkova M.Y., Chizhevskaya E.L., Zemenkov Y.D. Intelligent monitoring of the condition of hydrocarbon pipeline transport facilities using neural network technologies // Journal of Mining Institute. 2022. Vol. 258. p. 933-944. DOI: 10.31897/PMI.2022.105
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-10-14
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Monitoring of compressed air losses in branched air flow networks of mining enterprises

Article preview

Compressed air as a type of safe technological energy carrier is widely used in many industries. In economically developed countries energy costs for the production and distribution of compressed air reach 10 % of the total energy costs. The analysis of compressed air production and distribution systems in the industrial sector shows that the efficiency of the systems is at a relatively low level. This is due to the fact that insufficient attention is paid to these systems since the compressed air systems energy monitoring has certain difficulties – the presence of complex and branched air pipeline networks with unique characteristics; low sensitivity of the equipment which consumes compressed air; the complexity of auditing pneumatic equipment that is in constant operation. The article analyzes the options for reducing the cost of production and compressed air distribution. One of the promising ways to reduce the compressed air distribution cost is timely detection and elimination of leaks that occur in the external air supply network of the enterprise. The task is solved by hardware-software monitoring of compressed air pressure at key points in the network. The proposed method allows real-time detecting of emerging air leaks in the air duct network and sending commands to maintenance personnel for their timely localization. This technique was tested in the industrial conditions of ALROSA enterprises on the air pipeline network of the Mir mine of the Mirninsky Mining and Processing Plant and showed satisfactory convergence of the calculated leakage values ​​with the actual ones. The practical significance of the obtained results is that the developed method for monitoring air leaks in the air duct network is simple, it requires an uncomplicated software implementation and allows to localize leaks in a timely manner, thereby reducing unproductive energy costs at the enterprises.

How to cite: Gendler S.G., Kopachev V.F., Kovshov S.V. Monitoring of compressed air losses in branched air flow networks of mining enterprises // Journal of Mining Institute. 2022. Vol. 253. p. 3-11. DOI: 10.31897/PMI.2022.8
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-09-02
  • Date accepted
    2022-01-24
  • Date published
    2022-04-29

Complex processing of high-carbon ash and slag waste

Article preview

The paper considers a current issue of ash and slag processing for the Polyus Aldan JSC, that has accumulated over 1 million tons of this waste. Following the results of the review of Russian and foreign literature, four promising areas of their use were selected: road construction, building materials, reclamation of disturbed lands, and inert aggregates. To assess the possibility of implementing the selected disposal directions, the samples of ash and slag waste of the enterprise were sampled and analyzed. Fuel characteristics, chemical and mineral composition, as well as physico-chemical and mechanical properties of waste were determined. Taking into account the results of complex laboratory studies and the requirements of regulatory documents, each of the selected areas of using ash and slag waste was evaluated. It was found that their disposal by traditional methods has limitations, mainly related to the high content of unburned fuel residues. The high content of combustible substances and the high specific heat of combustion with a relatively low ash content suggested the possibility of thermal disposal of the studied waste. Based on the literature data, the characteristics of the preparation of organic coal-water suspensions based on the studied ash and slag waste were selected. As a result of a series of experiments on their flaring, the expediency of using the obtained fuel at the enterprise under consideration has been proved. The authors note the possibility of using ash obtained after thermal waste disposal in the road construction industry. The prospects for further research of technologies for the preparation and combustion modes of suspension fuel based on ash and slag waste are determined.

How to cite: Chukaeva M.A., Matveeva V.A., Sverchkov I.P. Complex processing of high-carbon ash and slag waste // Journal of Mining Institute. 2022. Vol. 253. p. 97-104. DOI: 10.31897/PMI.2022.5
Mining
  • Date submitted
    2021-03-30
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Integrated development of iron ore deposits based on competitive underground geotechnologies

Article preview

The article presents an analytical review of the current state of the iron ore base of the ferrous metallurgy of Russia and the world, identifies the largest iron ore provinces and iron ore producers. The promising directions of development and improvement of the quality of the iron ore base of Russia and the features of the development of new deposits of rich iron ores are identified. Effective technologies for the development of rich iron ores deposits that ensure an increase in production volumes are proposed. The geomechanical justification of rational technological parameters that are easily adapted to changes in mining and geological conditions has been performed. Based on the results of field studies, the use of an elastic-plastic model with the Coulomb – Mohr strength criterion for modeling changes in the stress-strain state of an ore rock mass during mining operations is justified and recommendations for ensuring the stability of mine workings are developed. Effective engineering and technical solutions for the complex development and deep processing of rich iron ores with the production of fractionated sinter ore, which increases the efficiency of metallurgical processes, the production of high-grade iron oxide pigments and iron ore briquettes, which increase the competitiveness of iron ore companies and the full use of the resource potential of deposits, are presented.

How to cite: Trushko V.L., Trushko O.V. Integrated development of iron ore deposits based on competitive underground geotechnologies // Journal of Mining Institute. 2021. Vol. 250. p. 569-577. DOI: 10.31897/PMI.2021.4.10
Geology
  • Date submitted
    2020-05-28
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

On the applicability of electromagnetic monitoring of hydraulic fracturing

Article preview

The purpose of this work is to assess the possibilities of using electromagnetic monitoring to study the development of a fracture system generated by hydraulic fracturing (HF) with a specified position of the controlled source. The option with the source (a vertical electric dipole) located in the interval of the oil-bearing formation and ground-based measurements was chosen as the most promising monitoring plan. We have built a geoelectric model equivalent to the system of hydraulic fractures, divided into 11 zones corresponding to HF stages. For the selected model, mathematical simulation was performed by solving the direct problem considering the impact of the steel casing, the presence of which reduced the effect. Despite this fact, no strong distortion of electromagnetic field anomaly was observed above the HF zone. Analysis of the simulation results at different HF stages showed that as new hydraulic fractures appeared and were filled with electrically conductive proppant, the total effect increased. The data on electric field anomaly demonstrated maximum deviation from the background level of more than 2 %. Provided that the studied formation is characterized by sufficient electrical conductivity, its magnetic field also becomes informative.

How to cite: Grigorev G.S., Salishchev M.V., Senchina N.P. On the applicability of electromagnetic monitoring of hydraulic fracturing // Journal of Mining Institute. 2021. Vol. 250. p. 492-500. DOI: 10.31897/PMI.2021.4.2
Oil and gas
  • Date submitted
    2021-01-20
  • Date accepted
    2021-03-29
  • Date published
    2021-09-20

Analysis of the causes of engineering structures deformations at gas industry facilities in the permafrost zone

Article preview

Construction of oil and gas infrastructure facilities on permafrost soils is the most important task of increasing the raw material base of the entire fuel and energy industry in Russia. Permafrost soil is a complex, multicomponent system, state of which depends on many factors. Buildings and structures built under such conditions, on the one hand, have a complex thermal effect on permafrost soils, and on the other hand, they perceive the consequences of changes in the characteristics of such soils. This situation leads to the fact that buildings and structures on permafrost soil during their life cycle are subject to complex and poorly predictable deformations. Article presents the results of a study for various degradation processes of permafrost soils that can be implemented at construction sites of industrial facilities. Analysis of the deformations causes for engineering structures at the gas industry in the permafrost zone is carried out. Series of reasons causing such deformations have been investigated. Comprehensive criterion for assessing changes in permafrost-geological conditions of industrial sites is proposed. It is suggested to apply the method of calculating the individual characteristics for the temperature regime of the territory to monitor and assess the conditions of heat exchange and predict changes in the geocryological conditions of permafrost soil.

How to cite: Vasiliev G.G., Dzhaljabov A.A., Leonovich I.A. Analysis of the causes of engineering structures deformations at gas industry facilities in the permafrost zone // Journal of Mining Institute. 2021. Vol. 249. p. 377-385. DOI: 10.31897/PMI.2021.3.6
Mining
  • Date submitted
    2020-07-30
  • Date accepted
    2021-03-02
  • Date published
    2021-04-26

Experimental study of thermomechanical effects in water-saturated limestones during their deformation

Article preview

Stability control of elements of stone constructions of various structures is a prerequisite for their safe operation. The use of modern methods of non-destructive diagnostics of the stress-strain state of such constructions is an effective, and in many cases the only way to control it. Studies of thermal radiation accompanying the processes of solid bodies deformation allowed to justify and develop a method that allows to obtain non-contact information about changes in the stress-strain state in various types of geomaterials, including limestones. However, studies of the water saturation influence of rocks on the thermal radiation parameters recorded in this way are currently superficial. Taking into account the water saturation degree of rocks is necessary when monitoring the mechanical condition of stone structures that are in direct contact with water. The main purpose of this work is to study the dependences of changes in the intensity of thermal radiation from the surface of limestone samples with different humidity under conditions of uniaxial compression. The obtained results showed the expected significant decrease in the mechanical properties (uniaxial compressive strength and elastic modulus) of water-saturated samples in comparison with dry ones. At the same time, a significant increase in the intensity of thermal radiation of limestone samples subjected to compression with an increase in their water saturation was recorded, which makes it necessary to take into account the revealed regularity when identifying changes in the stress state of stone structures established according to non-contact IR diagnostics in real conditions.

How to cite: Blokhin D.I., Ivanov P.N., Dudchenko O.L. Experimental study of thermomechanical effects in water-saturated limestones during their deformation // Journal of Mining Institute. 2021. Vol. 247. p. 1-10. DOI: 10.31897/PMI.2021.1.1
Oil and gas
  • Date submitted
    2019-12-25
  • Date accepted
    2020-06-30
  • Date published
    2020-10-08

Accounting of geomechanical layer properties in multi-layer oil field development

Article preview

Amid the ever-increasing urgency to develop oil fields with complex mining and geological conditions and low-efficiency reservoirs, in the process of structurally complex reservoir exploitation a number of problems arise, which are associated with the impact of layer fractures on filtration processes, significant heterogeneity of the structure, variability of stress-strain states of the rock mass, etc. Hence an important task in production engineering of such fields is a comprehensive accounting of their complex geology. In order to solve such problems, the authors suggest a methodological approach, which provides for a more reliable forecast of changes in reservoir pressure when constructing a geological and hydrodynamic model of a multi-layer field. Another relevant issue in the forecasting of performance parameters is accounting of rock compressibility and its impact on absolute permeability, which is the main factor defining the law of fluid filtration in the productive layer. The paper contains analysis of complex geology of a multi-layer formation at the Alpha field, results of compression test for 178 standard core samples, obtained dependencies between compressibility factor and porosity of each layer. By means of multiple regression, dependencies between permeability and a range of parameters (porosity, density, calcite and dolomite content, compressibility) were obtained, which allowed to take into account the impact of secondary processes on the formation of absolute permeability. At the final stage, efficiency of the proposed methodological approach for construction of a geological and hydrodynamic model of an oil field was assessed. An enhancement in the quality of well-by-well adaptation of main performance parameters, as well as an improvement in predictive ability of the adjusted model, was identified.

How to cite: Galkin S.V., Krivoshchekov S.N., Kozyrev N.D., Kochnev A.A., Mengaliev A.G. Accounting of geomechanical layer properties in multi-layer oil field development // Journal of Mining Institute. 2020. Vol. 244. p. 408-417. DOI: 10.31897/PMI.2020.4.3
Oil and gas
  • Date submitted
    2019-06-30
  • Date accepted
    2019-09-07
  • Date published
    2019-12-24

Development of Scada-model for trunk gas pipeline's compressor station

Article preview

Nowadays, at all levels of created automated control systems for technological processes, programmable technical means are used that require specific software within framework of necessary functional tasks. This software should include a set of software tools that communicate with technical devices and organize «human-machine interface» (HMI) in the form of application software for AWPs with assigned communication tasks for persons, responsible for management decision-making: operators, dispatchers, managers. However, hardware architecture is unique for each particular case, so it is necessary to refine or create a new control system. This is a rather laborious process. To simplify creation of such systems SCADA-systems are used. Article is devoted to development of SCADA-component for trunk gas pipeline's compressor workshop. Developed component allows tracking the characteristics of gas transportation process selected by operator. Development is based on «Windows» operating system and integrated environment TRACE MODE (SCADA/HMI).

How to cite: Ilyushin Y.V., Afanaseva O.V. Development of Scada-model for trunk gas pipeline’s compressor station // Journal of Mining Institute. 2019. Vol. 240. p. 686-693. DOI: 10.31897/PMI.2019.6.686
Mining
  • Date submitted
    2019-04-27
  • Date accepted
    2019-07-10
  • Date published
    2019-10-23

Estimation of Rock Mass Strength in Open-Pit Mining

Article preview

The paper presents results of an experimental study on strength characteristics of the rock mass as applied to the assessment of open-pit slope stability. Formulas have been obtained that describe a correlation between ultimate and residual strength of rock samples and residual shear strength along the weakening surface. A new method has been developed to calculate residual interface strength of the rock mass basing on data from the examination of small-scale monolith samples with opposing spherical indentors. A method has been proposed to estimate strength characteristics (structural weakening coefficients and internal friction angles) of the fractured near-slope rock mass. The method relies on test data from shattering small-scale monolith samples with spherical indentors, taking into ac- count contact conditions along the weakening surface, and can be applied in the field conditions. It is acceptable to use irregular-shaped samples in thetests.

How to cite: Pavlovich A.A., Korshunov V.A., Bazhukov A.A., Melnikov N.Y. Estimation of Rock Mass Strength in Open-Pit Mining // Journal of Mining Institute. 2019. Vol. 239. p. 502-509. DOI: 10.31897/PMI.2019.5.502
Electromechanics and mechanical engineering
  • Date submitted
    2018-12-30
  • Date accepted
    2019-03-01
  • Date published
    2019-06-25

The concept of development of monitoring systems and management of intelligent technical complexes

Article preview

Conceptual approaches to improving the system of monitoring and managing the functional capabilities of intelligent technical complexes of buildings and transport and technological machines of mining enterprises are defined. Criteria are proposed for the efficiency of functioning of automatic systems for controlling the movement of transport-technological machines, taking into account the probabilistic nature of system-forming factors. The scheme of scientific and methodological research on the improvement of automation systems and traffic control in the automotive transport is presented. The perspective directions of the formation of control functions for the movement of vehicles based on the use of intelligent automated systems are substantiated. The stages of the life cycle of technical systems for monitoring the movement of vehicles, taking into account the features of their operation. A technique has been developed for the optimal use of technical means of control in the field of providing control and supervisory functions in the operation of vehicles, and the dependence of determining the financial costs of maintaining their efficiency has been determined.

How to cite: Safiullin R.N., Afanasyev A.S., Reznichenko V.V. The concept of development of monitoring systems and management of intelligent technical complexes // Journal of Mining Institute. 2019. Vol. 237. p. 322-330. DOI: 10.31897/PMI.2019.3.322
Mining
  • Date submitted
    2019-01-11
  • Date accepted
    2019-03-17
  • Date published
    2019-06-25

Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells

Article preview

Development of mineral deposits under complex geological and hydrogeological conditions is often associated with the need to utilize specific approaches to mine shaft construction. The most reliable and universally applicable method of shaft sinking is artificial rock freezing – creation of a frozen wall around the designed mine shaft. Protected by this artificial construction, further mining operations take place. Notably, mining operations are permitted only after a closed-loop frozen section of specified thickness is formed. Beside that, on-line monitoring over the state of frozen rock mass must be organized. The practice of mine construction under complex hydrogeological conditions by means of artificial freezing demonstrates that modern technologies of point-by-point and distributed temperature measurements in test wells do not detect actual frozen wall parameters. Neither do current theoretical models and calculation methods of rock mass thermal behavior under artificial freezing provide an adequate forecast of frozen wall characteristics, if the input data has poor accuracy. The study proposes a monitoring system, which combines test measurements and theoretical calculations of frozen wall parameters. This approach allows to compare experimentally obtained and theoretically calculated rock mass temperatures in test wells and to assess the difference. Basing on this temperature difference, parameters of the mathematical model get adjusted by stating an inverse Stefan problem, its regularization and subsequent numerical solution.

How to cite: Levin L.Y., Semin M.A., Parshakov O.S. Improving methods of frozen wall state prediction for mine shafts under construction using distributed temperature measurements in test wells // Journal of Mining Institute. 2019. Vol. 237. p. 268-274. DOI: 10.31897/PMI.2019.3.274
Geology
  • Date submitted
    2018-11-10
  • Date accepted
    2019-01-17
  • Date published
    2019-04-23

AMT soundings in the dead band within the Chukotka region (Russian Far East)

Article preview

The article analyzes the amplitude spectra of audio magnetotelluric sounding (AMTs) data. Particular attention is focused on the frequency range from 1 to 5 kHz, which is called dead band. We analyzed the data of base stations used in the fieldwork during the summer and autumn seasons in 2013, 2014, and 2017. The area of work is located in the Chukotka Autonomous Area beyond the Arctic Circle. Previous researchers noted that a reliable signal in the dead band can only be obtained at nighttime. The authors of the article found that in Chukotka region in the daytime against the minimum signal within the dead band there is a local maximum at a frequency of 2.4 kHz. When registering a field for more than 3 hours during daytime, in most cases, it is possible to restore the frequencies of 2.2 and 2.6 kHz. These frequencies are reliable benchmarks, allowing in some cases to restore the AMT curve using the correlation between amplitude and phase. We have proposed ways to improve data quality in the dead band when measured during the daytime.

How to cite: Ermolin E.Y., Ingerov O., Yankilevich A.A., Pokrovskaya N.N. AMT soundings in the dead band within the Chukotka region (Russian Far East) // Journal of Mining Institute. 2019. Vol. 236. p. 125-132. DOI: 10.31897/PMI.2019.2.125
Geoecology and occupational health and safety
  • Date submitted
    2018-08-25
  • Date accepted
    2018-10-26
  • Date published
    2019-02-22

Metrological support of monitoring systems based on unmanned aerial vehicles

Article preview

The article discusses the fields and methods of application of unmanned aerial vehicles (UAV). Current legislation in Russia and in the world, significantly limit the use of UAV in monitoring. For the first time, we present a solution to the problem of a monitoring measurement system included in the state register of measuring instruments using the example of the basic UAV model. We conducted an analysis of promising approaches to the creation of UAV metrological and methodological support, as well as ways to adapt their target load to meet the challenges of operational monitoring of air pollution.

How to cite: Kremcheev E.A., Danilov A.S., Smirnov Y.D. Metrological support of monitoring systems based on unmanned aerial vehicles // Journal of Mining Institute. 2019. Vol. 235. p. 96-105. DOI: 10.31897/PMI.2019.1.96
Mining
  • Date submitted
    2018-07-18
  • Date accepted
    2018-09-22
  • Date published
    2018-12-21

Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit

Article preview

The subject of the research is the stress-strain and rock burst hazardous state of the ore massif of the Nikolaevskoe polymetallic deposit, formed under the influence of complex mining-geological and mining-technical factors. The purpose of the research is to establish the peculiarities of the formation of technogenic stress fields at the deposit, which is characterized by a block structure, a complex tectonic system and the presence of a large volume of developed spaces. Volumetric geodynamic modeling of the stress-strain state of the massif at different stages of the development of the deep horizons of the deposit was carried out by collecting information on the structure, properties and geodynamic state of the rock mass. The assessment of stress changes taking into account the effect of hypsometry, the configuration of the selvages, the physical-mechanical properties of the ore deposit and host rocks, the presence of tectonic disturbances was made using the developed numerical algorithms, the automation equipment of the initial data and the PRESS 3D URAL software. The simulation made it possible to establish that tectonic faults in the massif lead to a qualitative change in the stress-strain state in certain parts of the ore massif and in the pillars, namely, the reduction of stresses along the tectonic faults and their growth in nearby pillars. The identified features of the distribution of stresses in the tectonically disturbed rock massif of the Nikolaevskoe deposit will allow to identify in advance potentially hazardous areas both at the planning stage of mining operations and during development, as well as to work out effective rock burst measures to increase the safety of mining. The results of research can be used in enterprises with similar mining-geological and mining-technical conditions.

How to cite: Sidorov D.V., Potapchuk M.I., Sidlyar A.V. Forecasting rock burst hazard of tectonically disturbed ore massif at the deep horizons of Nikolaevskoe polymetallis deposit // Journal of Mining Institute. 2018. Vol. 234. p. 604-611. DOI: 10.31897/PMI.2018.6.604
Geoecology and occupational health and safety
  • Date submitted
    2017-10-29
  • Date accepted
    2017-12-31
  • Date published
    2018-04-24

Risk assessment of accidents due to natural factors at the Pascuales – Cuenca multiple-use pipeline (Ecuador)

Article preview

The natural aspects of the accident risk at the Pascuales – Cuenca multiple-use pipeline (Ecuador) are analysed in the paper. The Russian Methodological recommendations for the quantitative analysis of accident risks at hazardous production plants of oil trunk pipelines and oil product trunk pipelines issued in 2016 are used as a methodological framework due to relatively poorly defined evaluation mechanism for natural factors of accidents at oil trunk pipelines in the most widespread international accident risk assessment methodologies. The methodological recommendations were updated to meet the environmental conditions of oil pipelines of Latin America. It was found that the accidents due to natural factors make up approximately 15 % of cases at oil trunk pipelines in Ecuador. Natural geographical features of the areas surrounding the main Ecuadorian Pascuales–Cuenca oil trunk pipeline and its relatively short length allow defining three zones along the line in terms of the accident risk: lowland coastlines, high plateaus, and foothills. Calculations and analysis revealed that the maximum predicted specific frequency of accidents is characteristic of the lowland seaside area. The evidence showed that physical and chemical properties of soils and significant seismic activity are the root causes of failures.

How to cite: Zambrano D., Kovshov S.V., Lyubin E.A. Risk assessment of accidents due to natural factors at the Pascuales – Cuenca multiple-use pipeline (Ecuador) // Journal of Mining Institute. 2018. Vol. 230. p. 190-196. DOI: 10.25515/PMI.2018.2.190
Geology
  • Date submitted
    2017-09-17
  • Date accepted
    2017-11-06
  • Date published
    2018-02-22

Collaborative interpretation of the data obtained by resistivity and ground penetrating radar methods for assessing the permeability of sandy clay soils

Article preview

A method for estimating the filtration factor of sandy clay soils is considered on the basis of a joint interpretation of the data of a set of methods of engineering electrical exploration, including electrical resistivity tomography and ground penetrating radar studies. The solution of this problem is based on the use of known empirical connections between the imaginary and real parts of the complex dielectric permittivity, specific electrical resistance, and Q factor. An example of the effective joint use of the ground penetrating radar and non-contact electrical resistivity tomography shows how to obtain qualitative and quantitative estimates of a changing filtration factor in a draining road layer. It is necessary to use precise engineering geological information in order to provide the required estimates. The proposed approach makes it possible to describe continuous profiles of a pavement and underlying layers by ground penetrating radar and electrical resistivity tomography, as well as to assess soil properties when conducting an electrical survey from the surface of asphalt concrete pavement. Recommendations for the implementation of the developed methods of complex engineering and geophysical research are given for solving issues of repair work design, supervision, and quality control of road construction.

How to cite: Lalomov D.A., Glazunov V.V. Collaborative interpretation of the data obtained by resistivity and ground penetrating radar methods for assessing the permeability of sandy clay soils // Journal of Mining Institute. 2018. Vol. 229. p. 3-12. DOI: 10.25515/PMI.2018.1.3
Mining
  • Date submitted
    2015-12-24
  • Date accepted
    2016-02-04
  • Date published
    2016-12-23

Geodynamic methods for assessing methane distribution in bituminous coal deposits and measures to intensify methane fluxes during mine gas drainage

Article preview

This paper explores states of methane within the coal bearing stratum and shows heavy dependency of the intrastratal gas migration on the forms of porous space and petrographic properties of coal. The adsorbed methane is found to be predominant in the coal of Kuznetsk Basin. Different forms of coal diffusion and filtration are described revealing their dependency on geological and thermodynamic conditions. The paper provides justification for the primary focus on geodynamic processes when designing gas drainage systems and applicability of morphometric methods and remote sensing data for their identification. The significance of researches into the processes activating exothermic reactions resulting in methane transition to free state is explained. The paper presents the results of using seismic-acoustic stimulation techniques as one of the practical approaches to addressing this issue. Results of successful industrial testing have been compared with the results of numerical modelling of stress-strain state, which can also be managed through seismic-acoustic stimulation.

How to cite: Goncharov E.V., Tsirel S.V. Geodynamic methods for assessing methane distribution in bituminous coal deposits and measures to intensify methane fluxes during mine gas drainage // Journal of Mining Institute. 2016. Vol. 222. p. 803-808. DOI: 10.18454/PMI.2016.6.803
Geoecology and occupational health and safety
  • Date submitted
    2014-11-05
  • Date accepted
    2015-01-24
  • Date published
    2015-10-26

Use of geoinformation technologies for otpimized distribution of stations of atmospheric air quality monitoring

Article preview

The article deals with possible applications of modern geographic information systems for optimized distribution of stations of atmospheric air quality monitoring. Due to the fact that estimation of atmospheric pollutant concentrations is a reason for decisions to improve air quality, costly measures to protect the atmosphere and monitoring effectiveness of these actions, atmospheric air quality indicators, and therefore the proper distribution of monitoring stations, are of great importance. Results of model calculations of atmospheric air pollution, which have been recently developed in our country, in combination with GIS solutions, should be used for optimized distribution of stations of atmospheric air quality monitoring. One of the major factors of objective estimation of urban atmospheric air quality is proper reference of industrial and transport pollutant emission sources to the city’s topographic base (both in citywide and local coordinate systems), as well as distribution of stations of atmospheric air quality monitoring and selection of high-priority pollutants for a particular city district. Some recommendations for monitoring stations distribution and pollutants selection based on the GIS analysis of spatial distribution of maximum ground level concentrations of pollutants are given.

How to cite: Volkodaeva M.V. Use of geoinformation technologies for otpimized distribution of stations of atmospheric air quality monitoring // Journal of Mining Institute. 2015. Vol. 215. p. 107-114.