-
Date submitted2023-12-07
-
Date accepted2024-11-07
-
Date published2025-04-07
Determination of the tangential component of cutting resistance during frozen sedimentary rock cutting using blocked, deeply blocked and cell cutting methods
Due to the insufficient accuracy of existing studies of frozen sedimentary rock cutting process for practical calculations, the article solves the problem of determining the tangential component cutting resistance for blocked, deep blocked and cell cutting, which are currently the most commonly used methods in earthmoving equipment. The cutting tool and rock mass force interaction is considered from the point of view of the emerging stresses, which act on the separated chip element. The analytical dependences for determining the tangential component of cutting resistance were obtained. The numerical explanation of the choice of cell cutting in relation to blocked and deeply blocked cutting is given. For all three methods of cutting, under equal geometrical parameters of the cutting tool and the physical and mechanical properties of the frozen rock, the numerical value of the tangential component of cutting resistance is obtained. The comparison of the cutting resistance estimated values has shown that cell cutting requires relatively less energy and is preferred during the process of frozen sedimentary rock excavation. During field and laboratory investigations with the use of a multi-purpose cutting stand, a sufficient convergence of the analytical statements with the physics of frozen sedimentary rock cutting process was established. The results of the research allow a more reasonable approach to the adjustment of existing methods for determining the required tractive force and power for the drive of an excavation machine, and, therefore, to the actual efficiency and profitability of work.
-
Date submitted2024-05-30
-
Date accepted2024-10-14
-
Date published2024-11-12
Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths
The possibility of discovering oil and gas occurrences at great (more than 5 km) and super-great (more than 6 km) depths is considered in two aspects. The first one is the preservation conditions of large hydrocarbon accumulations forming at depths to 4 km and caused by different geological and tectonic processes occurring at great and super-great depths with partial oil-to-gas transformation. It was ascertained that among the factors controlling preservation of liquid and gaseous hydrocarbons are the temperature, pressure, subsidence rate (rate of temperature and pressure increase), time spent under ultrahigh thermobaric conditions, and initial composition of organic matter. The possibility of existence of liquid components of oil at great and super-great depths is characteristic of sedimentary basins of China, the Gulf of Mexico, the Santos and Campos basins on the Brazilian shelf, and in the Russian Federation it is most probable for the Caspian Depression, some submontane troughs and zones of intense accumulation of young sediments. Determination of critical temperatures and pressures of phase transitions and the onset of cracking is possible using the approach considered in the article, based on estimation of organic matter transformation degree, kinetic and thermobaric models taking into account the composition of hydrocarbon fluid. The second aspect is the estimation of composition of hydrocarbons associated with rocks forming at great depths or rocks transformed under conditions of critical temperatures and pressures. This aspect of considerable science intensity can hardly be considered as practically significant. The study focuses on the investigation of the possibilities of thermodynamic modelling and the use of alternative methods for studying the transformation degree of liquid formation fluid into components of the associated gas through the example of two areas with identified oil, condensate and gas accumulations.
-
Date submitted2024-05-13
-
Date accepted2024-09-05
-
Date published2024-11-12
Potential trace element markers of naphthogenesis processes: modeling and experimentation
With the growing demand for hydrocarbon energy resources, there is a need to involve oil fields at deeper horizons in processing and increase the profitability of their development. Reduction of expenses on prospecting works is possible at revealing and substantiation of physicochemical markers of the naphthogenesis processes. One of the key markers is the transition metals content, which are both a measure of oil age and markers of potential associated processes in the migration and formation of hydrocarbons in the Earth's strata. The elemental composition of samples of oil and reservoir rocks of the Timan-Pechora field was studied. Based on the results of thermodynamic modeling, plausible processes of contact rock minerals transformation were proposed. Based on the results of molecular modeling the probable structure of vanadium and nickel host molecules in the heavy fraction of oils is proposed. The ratios of transition metal and sulfur contents were experimentally established, and assumptions about possible mechanisms of formation of deep hydrocarbon reservoirs were made. Analysis of the obtained ratios of transition metal contents in reservoir rocks and oil samples allowed to suggest possible processes of mantle fluids contact with the host rock and subsequent accumulation of hydrocarbons on sorption active rocks. According to the combined results of experimental and theoretical studies it was found that polymers of heavy fraction more selectively capture vanadium, which indicates the predominance of vanadium content in oil-bearing rocks in relation to the content of nickel. In this case, oil acts as a transport of transition metals, leaching them from the bedrock.
-
Date submitted2022-09-26
-
Date accepted2023-03-23
-
Date published2023-12-25
A new diamond find and primary diamond potential of the Chetlas uplift (Middle Timan)
In the previously poorly studied southeastern part of the Chetlas uplift in the Middle Timan, a new occurrence of diamond satellite minerals and a diamond grain were found in the modern channel sediments of the Uvuy River basin. In order to assess the prospects of the area under consideration for identification of diamondiferous objects of practical interest, a characteristic of chromium-bearing pyropes and chromospinelides as the main kimberlite of diamond satellite minerals are given and the diamond grain itself is described. The material for the research was 16 schlich samples, each with a volume of 8 to 15 l. The minerals were studied using optical and scanning electron microscopy, Raman spectroscopy, laser luminescence and X-ray diffraction (Debye – Sherrer method). It is shown that among the pyropes, most of which correspond in composition to minerals of the lherzolite paragenesis, there are varieties belonging to the dunite-harzburgite paragenesis, including those belonging to diamond phase stability regions. Among the studied chromospinelides, chrompicotites and aluminochromites similar in composition to those found in rocks such as lherzolites and harzburgites, as well as in kimberlites, were identified. A diamond grain found in one of the samples has the form of a flattened intergrowth with distinct octahedron faces, complicated by co-growth surfaces with other mineral grains that have not been preserved to date. The discovery of the diamond and the established signs the formation of aureoles of the diamond satellites minerals in the channel sediments of the studied area open up the prospects for discovering their primary sources here.
-
Date submitted2022-08-10
-
Date accepted2023-02-28
-
Date published2024-02-29
Selection of the required number of circulating subs in a special assembly and investigation of their performance during drilling of radial branching channels by sectional positive displacement motors
The task of sludge removal to the surface during construction of directional and horizontal wells and strongly curved radial channels is relevant. For stable operation of technical system “Perfobore”, it is proposed to use a circulating sub that ensures efficient cleaning of channel wellbore from the drilled rock. Two schemes of technical system “Perfobore” are considered, consisting of two seven-meter coiled tubing, a positive displacement motor, a bit and one circulating sub in the first scheme and two subs in the second scheme. For each of the schemes CFD modeling was implemented to determine values of pressure and speed. It was found out that the use of two circulating subs in the assembly is more efficient. In order to confirm the numerical experiment, bench tests were carried out. It was determined that the designed circulating sub can eject up to 25 % of pumped drilling fluid. The bench tests of full-size technical system “Perfobore” for drilling 14-meter channels with two circulating subs showed that the axial load on positive displacement motor produced by hydraulic loader was 3000 N and pressure drop depending on flow rate was 1.5-2.0 MPa. This allows the motor to operate at maximum power.
-
Date submitted2022-06-09
-
Date accepted2022-11-17
-
Date published2022-12-29
Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields
Scientific and technological progress over the last century has led to an enormous increase in the consumption of minerals, including energy resources. Most of the exploited oil and gas fields are already considerably depleted, so it is necessary to search for new hydrocarbon resources, particularly at great depths. Deep drilling plays a special role in solving this problem. The article considers the world and Russian experience of ultra-deep wells drilling. The methods and technologies used in the construction of wells, as well as complications and accidents occurring during their drilling were analyzed. The analysis revealed that the existing limitations for drilling parameters of deep and ultra-deep wells are caused by the technical characteristics of surface and bottomhole drilling equipment, which do not meet the extreme drilling conditions. The directions for development of deep and ultra-deep well drilling machinery and technologies are suggested. The notion of extreme rock and geological drilling conditions is introduced, which describes drilling in conditions of hydrostatic pressure of flushing fluid column and high bottomhole temperature both at stable and unstable wellbore conditions, coming close to the upper limit of operating technical characteristics of bottomhole assembly, the drill string and flushing fluid.
-
Date submitted2021-09-01
-
Date accepted2022-10-07
-
Date published2022-12-29
Parameter determination of the method of directional unloading of the reservoir based on physical modelling on a true triaxial loading setup
The article presents a theoretical and experimental substantiation of the method of directional unloading of the reservoir in fields with low-permeability reservoirs. The relevance of the article is due to the reduction of hydrocarbon resources in modern conditions and the need to create new efficient environmentally friendly technologies to develop hydrocarbon deposits with hard-to-recover reserves, primarily with low-permeability reservoirs. The results of a theoretical study of the stress-strain state in the vicinity of a well, both cased and open, are presented. They are necessary to develop programs for laboratory testing of core specimens from the studied fields. A technique for physical modelling of deformation processes in the bottomhole zone with a decrease in pressure at the well bottom in a true triaxial loading unit is described in order to determine the parameters of the process impact on the formation reservoir, leading to an increase in well productivity. The method was applied to the conditions of the low-permeability reservoir at the Verkhneviluchanskoye oil and gas condensate field in the southwest of the Republic of Sakha (Yakutia). Expe-rimental studies were carried out on a unique scientific unit for true triaxial loading, created at the IPMech RAS, the Triaxial Independent Loading Test System. The directional unloading method was adapted for the studied field, the process parameters of successful application of the method were determined: the bottomhole design, the drawdown values necessary to increase the permeability of the bottomhole formation zone.
-
Date submitted2021-12-21
-
Date accepted2022-06-20
-
Date published2022-11-10
Scientific justification of the perforation methods for Famennian deposits in the southeast of the Perm Region based on geomechanical modelling
The article presents the results of analysing geological structure of the Famennian deposits (Devonian) in the Perm Region. Numerical modelling of the distribution of inhomogeneous stress field near the well was performed for the two considered types of perforation. With regard for the geometry of the forming perforation channels, numerical finite element models of near-wellbore zones were created considering slotted and cumulative perforation. It is ascertained that in the course of slotted perforation, conditions are created for a significant restoration of effective stresses and, as a result, restoration of reservoir rock permeability. Stress recovery area lies near the well within a radius equal to the length of the slots, and depends on the drawdown, with its increase, the area decreases. From the assessment of failure areas, it was found that in case of slotted perforation, the reservoir in near-wellbore zone remains stable, and failure zones can appear only at drawdowns of 10 MPa and more. The opposite situation was recorded for cumulative perforation; failure zones near the holes appear even at a drawdown of 2 MPa. In general, the analysis of results of numerical simulation of the stress state for two simulated types of perforation suggests that slotted perforation is more efficient than cumulative perforation. At the same time, the final conclusion could be drawn after determining the patterns of changes in permeability of the considered rocks under the influence of changing effective stresses and performing calculations of well flow rates after making the considered types of perforation channels.
-
Date submitted2021-05-27
-
Date accepted2022-09-06
-
Date published2022-11-10
Application of resonance functions in estimating the parameters of interwell zones
It is shown that the use of force resonance leads to the effect of “shaking” the formation, followed by breaking up the film oil and involving it in the further filtration process. For the first time in oilfield geophysics, the concept of passive noise-metering method is justified for monitoring oil and gas deposit development by measuring the quality factor of the contours in the point areas of formation development channels in interwell zones. It is established that determining the depth of modulation for the reactive substitution parameter of the linear FDC chain is crucial not only for determining the parametric excitation in FDC attenuation systems, but also without attenuation in the metrological support for the analysis of petrophysical properties of rock samples from the wells. It is shown that based on the method of complex amplitudes (for formation pressure current, differential flow rates, impedance), different families of resonance curves can be plotted: displacement amplitudes (for differential flow rates on the piezocapacity of the studied formation section), velocities (amplitudes of formation pressure current) and accelerations (amplitudes of differential flow rates on the linear piezoinductivity of the FDC section). The use of predicted permeability and porosity properties of the reservoir with its continuous regulation leads to increased accuracy of isolation in each subsequent sub-cycle of new segment formation in the FDC trajectories, which contributes to a more complete development of productive hydrocarbon deposits and increases the reliability of prediction for development indicators.
-
Date submitted2021-05-19
-
Date accepted2022-04-07
-
Date published2022-04-29
On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs
The paper analyses features of the species composition and diversity of biotic communities living within the ferromanganese nodule fields (the Clarion-Clipperton field), cobalt-manganese crusts (the Magellan Seamounts) and deep-sea polymetallic sulphides (the Ashadze-1, Ashadze-2, Logatchev and Krasnov fields) in the Russian exploration areas of the Pacific and Atlantic Oceans. Prospects of mining solid minerals of the world’s oceans with the least possible damage to the marine ecosystems are considered that cover formation of the sediment plumes and roiling of significant volumes of water as a result of collecting the minerals as well as conservation of the hydrothermal fauna and microbiota, including in the impact zone of high temperature hydrothermal vents. Different concepts and layout options for deep-water mining complexes (the Indian and Japanese concepts as well as those of the Nautilus Minerals and Saint Petersburg Mining University) are examined with respect to their operational efficiency. The main types of mechanisms that are part of the complexes are identified and assessed based on the defined priorities that include the ecological aspect, i.e. the impact on the seabed environment; manufacturing and operating costs; and specific energy consumption, i.e. the technical and economic indicators. The presented morphological analysis gave grounds to justify the layout of a deep-sea minerals collecting unit, i.e. a device with suction chambers and a grip arm walking gear, selected based on the environmental key priority. Pilot experimental studies of physical and mechanical properties of cobalt-manganese crust samples were performed through application of bilateral axial force using spherical balls (indenters) and producing a rock strength passport to assess further results of the experimental studies. Experimental destructive tests of the cobalt-manganese crust by impact and cutting were carried out to determine the impact load and axial cutting force required for implementation of the collecting system that uses a clamshell-type effector with a built-in impactor.
-
Date submitted2021-03-30
-
Date accepted2021-07-27
-
Date published2021-10-21
Integrated development of iron ore deposits based on competitive underground geotechnologies
- Authors:
- Vladimir L. Trushko
- Olga V. Trushko
The article presents an analytical review of the current state of the iron ore base of the ferrous metallurgy of Russia and the world, identifies the largest iron ore provinces and iron ore producers. The promising directions of development and improvement of the quality of the iron ore base of Russia and the features of the development of new deposits of rich iron ores are identified. Effective technologies for the development of rich iron ores deposits that ensure an increase in production volumes are proposed. The geomechanical justification of rational technological parameters that are easily adapted to changes in mining and geological conditions has been performed. Based on the results of field studies, the use of an elastic-plastic model with the Coulomb – Mohr strength criterion for modeling changes in the stress-strain state of an ore rock mass during mining operations is justified and recommendations for ensuring the stability of mine workings are developed. Effective engineering and technical solutions for the complex development and deep processing of rich iron ores with the production of fractionated sinter ore, which increases the efficiency of metallurgical processes, the production of high-grade iron oxide pigments and iron ore briquettes, which increase the competitiveness of iron ore companies and the full use of the resource potential of deposits, are presented.
-
Date submitted2020-06-23
-
Date accepted2021-03-02
-
Date published2021-04-26
Automated digitization of radial charts
Radial charts were commonly used in the industry to allow retrospective assessment of technological parameters. Today it is relevant to digitize the obtained data in order to simplify the automation of technological processes. Digitization of radial charts by means of standard methods is carried out with the help of human labor at significant time costs. The article proposes an automated method for digitizing radial charts using software, developed in the LabVIEW programming environment. The results of processing radial charts are displayed on the screen in numerical and graphical form, and can also be exported to a file (for example, to Notepad or MS Excel). The presented technique can be applied to images obtained on a color or black-and-white scanner, which minimizes geometric distortions, associated with the conversion of a paper document into electronic form, and ensures recognition quality of the clear plot line with an average relative error of up to 3 %. In case of ink fading or perspective photos of the diagram, the value of relative error can reach 8 %, as a result of which additional manual correction of the data will be required.
-
Date submitted2020-05-13
-
Date accepted2020-11-12
-
Date published2020-12-29
Improving the efficiency of terrigenous oil-saturated reservoir development by the system of oriented selective slotted channels
A comparative assessment of variation in the flow rate of oil production wells was performed taking into account increasing of perforated area of the productive part of the rocks, as well as recover of reservoir rocks permeability due to their unloading by creating slotted channels with the method of oriented slotted hydro-sandblast perforation. Different orientation directions and slotting intervals were analyzed, taking into account water encroachment of individual interlayers and azimuth direction of the majority of remaining reserves in separate blocks of the examined formation. In order to estimate development efficiency of terrigenous oil-saturated porous-type reservoirs by means of oriented slotted hydro-sandblast perforation, calculations were performed on a full-scale geological and hydrodynamic model of an oil field in the Perm Region. The object of modeling was a Visean terrigenous productive forma tion. The modeling of implementing oriented slotted hydro-sandblast perforation was carried out on a 3D filtration model for fourteen marginal wells, located in the zone with excessive density of remaining recoverable reserves and he terogeneous reserve recovery along the section. An optimal layout of slotted channels along the depth of the productive part of the well section was developed. Selective formation of 24 slotted channels was carried out con sidering the intervals of increased oil saturation. Comparative analysis of estimated flow rate of the wells was per formed for cumulative perforation of the examined productive formation and the developed method of slotted perforation. As a result of modeling, an increase in the oil average flow rate of 2.25 t/day was obtained. With oriented slotted hydro-sandblast perforation, incremental cumulative production for two years of prediction calculations per one well reached 0.5 thousand t.
-
Date submitted2020-06-15
-
Date accepted2020-06-15
-
Date published2020-06-30
Description of steady inflow of fluid to wells with different configurations and various partial drilling-in
- Authors:
- Valery A. Iktissanov
There are many equations of steady inflow of fluid to the wells depending on the type of well, presence or absence of artificial or natural fractures passing through the well, different degrees of drilling-in of the wellbores. For some complex cases, analytical solutions describing the inflow of fluid to the well have not yet been obtained. An alternative to many equations is the use of numerical methods, but this approach has a significant disadvantage – a considerable counting time. In this regard, it is important to develop a more general analytical approach to describe different types of wells with different formation drilling-in and presence or absence of fractures. Creation of this method is possible during modeling of fractures by a set of nodes-vertical wells passing from a roof to floor, and modeling of a wellbore (wellbores, perforation) by a set of nodes – spheres close to each other. As a result, based on this approach, a calculation algorithm was developed and widely tested, in which total inflow to the well consists of the flow rate of each node taking into account the interference between the nodes and considering the impermeable roof and floor of the formation. Performed modeling confirmed a number of known patterns for horizontal wells, perforation, partial drilling-in of a formation, and also allowed solving a number of problems.
-
Date submitted2019-07-10
-
Date accepted2019-08-30
-
Date published2019-12-24
Methodology for calculating technical efficiency of power sections in small-sized screw downhole motors for the «Perfobur» system
With an increase in the share of old and low-yield wells and for the efficient exploitation of fields, it is necessary to include low-capacity formations into production. There are many wells where sidetracking and hydraulic fracturing are difficult due to the close proximity of the gas cap and underlying water caused by geological and technological reasons, and the use of existing secondary drilling-in technologies is not effective due to the extensive colmatated zone or annular circulation. Relevance of radial drilling technologies is growing, which allows drilling-in of the formation with a network of extended channels to establish high-quality hydraulic communication between the formation and the well without affecting the permeability of the formation. In contrast to radial drilling technologies using hydraulic washing, technical system (TS) «Perfobur» uses small-sized screw downhole motors (SDM) and rock cutting tools for channel construction. For efficient milling of production casing and destruction of rock, the hydraulic downhole motor must have high torque, and for the possibility of drilling with a high rate of angle gain, it must have short power section. Existing Russian and foreign SDM have limited number of standard sizes and do not meet the requirements specified for the development of the downhole module of TS «Perfobur». The paper discusses the development of universal small-sized sectional screw downhole motors for milling casing strings and drilling a network of branched channels of super-small diameter and radius of curvature as a part of the TS «Perfobur». Methodology proposed in the article for selecting optimal configuration of the SDM power sections allows constructing small-sized sectional downhole motor that meets the technical requirements and has improved characteristics compared to standard SDM.
-
Date submitted2019-06-29
-
Date accepted2019-08-25
-
Date published2019-12-24
New technical solutions for ventilation in deep quarries
- Authors:
- S. G. Shakhrai
- G. S. Kurchin
- A. G. Sorokin
The paper discusses the issues of ventilating in deep quarries caused by the intensification of blasting operations at great depths, the increased distance of ore truck transportation to the daylight area, constant change in the geometrical parameters of the quarry, its microrelief and direction of mining, and increased isolation of the mined space from the environment. We provide a brief analysis of the current tools for forced airflow in deep quarries, which showed that the use of forced ventilation is often challenging since it leads to high energy consumption, high level of noise exceeding the permissible parameters, and high speeds of forced air flows may blow the dust off the quarry surfaces. The article presents methods and tools developed at the Siberian Federal University for intensifying the natural airflow in deep quarries by changing the air density at the entrance and exit points of the pit, as well as heating the shady areas using mirrors and solar energy, which do not interfere with mining and blasting operations.
-
Date submitted2019-03-11
-
Date accepted2019-05-11
-
Date published2019-08-23
Estimate of Radial Drilling Technology Efficiency for the Bashkir Operational Oilfields Objects of Perm Krai
- Authors:
- S. V. Galkin
- A. A. Kochnev
- V. I. Zotikov
The radial drilling technology efficiency for carbonate bashkir deposits of Perm Krai is considered. The geological structure of a productive part of bashkir layer is characterized by high degree of heterogeneity that promotes while drilling radial channels involvement in development additional interlayers that earlier was not drained. During the analysis the main geological process parameters affecting drilling technology efficiency were revealed. According to the dynamics of average daily oil production growth, palettes were built to forecast additional oil production as a result of radial drilling activities. Using the pallets, it is possible to predict the total additional oil production, well operating time with the effect of radial drilling and average daily oil production growth for each year. It was found that hydrochloric acid treatments performed on wells prior to radial drilling significantly reduce the effectiveness of radial drilling technology. For such wells, the value of the correction is statistically substantiated, which reduces the predictive estimate of the increase in oil production. A model was built to assess the increase in oil production in the first year after the event and an algorithm for calculating the total additional oil production was developed using linear discriminant analysis. For the resulting model, errors are calculated that are compared with the forecast efficiency of standard methods for oil-producing enterprises. This model shows a much more accurate correspondence of forecast results to actual technology application results. The probability of the event high efficiency increases significantly with a more detailed approach to the selection of wells for radial drilling. According to the forecast methodology, the technology’s efficiency was calculated and recommendations for its implementation for the wells of the Bashkir production objects were made in the interests of an oil-producing enterprise.
-
Date submitted2018-11-03
-
Date accepted2019-01-16
-
Date published2019-04-23
Interpretation of the tracer investigation results considering convective mass transfer
- Authors:
- V. A. Korotenko
- S. I. Grachev
- A. B. Kryakvin
The paper discusses the results of interpreting well tracer studies. It is shown that from the law of mass conservation it follows that when filtering a volume of an indicator, part of the injected tracer flows into the matrix. With the flow of fluid containing the indicator from the low-filtration resistance channel (LFR) into the surrounding matrix, the linear dimensions of the flow area depend on the permeability and porosity properties of the high-permeability channel and the matrix. While another part of the tracer moves toward the production well, its mass is lost due to diffusion processes. From the solution of the diffusion equation, it follows that the initial concentration of the tracer decreases in the course of filtration along the LFR channel. To interpret the results of the tracer studies, different cases of the LFR channels' location in the volume of the productive formation are considered. The varied parameter w allows characterizing the presence of several peaks in the concentration of the indicator and calculation the filtration parameters of the LFR channels. Depending on the known technological indices, several methods for determining pore volumes in the LFR channels have been proposed. To reduce the water cut in producing wells and to apply the technology of changing or aligning the injectivity profiles, calculations of the pore channels' radii in the mass of highly permeable seams are presented. It is shown that the volume of the chemical reagent pumped into the injection well to isolate the LFR channel is affected by the linear dimensions of the drainage area for the aqueous solution of indicator. Examples of the calculation for the permeability and porosity parameters of the LFR, the volume of pore channels necessary to isolate water inflow, and the radii of pore filtration channels, which influence the selection of the size of chemical reagent molecules, are given.
-
Date submitted2018-01-15
-
Date accepted2018-02-28
-
Date published2018-06-22
About the role of hydrafed calcium carboaluminates in improving the technology of complex processing of nephelines
- Authors:
- V. M. Sizyakov
- V. N. Brichkin
The scientific justification and development of the method for industrial synthesis of complex aluminates of alkaline earth metals is an innovative solution that determined several directions in the development of technology for complex processing of nepheline raw materials. It ensures the production of high-quality metallurgical alumina, the effective utilization of nepheline sludge and production of new types of multipurpose by-products. The modern development of these technical solutions is associated with ensuring the energy efficiency of the synthesis of hydrafed calcium carboaluminates (HCCA) and increasing the level of purification of aluminate solutions. The conditions for synthesizing HCCA with the use of calcareous materials of natural and technogenic origin have been experimentally determined, which makes it possible to isolate the average particle diameter as one of the determining factors of this process. The effect of the turnover of the hydrogarnet sludge on the removal of kinetic limitations in the process of deep desalination of aluminous solutions is theoretically justified. The conditions of a two-stage dosage of HCCA are experimentally determined. It is shown that the optimum ratio of the amount of the reagent supplied in the first and second stages is about 3: 2. At the same time, the maximum degree of precipitation of silica provides the production of aluminate solutions with a silicon module at the level of 95,000, which is achieved by using a HCCA synthesized based on chemically precipitated calcium carbonate in the processing of wastes from the production of mineral fertilizers.
-
Date submitted2016-11-18
-
Date accepted2016-12-28
-
Date published2017-04-14
Frequency electromagnetic sounding with industrial power lines on Karelia-Kola geotraverse
The paper describes theory, method and first experimental results of research on the interaction between electromagnetic waves of extremely low and ultra low frequency (0.1-200 Hz), the Earth crust and ionosphere in the field of two mutually orthogonal industrial power lines, 109 and 120 km long, in the course of FENICS experiment (Fennoscandian Electrical conductivity from Natural and Induction Control Source soundings). The main focus was on the observation results along the line of Karelia-Kola geotraverse over a distance of 700 km from the source. High horizontal homogeneity of geoelectrical lithosphere section has been detected in the eastern part of the Baltic shield at depth range from 10-15 to 50-70 km. Parameters of «regular» lithosphere section have been specified to the depth of 60-70 km. As a result of inverse problem solution for the western part of Karelia and Central Finland, a zone of decreased transverse resistivity has been detected at the depth of 50-60 km, corresponding to the area, detected by seismic methods, where Moho boundary reaches the same depth.
-
Date submitted2016-09-04
-
Date accepted2016-11-14
-
Date published2017-02-22
Methodology of reducing rock bump hazard during room and rillar mining of North Ural deep bauxite deposits
- Authors:
- D. V. Sidorov
The article describes practical experience of using room and pillar mining (RAPM) under conditions of deep horizons and dynamic overburden pressure. It was identified that methods of rock pressure control efficient at high horizons do not meet safety requirements when working at existing depths, that is explained by changes in geodynamic processes during mining. With deeper depth, the geodynamic processes become more intensive and number of pillar and roof failures increase. When working at 800 m the breakage of mine structures became massive and unpredictable, which paused a question of development and implementation of tools for compliance assessment of used elements of RAPM and mining, geological, technical and geodynamic conditions of North Ural bauxite deposits and further development of guidelines for safe mining under conditions of deep horizons and dynamic rock pressure. It describes reasons of mine structure failures in workings depending on natural and man-caused factors, determines possible hazards and objects of geomechanic support. It also includes compliance assessment of tools used for calculations of RAPM structures, forecast and measures for rock tectonic bursts at mines of OAO “Sevuralboksitruda” (SUBR). It describes modernization and development of new geomechanic support of RAPM considering natural and technogenic hazards. The article presents results of experimental testing of new parameters of RAPM construction elements of SUBR mines. It has data on industrial implementation of developed regulatory and guideline documents at these mines for identification of valid parameters of RAPM elements at deep depths.
-
Date submitted2014-12-25
-
Date accepted2015-02-01
-
Date published2015-12-25
Deep structure and composition characteristics of the continental earth's crust geostructures on the Russian Federation territory
- Authors:
- A. S. Egorov
Principal features of deep structure and composition of the lithosphere geostructures of the continental part of the Russian Federation territory are characterized within the radial-zonal model of the Earth’s crust. The principal units of the model are megablocks (paleoplites) with ancient layered continental crust and interblock megazones (structures of tension, compression and shear), separating them. The results of the geological-geophysical modeling are presented in the form of layer by layer deep structure schemes – of consolidated basement and of the platform cover and accompanied by a set of the earth's crust sections, carried out along regional profiles, performed with the application of a deep seismic sounding (DSS) method and reflected waves of common depth point (CDP) method.
-
Date submitted2010-07-01
-
Date accepted2010-09-12
-
Date published2011-03-21
Usage modern computer techniques for validation of actions guaranteeing opening strength of pit edge
- Authors:
- S. N. Kotlov
In this article is described an example of using program Modflow for the issues of oreation geofiltration processes numerical simulation on procedure of horizontal drainage well simulation. Also is estimated stability of pit edges in case of using system horizontal drains.