-
Date submitted2023-04-10
-
Date accepted2024-12-27
-
Date published2024-04-25
Optimization of specific energy consumption for rock crushing by explosion at deposits with complex geological structure
The selection of efficient drilling and blasting technology to achieve the required particle size distribution of blasted rock mass and reduce ore dilution is directly related to the accurate definition of rock mass properties. The zoning of the rock massif by its hardness, drillability and blastability does not consider the variability of the geological structure of the block for blasting, resulting in an overestimated specific consumption of explosives. The decision of this task is particularly urgent for enterprises developing deposits with a high degree of variability of geological structure, for example, at alluvial deposits. Explosives overconsumption causes non-optimal granulometric composition of the blasted rock mass for the given conditions and mining technology. It is required to define physical and mechanical properties of rocks at deposits with complex geological structure at each block prepared for blasting. The correlation between the physical and mechanical properties of these rocks and drilling parameters should be used for calculation. The relation determined by the developed method was verified in industrial conditions, and the granulometric composition of the blasted rock mass was measured by an indirect method based on excavator productivity. The results demonstrated an increase in excavation productivity, thus indicating the accuracy of given approach to the task of identifying the rocks of the blasted block.
-
Date submitted2022-04-14
-
Date accepted2022-07-21
-
Date published2022-11-03
Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit)
Technological mineralogy of titanium ores is the basis for assessing their complexity. It enables, from a unified standpoint, to trace the entire course of changes in mineral matter through operating procedures, including beneficiation, processing, and obtaining target industrial products. The study targets are Pizhemskoye ilmenite-leucoxene sandstones, which are distinguished by a complex polymineral composition. Along with the main ore components, there are other metals with different speciation (isomorphic admixture, independent mineral phases). The optimal set of mineralogical analysis methods for the predictive assessment of their further use is substantiated exemplified by titanium ores of the Pizhemskoye deposit, which are complex, noted for a variable content of iron oxides and contain rare earth metals. Examinations by X-ray phase analysis and scanning electron microscopy confirm that the main titanium phases of sandstones are pseudorutile and a polymineral aggregate, “leucoxene”. Considering the granulometric peculiarities of the magnetic and non-magnetic fractions of the gravity concentrate, the prospects of technologies for processing titanium raw materials are discussed. Along with the problems of obtaining high-quality raw materials, the transformations of mineral phases as a result of extreme impacts and their physicochemical properties as a consequence of isomorphic substitution of a part of Ti atoms with natural modifier agents (Fe and V) in the synthesis of titanium oxide nanostructures for industrial applications are considered (photocatalytic nanoreactor).
-
Date submitted2022-02-22
-
Date accepted2022-09-15
-
Date published2022-11-10
The problem of the genesis of the Mesoarchean aluminosilicate rocks from the Karelian craton and their possible use as a quartz-feldspar raw material
The article presents original data obtained in the study of the chemical and mineral compositions of the Late Archean aluminosilicate rocks (formerly called silicites) from the Koikari and Elmus structures of the Vedlozero-Segozero greenstone belt of the Karelian craton (Central Karelia). A comprehensive study of these formations revealed their complex genesis as a result of the late imposition of hydrothermal and metamorphic alteration on sedimentary and volcanic-sedimentary rocks of feldspar-quartz composition. Due to the superimposed metasomatic (temperature?) impact on feldspar-quartz siltstones, Fe was removed from microinclusions in quartz and feldspar and its oxides were concentrated along the grain boundaries. Minerals such as monazite, parisite, allanite are also located either along the grain boundaries of quartz and feldspars, or together with calcite they fill microfractures, which makes it possible to get rid of them when preparing quartz-feldspar concentrates using various beneficiation technologies. According to most indicators limited by GOSTs, individual samples in their natural form meet the requirements for quartz-feldspar raw materials for use as part of batch in the production of diverse types of glass. Additional beneficiation of the feedstock (grinding, screening into narrow classes and further magnetic separation) leads to a decrease in Fe 2 O 3 content to normalized values. The resulting quartz-feldspar concentrates with various particle sizes can be used in the production of building material and fine ceramics (sanitary and ceramic products, facing and finishing tiles, artistic, household porcelain and faience). The homogeneity of the mineral and chemical composition, the possibility of compact extraction and beneficiation (including in mobile small-sized installations) increase the prospects and competitiveness of this non-traditional feldspar raw material from Central Karelia.
-
Date submitted2021-10-14
-
Date accepted2022-04-07
-
Date published2022-04-29
The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow
The results of the analysis of statistical data on accidents at Russian mines caused by explosions in the workings space have shown that explosions of methane-dust-air mixtures at underground coal mines are the most severe accidents in terms of consequences. A detailed analysis of literature sources showed that in the total number of explosions prevails total share of hybrid mixtures, i.e. with the simultaneous participation of gas (methane) and coal dust, as well as explosions with the possible or partial involvement of coal dust. The main causes contributing to the occurrence and development of dust-air mixture explosions, including irregular monitoring of by mine engineers and technicians of the schedule of dust explosion protective measures; unreliable assessment of the dust situation, etc., are given. The main problem in this case was the difficulty of determining the location and volume of dust deposition zones in not extinguished and difficult to access for instrumental control workings. Determination of the class-shape of coal dust particles is a necessary condition for constructing a model of the dust situation reflecting the aerosol distribution in the workings space. The morphological composition of coal mine dust fractions with dispersion less than 0.1 has been studied. Particle studies conducted using an LEICA DM 4000 optical microscope and IMAGE SCOPE M software made it possible to establish the different class-shapes of dust particles found in operating mines. It was found that the coal dust particles presented in the samples correspond to the parallelepiped shape to the greatest extent. The mathematical model based on the specialized ANSYS FLUENT complex, in which this class-form is incorporated, is used for predicting the distribution of explosive and combustible coal dust in the workings space. The use of the obtained model in production conditions will allow to determine the possible places of dust deposition and to develop measures to prevent the transition of coal dust from the aerogel state to the aerosol state and thereby prevent the formation of an explosive dust-air mixture.
-
Date submitted2020-06-16
-
Date accepted2021-03-29
-
Date published2021-09-20
Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench
- Authors:
- Igor A. Alenichev
- Ruslan A. Rakhmanov
Minimizing the discharge of blasted rock mass into the developed space of the pit is a very relevant area for study, as it allows to increase the processability of work and reduce the cost of mining. The article presents the results of experimental industrial explosions, during which the study of this issue was conducted. The main purpose of the work was to establish the key factors affecting the volume of rock mass discharge to the pit haulage berm. During the analysis of the world experience of research on this topic, the key factors affecting the formation of collapse and discharge – natural and technological – are identified. The method of conducting experiments and collecting data for analyzing the influence of technological parameters of location, charging and initiation of wells on the volume of rock mass discharge is described. It is established that the main discharge to the pit haulage berm is formed by the volume of rock mass limited by the prism of the slope angle. With a sufficient rock mass displacement from the edge of the bench crest towards the center of the block, only the wells of the 1st and 2nd rows participate in the discharge formation. Empirical dependences of the total volume of rock mass discharge on the length of the block along the bench crest, the specific consumption of explosives, the size of a rock piece P 50 and the rate of rock breaking are obtained. The obtained results can be used to design the parameters of the drilling and blasting operations (DBO), as well as to predict and evaluate the possible consequences of a mass explosion in similar mining and geological conditions.
-
Date submitted2021-01-20
-
Date accepted2021-03-15
-
Date published2021-04-26
Improving the quality of electricity in the power supply systems of the mineral resource complex with hybrid filter-compensating devices
- Authors:
- Yurii A. Sychev
- Roman Yu. Zimin
The urgency and necessity of choosing and justifying the structures of hybrid filter-compensating devices based on series and parallel active filters to improve the quality of electricity in the power supply systems of enterprises of the mineral resource complex is shown. Mathematical models of hybrid filter compensating devices based on parallel and series active filters have been developed. Based on these mathematical models, computer simulation models of the indicated hybrid structures have been developed. The results of simulation showed the effectiveness of the correction of power quality indicators in terms of reducing the level of higher harmonics of current and voltage, as well as voltage deviations. The degree of influence of filter-compensating devices on the power quality indicators, which determine the continuity and stability of the technological process at the enterprises of the mineral resource complex, have been revealed. It has been established that a hybrid filter-compensating device based on a parallel active filter can reduce the level of higher harmonics of current and voltage by more than 90 and 70 %, respectively, and based on a series active filter, it can reduce the level of higher harmonics of voltage by more than 80 %. Based on the simulation results, the possibility of compensating for the reactive power of a hybrid structure based on parallel active and passive filters has been revealed. The possibility of integrating hybrid filter-compensating devices into more complex multifunctional electrical systems for the automated improvement of the quality of electricity is substantiated, as well as the expediency and prospects of their use in combined power supply systems based on the parallel operation of centralized and autonomous sources of distributed generation.
-
Date submitted2020-11-16
-
Date accepted2021-03-02
-
Date published2021-04-26
Determination and verification of the calculated model parameters of salt rocks taking into account softening and plastic flow
The article suggests using a combination of the modified Burgers model and the Mohr – Coulomb model with the degradation of the adhesion coefficient and the increase in the friction coefficient to determine the parameters of salt rocks. A comparative analysis of long-term laboratory tests and field observations in underground mine workings with the results obtained using a calculated model with certain parameters is carried out. The parameters of the Mohr – Coulomb model with the degradation of the adhesion coefficient and the increase in the friction coefficient were obtained from the statistically processed data of laboratory tests, and the parameters of the modified Burgers model were determined. Using numerical methods, virtual (computer) axisymmetric triaxial tests, both instantaneous and long-term, were performed on the basis of the proposed model with selected parameters. A model problem is solved for comparing the behavior of the model with the data of observation stations in underground mine workings obtained from borehole rod extensometers and contour deformation marks. The analytically obtained coefficients of the nonlinear viscous element of the modified Burgers model for all the analyzed salt rocks did not need to be corrected based on the monitoring results. At the same time, optimization was required for the viscoelastic element coefficients for all the considered rocks. The analysis of the model studies showed a satisfactory convergence with the data on the observation stations. The comparative analysis carried out on the models based on laboratory tests and observations in the workings indicates the correct determination of the parameters for salt rocks and the verification of the model in general.
-
Date submitted2020-06-13
-
Date accepted2020-06-14
-
Date published2020-06-30
Deep structure and geodynamic conditions of granitoid magmatism in the Eastern Russia
- Authors:
- Viktor I. Alekseev
We investigated the deep structure of the lithosphere and the geodynamic conditions of granitoid magmatism in the Eastern Russia within the borders of the Far Eastern Federal District. The relevance of the work is determined by the need to establish the geotectonic and geodynamic conditions of the granitoids petrogenesis and ore genesis in the Russian sector of the Pacific Ore Belt. The purpose of the article is to study the deep structure of the lithosphere and determine the geodynamic conditions of granitoid magmatism in the East of Russia. The author's data on the magmatism of ore regions, regional granitoids correlations, archive and published State Geological Map data, survey mapping, deep seismic sounding of the earth's crust, gravimetric survey, geothermal exploration, and other geophysical data obtained along geotraverses. The magma-controlling concentric geostructures of the region are distinguished and their deep structure is studied. The connection of plume magmatism with deep structures is traced. The chain of concentric geostructures of Eastern Russia controls the trans-regional zone of leucocratization of the earth's crust with a width of more than 1000 km, which includes the Far Eastern zone of Li-F granites. Magmacontrolling concentric geostructures are concentrated in three granitoid provinces: Novosibirsk-Chukotka, Yano-Kolyma, and Sikhote-Alin. The driving force of geodynamic processes and granitoid magmatism was mantle heat fluxes in the reduced zones of the lithospheric slab. The distribution of slab windows along the Pacific mobile belt's strike determines the location of concentric geostructures and the magnitude of granitoid magmatism in the regional provinces. Mantle diapirs are the cores of granitoid ore-magmatic systems. The location of the most important ore regions of the Eastern Russia in concentric geostructures surrounded by annuli of negative gravity anomalies is the most important regional metallogenic pattern reflecting the correlation between ore content and deep structure of the earth's crust.
-
Date submitted2019-09-04
-
Date accepted2019-12-25
-
Date published2020-04-24
Composition of spherules and lower mantle minerals, isotopic and geochemical characteristics of zircon from volcaniclastic facies of the Mriya lamproite pipe
The article presents the results of studying the rocks of the pyroclastic facies of the Mriya lamproite pipe, located on the Priazovsky block of the Ukrainian shield. In them the rock's mineral composition includes a complex of exotic mineral particles formed under extreme reduction mantle conditions: silicate spherules, particles of native metals and intermetallic alloys, oxygen-free minerals such as diamond, qusongite (WC), and osbornite (TiN). The aim of the research is to establish the genesis of volcaniclastic rocks and to develop ideas of the highly deoxidized mantle mineral association (HRMMA), as well as to conduct an isotopic and geochemical study of zircon. As a result, groups of minerals from different sources are identified in the heavy fraction: HRMMA can be attributed to the juvenile magmatic component of volcaniclastic rocks; a group of minerals and xenoliths that can be interpreted as xenogenic random material associated with mantle nodules destruction (hornblendite, olivinite and dunite xenoliths), intrusive lamproites (tremolite-hornblende) and crystalline basement rocks (zircon, hornblende, epidote, and granitic xenoliths). The studied volcaniclastic rocks can be defined as intrusive pyroclastic facies (tuffisites) formed after the lamproites intrusion. Obviously, the HRMMA components formed under extreme reducing conditions at high temperatures, which are characteristic of the transition core-mantle zone. Thus, we believe that the formation of primary metal-silicate HRMMA melts is associated with the transition zone D".
-
Date submitted2018-12-25
-
Date accepted2019-03-22
-
Date published2019-06-25
Technology of blasting of strong valuable ores with ring borehole pattern
- Authors:
- I. V. Sokolov
- A. A. Smirnov
- A. A. Rozhkov
The ores of non-ferrous and precious metals, represented by hard rocks, has a peculiar feature, that is the effect of segregation, that is the tendency of ore minerals to break down into small size classes, which in the underground mining method accumulate in significant quantities on uneven surface of bottom layers and subsequently are lost. When mining valuable non-metallic materials, there is an acute problem of overgrinding, when fines do not meet the requirements for the quality of the final product. It is well known that the granulometric composition of the ore depends mainly on the technology and parameters of drilling and blasting operations. In underground mining of ore deposits, the main method of drilling and blasting is the borehole blasting with continuous construction charges with the ring pattern. The main drawbacks of the method are: uneven distribution of the explosive along the plane of the broken layer and the expenditure of a significant part of the blast energy of the charges of the continuous structure on the blasting effect, necessarily associated with over-grinding the ore. To solve these problems, the authors proposed a blasting technology, the essence of which lies in the fact that the uniform distribution of the energy concentration of explosives in the broken layer is ensured by the dispersion of charges by air gaps and a certain order of their placement in the ring plane. For the practical implementation of the technology, a method has been developed to form dispersed charges in deep boreholes that do not require a significant increase in labor costs and additional special means. A special technique has been created that allows defining the dispersion parameters, ensuring the sustained specific consumption of explosives over the entire plane of the broken layer. Experimental studies of the proposed technology in the natural conditions of an underground mine for the extraction of valuable granulated quartz were carried out. As a result, the possibility of a significant reduction in the specific consumption of explosives (by 42 %) has been established. At the same time, the yield of the commercial product increased by 10.7 % in total, and the yield of the fraction most favorable for further processing increased by 33.7 %.
-
Date submitted2019-01-10
-
Date accepted2019-03-02
-
Date published2019-06-25
Modeling of the welding process of flat sheet parts by an explosion
- Authors:
- M. A. Marinin
- S. V. Khokhlov
- V. A. Isheyskiy
The list of materials subject to explosive welding is very extensive and amounts to several hundred combinations of various alloys and metals, and the variety of explosive welding schemes has more than a thousand options. In almost all technical solutions, the process involves the sequential creation of physical contact of the materials to be welded and their connection due to plastic deformation of the contacting surfaces. The strength of such a connection depends on the mode of the welding process. With the correct selection of the parameters of the mode, it is possible to obtain a high-quality connection of the required strength. However, the experimental selection of such options is a very laborious and costly process. Computer simulation and application of mathematical models for solving dynamic problems of explosion mechanics simplifies the search for optimal parameters and allows to predict the expected result in the shortest possible time. The article discusses the issues of modeling of explosive welding of metals, calculations related to the parameters of the process of formation of the weld using the Ansys Autodyn software package. A model is presented for analyzing the deformation process of explosion welding of a plate and its connection with a matrix. The main parameters of explosion welding (velocity, pressure, time) are determined. The adequacy of the obtained values was evaluated in the systems aluminum – copper and copper – steel. It also provides a comparative analysis of simulation results and field experiments. Based on numerical calculations, a conclusion was substantiated on the suitability of the model obtained for a preliminary analysis of the main welding parameters at the preparatory stage.
-
Date submitted2018-11-23
-
Date accepted2019-01-03
-
Date published2019-04-23
Structural model and tectonic evolution of the fault system in the Southern part of the Khur area, Central Iran
- Authors:
- A. Sohrabi
- A. Nadimi
- I. V. Talovina
- H. Safaei
In the southern part of the Khur area, there is faults system with predominantly North-West strike. This network of tectonic disturbances is one of the most important fault systems in Central Iran which crosses Paleozoic metamorphic rocks, Cretaceous limestones, and Eocene volcanic rocks. Interpretation of satellite imagery ETM+ (Enhanced Thematic Mapper plus, Landsat) and field observations showed the presence of left-lateral shifts along with fault system. This formed the structure of the branch faults at the northeast end of the main fault. Another feature associated with shear dislocations is the rotation of blocks in the northeastern and southwestern segments of the area under study. There are several basins and positive structures within the area such as a series of uplifts and thrusts, indicating the presence of compressional and extensional tectonics. Another part of the work is devoted to the study of the correlation between active faults and earthquakes. Processing of satellite images, field observations, records of micro-earthquakes within a radius of 17 km made it possible to analyze the earthquakes parameters and the position of tectonic disturbances, and, as a result, confirm the presence of active faults in the region. In addition, we have identified three successive stages of the Khur area tectonics: rifting, contraction, change of convergence and uplift direction.
-
Date submitted2018-07-21
-
Date accepted2018-09-14
-
Date published2018-12-21
Natural ventilation of gas space in reservoir with internal floating roof
- Authors:
- M. G. Karavaichenko
- N. M. Fathiev
The article deals with safe operation issues of vertical steel reservoirs with an internal floating roof when storing volatile oil products. The purpose of the work is to study the influence of ventilation openings area and wind speed on the duration of explosive state of vertical reservoirs with an internal floating roof. The influence of ventilation pipes' dimensions and the wind speed on the duration of explosive state of the reservoir has been studied. Method for calculating this time is proposed. It is shown that natural ventilation of the reservoir gas space is caused by the effect of two forces, which are formed due to: 1) the density difference between the vapor-air mixture in the reservoir and outside air; 2) wind pressure occurring on the roof of the reservoir. An algorithm for calculating the duration of reservoir being in an explosive state with wind pressure and no wind is obtained. The greater the difference in geodetic marks of the central and peripheral nozzles, the more efficient the ventilation. This distance will be greatest if the lower ventilation pipes are located on the upper belt of the reservoir or the reservoir is equipped with an air drain. Increase in wind speed of more than 10 m/s does not significantly affect the duration of the reservoir being in an explosive state. Increasing the diameter of the central nozzle from 200 to 500 mm can significantly reduce the duration of the reservoir degassing in windless weather.
-
Date submitted2018-05-14
-
Date accepted2018-07-01
-
Date published2018-10-24
Method for forecast of surface deformation during excavation operations in restraint urban conditions using the slurry trench technique
- Authors:
- P. A. Demenkov
- L. A. Goldobina
- O. V. Trushko
The article suggests the method for forecast of surface deformation during excavation operations in restraint urban conditions using the slurry trench technique based on FEM simulation. The results of numerical simulation of the construction of a semi-underground structure with slurry trench technique are given. The regularities of the change in the stress-strain state are determined depending on the trench parameters and the physical-mechanical properties of the soils. The work presents the troughs of surface subsidence during the construction of an excavation using the slurry trench technique, the diagrams of bending moments, transverse and longitudinal forces arising in the trench. Numerical experiments in Plaxis 2D and 3D were performed to estimate the discrepancy between modeling results in a plane and volumetric formulation of the problem.
-
Date submitted2018-01-04
-
Date accepted2018-03-08
-
Date published2018-06-22
Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatite-nepheline ores
- Authors:
- M. N. Overchenko
- S. A. Tolstunov
- S. P. Mozer
The paper presents the results of borehole stability research and considers possible causes of emergencies. The features of the blast hole drilling process are analyzed taking into account the properties of the rock. Based on the distribution of speed of drill fines removal from the well, an algorithm for selecting drilling modes is proposed. The nature of change in the size of the holess over time has been analyzed. This paper investigates the influence of rock fracturing and its water content on borehole stability. Possible options for eliminating the man-made impact on the massif near holes and options for fixing the hole walls with soft shells are suggested. The experimental data on the installation of shells for the conditions of open mining of apatite-nepheline ores are given. The operability and effectiveness of the technology is proved.
-
Date submitted2017-10-25
-
Date accepted2018-01-17
-
Date published2018-04-24
Innovative technology of large-size products manufacture
- Authors:
- S. N. Sanin
- N. A. Pelipenko
Advantages and prospects for the use of mobile robotic machine-tools in the manufacture of large parts in the mining, cement and nuclear industries are considered, as well as the importance of using welded structures to reduce production costs. Schemes for finishing mechanical machining of welded large-sized parts such as bodies of revolution with the use of mobile robotic machine-tools equipped with a belt-grinding tool, an enlarged description of the technological process for manufacturing a large-sized shell of a welded structure are presented. The conclusion is made that it is necessary to take into consideration the use in the industry of frameless production technology, especially for the machining of large-sized parts, and the use of small mobile robotic machine-tools is a productive approach and has a prospective character. The technological approaches proposed in the article make it possible to remove the restriction on the overall size and mass of the parts being manufactured, which are proposed to be manufactured directly at the site of future operation. The effectiveness of this technology is confirmed both by theoretical research and by practical data of the authors. It was noted that the production by the domestic machine-tool industry of mobile universal and special robotic machine-tools will allow the country's engineering industry to be brought to a new, high-quality world level.
-
Date submitted2017-11-22
-
Date accepted2018-01-04
-
Date published2018-04-24
Justification of a methodical approach of aerologic evaluation of methane hazard in development workings at mines of Vietnam
- Authors:
- V. V. Smirnyakov
- Nguen Min' Fen
The methods of evaluation of the aerological conditions to be performed for the purpose of normalization of mining conditions are provided in the present review; the location of possible accumulations of explosive gases during the drift of the development workings are taken into account. To increase the safety of the development working regarding the gas factor, a complex evaluation of a working was developed with respect to the dynamics of methane emission and air coursing along the working which is strongly affected by the character of the leakages from the ventilation ducting. Thereby, there occurs a necessity of the enhancement of a methodical approach of calculation of ventilation of a working which consists in taking into consideration a total aerodynamic resistance of the booster fan including the local resistances of the zones of the working. An integer simulation of the gas-air flows realized on the basis of a software package FLowVision allows to evaluate a change in the methane concentration in the zones of local accumulations.
-
Date submitted2014-07-14
-
Date accepted2014-08-29
-
Date published2014-12-22
The development of ideas for improving explosive destruction of rock masses – the basis of progress in mining
- Authors:
- S. D. Viktorov
- V. M. Zakalinskii
The article describes the main areas of research in the field of the explosive destruction of rocks used in mining. The results of studies carried out in recent years are presented. Information on possi-ble applications for breaking up rocks of various energy sources is provided. Ideas are given on the possibility of raising the efficiency of explosives for mining rock by increasing the scale of the ex-plosive destruction. Information about the widespread adoption of these methods at Russia’s biggest iron ore companies is presented. Recent results on the fracture processes at different levels of scale up to destruction to form particles of submicron size are shown. Studying the structural transforma-tions of rock mass at the micro and macro features of allocation and distribution of energy in the charges of various designs allowed us to control the action of a new explosion by breaking up rock masses and the complex structure of multicomponent fields.
-
Date submitted2010-07-13
-
Date accepted2010-09-25
-
Date published2011-03-21
Hydrogeological typisation of the north part of the Mid-Atlantic ridge
- Authors:
- M. V. Krivitskaya
The deep basite-hyperbasite rocks wich are special features for the north part of the Mid-Atlantic Ridge (MAR) are observed. The hydrogeological structures of the MAR are distinguished.
-
Date submitted2010-07-29
-
Date accepted2010-09-02
-
Date published2011-03-21
The depth estimation of 2D conductive isometrical bodies by singular points at the tipper frequency characteristic
- Authors:
- E. Yu. Ermolin
- O. Ingerov
The relation between parameters of 2D anomaly body and features of vertical sections of tipper amplitude are considered in this paper. According to investigations the depth of center, top and bottom of conductive body is connected with geometrical distance between two symmetrically located positive extremes in tipper pseudo-sections. In addition the tipper amplitude in extremes decreases on account of increasing depth of anomalous body. The described regularities can be used for MT projects planning and quantitative estimation of anomalous body parameters using tipper pseudo-section constructed from field data.
-
Date submitted2009-09-26
-
Date accepted2009-11-25
-
Date published2010-06-25
Interaction of lexical and grammatical aspects in foreign languages teaching (the beginner level)
- Authors:
- A. N. Spiridonov
- K. V. Fedorov
The article studies further broadening and sophistication of mastered lexico-grammatical material through use of modality and The Sequence of Tenses which helps students to produce more complex syntactic structures and enhance the speech act.
-
Date submitted2009-08-03
-
Date accepted2009-10-30
-
Date published2010-02-01
Geotechnical engineering features of the estimation of stability of heavy constructions of designed cement works in Novorossiysk
- Authors:
- Yu. V. Khaliullina
In the paper possibilities of constructing industrial heavy structures near slopes are described. The influence of tectonics, seismicity, a relief, deposit rocks thicknesses, their physical properties of geotechnical engineering feature are analyzed. The law of marls durability change is established. Positions of the most probable surfaces of sliding in cracked monoclonal deposit thickness are shown. The estimation of stability of the loaded slopes is made. Some recommendations for maintenance of structure stability are given.
-
Date submitted1951-07-10
-
Date accepted1951-09-12
-
Date published1952-03-26
On the issue of protecting structures from the harmful effects of underground mining in coal and shale deposits with an unexplored nature of rock movement
- Authors:
- D. A. Kazakovskii
Until now, at newly developed deposits and at operating deposits with an unexplored nature of rock movement, the calculation of safety pillars in accordance with the recommendation of the "Rules for the Technical Operation of Mines" was carried out by analogy with other more or less studied deposits. However, there were no instructions on the selection of analog deposits, which could not but lead to an incorrect choice of parameters for calculating safety pillars. At present, it seems possible to give some guidelines on the selection of analog deposits based on accumulated factual data. These instructions can be used in calculating pillars during the design of mines and at operating deposits with an unexplored nature of rock movement. They can also be useful in calculating the profile lines of observation stations.