Submit an Article
Become a reviewer
Vol 229
Pages:
3
Download volume:
RUS ENG

Collaborative interpretation of the data obtained by resistivity and ground penetrating radar methods for assessing the permeability of sandy clay soils

Authors:
D. A. Lalomov1
V. V. Glazunov2
About authors
  • 1 — Fertoing, Ltd.
  • 2 — Saint-Petersburg Mining University
Date submitted:
2017-09-17
Date accepted:
2017-11-06
Date published:
2018-02-25

Abstract

A method for estimating the filtration factor of sandy clay soils is considered on the basis of a joint interpretation of the data of a set of methods of engineering electrical exploration, including electrical resistivity tomography and ground penetrating radar studies. The solution of this problem is based on the use of known empirical connections between the imaginary and real parts of the complex dielectric permittivity, specific electrical resistance, and Q factor. An example of the effective joint use of the ground penetrating radar and non-contact electrical resistivity tomography shows how to obtain qualitative and quantitative estimates of a changing filtration factor in a draining road layer. It is necessary to use precise engineering geological information in order to provide the required estimates. The proposed approach makes it possible to describe continuous profiles of a pavement and underlying layers by ground penetrating radar and electrical resistivity tomography, as well as to assess soil properties when conducting an electrical survey from the surface of asphalt concrete pavement. Recommendations for the implementation of the developed methods of complex engineering and geophysical research are given for solving issues of repair work design, supervision, and quality control of road construction.

10.25515/pmi.2018.1.3
Go to volume 229

References

  1. Гиматудинов Ш.К. Физика нефтяного и газового пласта: Учебник. 2-е изд. перераб. и доп. М.: Недра, 1971. 312 c.
  2. ГОСТ 25100-2011. Грунты. Классификация. М.: Стандартинформ, 2013. 38 с.
  3. ГОСТ 25607-2009. Смеси щебеночно-гравийно-песчаные для покрытий и оснований авто-мобильных дорог и аэродромов. Технические условия. М.: Стандартинформ, 2010. 8 с.
  4. Грунтоведение / Под ред. В.Т.Трофимова. 6-е изд. М.: Изд-во МГУ, 2005. 1024 с.
  5. Дахнов В.Н. Электрическая разведка в нефтяной промышленности СССР. М.: ГОНТИ, 1939. 244 с.
  6. Ефимова Н.Н. Применение георадиолокации при решении задач инженерной геофизики. Автореф. дис. ... канд. техн. наук / Санкт-Петербург. горный ин-т. СПб, 1999. 16 c.
  7. Инструкция по проектированию дорожных одежд нежесткого типа. ВСН 46-83. М.: Транспорт, 1985. 318 с.
  8. Методические рекомендации по осушению земляного полотна и оснований дорожных одежд в районах избыточного увлажнения и сезонного промерзания грунтов. М.: Союздор-нии, 1974. 108 с.
  9. Огильви А.А. Основы инженерной геофизики: Учебник для вузов / Под ред. В.А.Богословского. М.: Недра, 1990. 501 с.
  10. Рекомендации по осушению дорожных одежд и верхней части земляного полотна авто-мобильных дорог / Министерство строительства и эксплуатации автомобильных дорог РСФСР. М., 1970. 30 с.
  11. Рекомендации по расчету дренажных дорожных конструкций. ОДМ 218.2.055-2015. М.: Росавтодор, 2015. 83 с.
  12. Шевнин В.А. Картирование методом сопротивлений нефтяных загрязнений геологиче-ской среды / В.А.Шевнин, О.Делгадо, А.А.Рыжов // Разведка и охрана недр. 2004. № 5. С. 27-32.
  13. Archie G.E. The Electric Resistivity Log as an Aid in Determining Some Reservoir Characteris-tics // Trans. Am. Inst. Mining and Met. Eng. 1942. Vol. 146. N 1. P. 54-62.
  14. Bano M. Constant dielectric losses of ground-penetrating radar waves // Geophysical Journal International. 1996. N 124. P. 279-288.
  15. Estimation of hydraulic conductivity on clay content in soil determined from resistivity data / V.Shevnin, O.Delgado-Rodríguez, A.Mousatov and A.Ryjov // Geofísica Internacional. 2006. Vol. 45. N 3. P. 195-207.
  16. Liu L. Radar attenuation tomography using the centroid frequency downshift method / L.Liu, J.W.Lane, Y.Quan // Journal of Applied Geophysics. 1998. N 40. P. 105-116.
  17. Scheers B. Ultra-Wideband Ground Penetrating Radar, with Application to the Detection of Anti Personnel Landmine (Thesis (PhD)). Royal Military Academy (RMA), Dept. of Electricity and Telecommunications. Brussels, 2001. 281 p.
  18. Slater L. Electrical-hydraulic relationships observed for unconsolidated sediments / L.Slater, D.Lesmes // Wat. Resour. Res. 2002. Vol. 38. Iss. 10. P. 31-1-31-13.
  19. Tonn R. The determination of the seismic quality factor Q from VSP data: A comparison of dif-ferent computational methods // Geophysical Prospecting. 1991. N 39. P. 1-27.
  20. Wunderlich Т. Absorption and frequency shift of GPR signals in sandy and silty soils: empirical relations between quality factor Q, complex permittivity and clay and water contents / Т.Wunderlich, W.Rabbel // Near Surface Geophysics. 2013. Vol.11. N 2. P. 117-127.

Similar articles

The problem of cadastral appraisal of forest lands taking into account the infrastructure of the forestry fund
2018 V. F. Kovyazin, A. Yu. Romanchikov
Providing energy decoupling of electric drive and electric grids for industrial electrical installations
2018 B. Yu. Vasilev, V. A. Shpenst, O. V. Kalashnikov, G. N. Ulyanov
Improved estimation of open pit excavator capacity
2018 S. N. Zharikov
On enhancement of cooperation between universities for implementation of the program «Sustainable development–2030»
2018 P. Ochirbat, B. Chinzorig
Development of the system for air gap adjustment and skip protection of electromagnetic lifting unit
2018 B. A. Zhautikov, A. A. Aikeeva
Basic provisions and problems of ELW technology for the manufacture of aluminum-magnesium alloys constructions
2018 E. I. Pryakhin, N. I. Sharonov