-
Date submitted2024-05-17
-
Date accepted2025-01-28
-
Date published2025-04-25
Determination of impact hazard potential of rocks in the Norilsk Industrial Region
The deeper the mineral deposits developments are, the worse the mining and geological conditions become. Significant growth of stress level in the rock mass contributes to possible manifestation of rock pressure in dynamic form. The resulting task of assessment of rock impact hazard is closely related to the task of obtaining more accurate results of compression tests of samples in rigid or servohydraulic test presses using graphs of their full deformation. This approach requires special expensive equipment, considerable time resources, and sufficient core material. Therefore, it is important to have an approach that allows to assess the propensity of rocks to brittle fracture with research methods simple enough not to result in the loss of quality and reliability of the obtained results. This paper presents the results of laboratory tests of rocks from the Norilsk Industrial Region to determine their tensile and compressive strengths. Test methods involved both domestic and foreign standards for determining the value of the brittleness coefficient. The impact hazard potential of rocks was determined using the Kaiser criterion. It is found that the tested lithological types (rich sulfide ores, hornblende, disseminated ores, and gabbro-dolerite rocks), with the exception of anhydrite, have a low impact hazard potential.
-
Date submitted2023-07-19
-
Date accepted2023-07-19
-
Date published2023-07-19
Energy efficiency in the mineral resources and raw materials complex
Energy efficiency and energy saving at all times and especially at the present stage of development of industry and economy have played an extremely important role. Regardless of which countries and according to what criteria they build energy development plans, energy efficiency and energy saving are always a priority. This fully applies to the mineral resources complex, in which energy consumption as a whole makes up a large share of total consumption. The resources mined in the mineral resources complex are themselves a source of energy. The energy sector is evolving in many ways. Many scientific works, the results of which are reflected in publications, confirm the relevance of research in the energy efficiency field. But the approach to individual decisions in the mineral resource industry is specific and it is worth of separate consideration. Recently, much attention has been paid to “green energy” and renewable energy sources. However, energy efficiency in the field of traditional generation and consumption remains an urgent problem and its solution is in constant development. One of the main directions for improving energy efficiency is the development of autonomous systems for the electrical and thermal power engineering. All these problems are reflected in a special volume of the Journal of the Mining Institute, the articles are divided into four sections: energy efficiency of the electric drive in the mineral resources complex (MRC); energy efficiency of industrial plants and enterprises in MRC; power quality and renewable sources in MRC; autonomous power supply systems in MRC. The presented articles contain valuable material from the scientific and practical points of view and can form the basis for further research in the energy efficiency field.
-
Date submitted2023-03-16
-
Date accepted2023-06-20
-
Date published2023-07-19
Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator
In the steady state of operation, the temperature of a mining excavator hydraulic fluid is determined by the ambient temperature, hydraulic system design, and power losses. The amount of the hydraulic system power loss depends on the hydraulic fluid physical and thermodynamic properties and the degree of wear of the mining excavator hydraulic system working elements. The main causes of power losses are pressure losses in pipelines, valves and fittings, and leaks in pumps and hydraulic motors. With an increase in the temperature of hydraulic fluid, its viscosity decreases, which leads, on the one hand, to a decrease in power losses due to pressure losses in pipelines, valves and fittings, and, on the other hand, to an increase in volumetric leaks and associated power losses. To numerically determine the level of power losses occurring in the hydraulic system on an example of the Komatsu PC750-7 mining excavator when using Shell Tellus S2 V 22, 32, 46, 68 hydraulic oils with the corresponding kinematic viscosity of 22, 32, 46, 68 cSt at 40 °C, the developed calculation technique and software algorithm in the MatLab Simulink environment was used. The power loss coefficient, obtained by comparing power losses at the optimum temperature for a given hydraulic system in the conditions under consideration with the actual ones is proposed. The use of the coefficient will make it possible to reasonably select hydraulic fluids and set the values of the main pumps limit state and other hydraulic system elements, and evaluate the actual energy efficiency of the mining hydraulic excavator. Calculations have shown that the implementation of measures that ensure operation in the interval with a deviation of 10 % from the optimal temperature value for these conditions makes it possible to reduce energy losses from 3 to 12 %.
-
Date submitted2023-03-14
-
Date accepted2023-06-20
-
Date published2023-07-19
A reliability study of the traction drive system in haul trucks based on failure analysis of their functional parts
The efficiency of a mining and processing plant depends on the level of complex mechanization of the production process. In mineral extraction, haulage is a major cost category, with haul trucks being the key component of the mining transportation system. To improve production performance, mining operations can increase their haulage turnover and reduce transportation costs, which necessitates making haul trucks more reliable. This can be done by improving their mean time to first failure (MTFF) indicators. This article analyzes the reliability status of the traction drive system inhaul trucks operating in the mineral resources sector. It provides a quantitative assessment of traction drive system failures resulting from part defects and discusses the associated repair costs. By examining failure data from 2018 to 2022 and the results of vibration tests performed on a diesel generator, the study reveals that the most expensive failures are associated with defects in the synchronous generator, which are primarily caused by elevated external vibrations. Based on basic vibration tests and vibration spectra tests at different operating modes, recommendations have been formulated concerning the generator’s robustness to external mechanical forces and the ways to increase the generator’s protection grade to prevent dust intrusion. The study also identifies the frequency range that poses the greatest risk of damage to the windings.
-
Date submitted2023-03-14
-
Date accepted2023-06-20
-
Date published2023-07-19
Evaluation of the energy efficiency of functioning and increase in the operating time of hydraulic drives of sucker-rod pump units in difficult operating conditions
The necessity of improving the drives of the sucker-rod hydraulic pump units (SRHP), operated in conditions of marginal and complicated wells, is substantiated. For complicated oil production conditions, it is promising to use the SRHP drive, which makes it possible to select and set rational operating modes for downhole equipment. The results of comparative tests of conventional mechanical and hydraulic actuators SRHP with pneumatic and electrodynamic balancing types are presented. A generalized indicator for evaluating the effectiveness of the advanced SRHP drives functioning, the energy efficiency coefficient, is proposed. It has been experimentally proven that the use of the SRHP drive with pneumatic balancing is characterized by low energy efficiency of the well fluid production process. The use of the tested SRHP hydraulic drive made it possible to successfully eliminate asphalt, resin, and paraffin deposits and minimize the well downtime. The results of the tests of the traditional SRHP mechanical drive and the hydraulic drive with electrodynamic balancing showed a satisfactory energy efficiency of the latter. The advantage of the SRHP drive with electrodynamic balancing is the simplicity of the design of the hydraulic part. The process of energy regeneration during the drive control system operation causes an increase in the reactive power component in the oil field network and the appearance of harmonic interference that adversely affects the consumers operation. Technical solutions aimed at improving the operation energy efficiency and increasing the operating time of SRHP drives in the conditions of marginal and complicated wells are proposed. The methodological bases for assessing the economic efficiency of the introduction of the advanced SRHP drives are given.
-
Date submitted2023-03-16
-
Date accepted2023-06-20
-
Date published2023-07-19
Energy efficiency of the linear rack drive for sucker rod pumping units
- Authors:
- Oksana Yu. Ganzulenko
- Ani P. Petkova
At present, in order to increase oil production and reduce economic costs in the development of marginal fields, the development of a cluster method using compact mobile drives of sucker rod pumping units (SRPU) is relevant. The aim of the work is to analyze the ways to improve the energy efficiency of the SRPU by reducing the loss of mechanical and electrical energy, to select the most energy-efficient compact drive for the development of marginal fields in the cluster method, to carry out the kinematic and strength calculations of the drive of the selected size, to develop an adaptive control system for a group of drives in the cluster development of drillings. According to the results of the performed calculations, the linear rack-and-gear drive has the highest efficiency of the drive mechanism. The kinematic and strength calculations of a linear rack-and-gear drive with a stroke length of 1120 mm and a load of up to 8 tons are presented. It was shown that the usage of a direct torque control system and a kinetic energy storage system for the SRPU drive elements and a rod string is an effective means of reducing energy costs in oil production from marginal fields. The use of the developed system for storing and redistributing the potential energy of the rods between the SRPUs that lift oil made it possible to eliminate fluctuations in the power consumption, reduce the power peak value by three times, the peak value of the current consumed from the electric network by two times, and reduce losses in the input converter and cables by three times.
-
Date submitted2022-10-13
-
Date accepted2022-12-13
-
Date published2023-07-19
A complex model of a drilling rig rotor with adjustable electric drive
A modified mathematical model of an asynchronous electric drive of the rotor – a drill string – a bit – a rock is considered and implemented, which develops and generalizes the results of previously performed studies. The model includes the following subsystems: a model of an asynchronous drive with vector control; a model of formation of the resistance moment at the bottom of the bit, taking into account the peculiarities of the interaction between the bit and the rock; a model of a multi-mass mechanical part that takes into account the deformation of the drill string; subsystem for the drilling rig energy-technological parameters formation. The integrated model makes it possible to calculate and evaluate the selected drilling modes, taking into account their electro-mechanical, energy and technological efficiency and the dynamics of drilling processes. The performed computer simulation of drilling modes confirmed the possibility of a stick-slip effect accompanied by high-frequency vibrations during bit stops, which may change the direction of rotation of the bit, its accelerated wear and unscrewing of the drilling tool. Long bit stops lead to a significant decrease in the average bit rotation speed, which can explain the decrease in the ROP and increase in energy consumption when drilling in the zone of unstable bit rotation. The model can be used as a base for further improvement of rotary drilling control systems.
-
Date submitted2021-05-13
-
Date accepted2022-11-28
-
Date published2022-12-29
Reproduction of reservoir pressure by machine learning methods and study of its influence on the cracks formation process in hydraulic fracturing
Hydraulic fracturing is an effective way to stimulate oil production, which is currently widely used in various conditions, including complex carbonate reservoirs. In the conditions of the considered field, hydraulic fracturing leads to a significant differentiation of technological efficiency indicators, which makes it expedient to study in detail the crack formation patterns. For all affected wells, the assessment of the resulting fractures spatial orientation was performed using the developed indirect technique, the reliability of which was confirmed by geophysical methods. In the course of the analysis, it was found that in all cases the fracture is oriented in the direction of the development system element area, which is characterized by the maximum reservoir pressure. At the same time, reservoir pressure values for all wells were determined at one point in time (at the beginning of hydraulic fracturing) using machine learning methods. The reliability of the used machine learning methods is confirmed by high convergence with the actual (historical) reservoir pressures obtained during hydrodynamic studies of wells. The obtained conclusion about the influence of the formation pressure on the patterns of fracturing should be taken into account when planning hydraulic fracturing in the considered conditions.
-
Date submitted2022-06-20
-
Date accepted2022-10-10
-
Date published2022-11-03
Monitoring of grinding condition in drum mills based on resulting shaft torque
Grinding is the most energy-intensive process among all stages of raw material preparation and determines the course of subsequent ore beneficiation stages. Level of electricity consumption is determined in accordance with load characteristics forming as a result of ore destruction in the mill. Mill drum speed is one of process variables due to which it is possible to control ore destruction mechanisms when choosing speed operation mode of adjustable electric mill drive. This study on increasing energy efficiency due to using mill electric drive is based on integrated modelling of process equipment – grinding process and electromechanic equipment – electric drive of grinding process. Evaluating load torque by means of its decomposition into a spectrum, mill condition is identified by changing signs of frequency components of torque spectrum; and when studying electromagnetic torque of electric drive, grinding process is monitored. Evaluation and selection of efficient operation mode of electric drive is based on the obtained spectrum of electromagnetic torque. Research results showed that with increasing mill drum speed – increasing impact energy, load torque values are comparable for the assigned simulation parameters. From the spectra obtained, it is possible to identify mill load condition – speed and fill level. This approach allows evaluating the impact of changes in process variables of grinding process on parameters of electromechanical system. Changing speed operation mode will increase grinding productivity by reducing the time of ore grinding and will not lead to growth of energy consumption. Integration of digital models of the technological process and automated electric drive system allows forming the basis for developing integrated methods of monitoring and evaluation of energy efficiency of the entire technological chain of ore beneficiation.
-
Date submitted2021-10-15
-
Date accepted2022-09-06
-
Date published2022-11-10
Experimental research on the thermal method of drilling by melting the well in ice mass with simultaneous controlled expansion of its diameter
- Authors:
- Danil V. Serbin
- Andrey N. Dmitriev
During the seasonal work of the 64th Russian Antarctic Expedition in 2018-2019 at the “Vostok” drilling facility named after B.B.Kudryashov (“Vostok” station, Antarctic) specialists of Saint Petersburg Mining University conducted experimental investigations on the process of drilling by melting with simultaneous expansion of wells in the ice mass. A test bench and a full-scale model of a thermohydraulic reamer-drilling tool were developed, manufactured and tested for the research. The first bench tests of the full-scale model proved its efficiency and suitability for experimental drilling with simultaneous expansion of wells in ice mass; its operational capabilities were determined and the drawbacks that will be taken into account in future were found out. The article substantiates the choice of constructive elements for thermohydraulic reamer-drilling tool. It is determined that the technology of full diameter drilling with simultaneous expansion of the well in ice mass can be implemented by combining contact drilling by melting and convective expansion with creation of forced near-bottomhole annular circulation of the heated heat carrier. Dependencies of expansion rate on main technological parameters were determined: active heat power of heating elements in penetrator and circulation system, mechanical drilling rate, pump flow rate. According to the results of investigations, the experimental model of thermohydraulic reamer-drilling tool will be designed and manufactured for testing in conditions of well 5G.
-
Date submitted2021-03-23
-
Date accepted2022-01-24
-
Date published2022-04-29
Justification of the technological scheme parameters for the development of flooded deposits of construction sand
- Authors:
- Vladimir V. Ivanov
- Denis O. Dzyurich
The article describes the main types of technological schemes for working out the flooded strata of sand deposits using hydraulic shovel excavators. The analysis of scientific and technical literature describing the experience of using hydraulic shovel excavators in the open-pit mining, including pits for the extraction of construction sand, has been carried out. The proposed technological scheme is that the development of reserves of the flooded strata without preliminary water reduction is carried out by a hydraulic shovel excavator from under water by a downward digging with the storage of the extracted rock mass in bulk (for dewatering), placed in such a way that when working out the next mining bench width, it is located within the working area of the excavator for simultaneous processing of the next bench width and loading of dewatered sand from the pile. Calculations of the parameters of the operating platform and the excavator block of the proposed technological scheme for conducting open-pit mining were carried out. The dependence for determining the minimum length of the mining operations front of an excavator for drawing up a technological scheme of operation of a backhoe hydraulic excavator on working out the flooded strata with the pile formation for dewatering sand and its subsequent uploading from the pile by the same excavator is presented.
-
Date submitted2021-02-28
-
Date accepted2021-11-30
-
Date published2021-12-27
Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation
- Authors:
- Alexander K. Nikolaev
- Natalia А. Zaripova
One of the development priorities in oil and gas industry is to maintain gas and oil pipeline networks and develop pipeline-connected gas and oil fields of the Arctic zone of the Russian Federation, a promising region the resource potential of which will not only meet a significant portion of internal and external demand for various types of raw materials and primary energy carriers, but will also bring great economic benefits to subsoil users and the state. The mineral and raw material centers of the Nadym-Purskiy and Pur-Tazovskskiy oil and gas bearing areas are among the most attractive regions of the Arctic zone. It is necessary to develop a scientifically substantiated approach to improve the methods of oil transportation from the field to the existing pipelines. As it is known, the task of increasing the efficiency of pipeline transportation of high-viscosity oil is inseparably connected with solving problems in the field of thermal and hydraulic calculation of pipeline system. The article presents the substantiation of dependencies for hydraulic calculation of pipelines transporting high-viscosity oil exhibiting complex rheological properties. Based on the laws of hydraulics for non-Newtonian fluids, the formulas for calculating head losses for fluids obeying Ostwald's law are proposed, their relationship to the classical equations of hydraulics is shown. The theoretical substantiation of looping installation for increasing the efficiency of pipeline transportation of high-viscosity oil taking into account the received dependences for power fluid is considered.
-
Date submitted2021-03-04
-
Date accepted2021-04-05
-
Date published2021-06-24
Justification and selection of design parameters of the eccentric gear mechanism of the piston lubrication and filling unit for the mining machines maintenance
Piston pumps are widely used in the lubrication systems of mining machines. When carrying out technical maintenance (MOT), including lubrication and filling works, at the site of operation of mining machines due to the remoteness from repair shops and warehouses of fuels and lubricants (FAL), mobile repair shops ( MRS), maintenance units (MU) and mechanized filling units (MFU) are used. The specificity of carrying out maintenance is to create conditions for the supply of oils, working fluids and lubricants to the corresponding systems of mining machines for their refueling. Existing piston pumps and pumping units, as a rule, are single-flow, and the piston is driven by a crank mechanism driven from the engine through a worm gear. The emergence of unique, hydraulic, low-mobility mining machines in open pit mining required a significant increase in the power of the MU and MFU oil pumping units, primarily for greases. However, the traditional design of the drive design of a crank-type piston pump unit at a power of over 80 kW does not allow achieving the specified operating time, it is accompanied by intensive wear of the drive elements and increased dynamics during operation. In addition, it is necessary to apply various designs of pumping units for the supply of liquid and grease lubricants. Thus, it is necessary to develop new circuit solutions for pumping units of the crank type, to improve mobile refueling facilities with a modernized design of the pump unit drive of the mobile lubrication and filling station MRS.
-
Date submitted2021-01-21
-
Date accepted2021-04-19
-
Date published2021-04-26
Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives
Equipment with diesel engines is used in all mining enterprises. Monorail diesel transport is of great importance in coal mines, as it facilitates the heavy labor of workers when transporting materials and people, fixing mining workings, refueling and repairing equipment, which leads to an increase in the speed of tunneling operations. Reducing the concentration of harmful gases from diesel-hydraulic locomotives at the workplaces of coal mine locomotive drivers can be ensured by the use of additives to diesel fuel that reduce the volume of harmful gas emissions during the operation of diesel-hydraulic locomotives. Additive ester-based on vegetal oil in the amount of 5 mass % in a mixture with hydrotreated diesel fuel reduces the concentration of carbon monoxide by 19-60 %, nitrogen oxides by 17-98 %, depending on the operating mode of the engine, the smoke content of the exhaust gases is reduced to 71 %. There is an improvement in working conditions at the workplace of the driver of a diesel-hydraulic locomotive by the chemical factor due to the reduction of the class of working conditions from 3.1. to 2.
-
Date submitted2020-05-18
-
Date accepted2020-06-16
-
Date published2021-04-26
Traction asynchronous electric drive of mine electric locomotivesimulation model structure improvement
The article discusses the solution to the problem of underground railway transport slipping in dynamic modes, which occurs when there is a significant difference in the speeds of the driving and driven pairs of wheels. The state of the rail surfaces largely determines the coefficient of adhesion, therefore, using a mathematical model, the condition for the dependence of the magnitude of slipping and tractive effort is selected. For effective acceleration and deceleration of an electric locomotive, it is necessary to control the coefficient of adhesion at a certain level. A simulation model of rolling stock has been created, which for the first time takes into account a mechanical system with distributed parameters. In the structural diagram of the automatic control system of traction electric drives with frequency regulation, such factors as the volume of goods being moved, rolling friction, slope (rise) levels and the state of the rail track are taken into account. The simulation results show the features of the movement and stops of the freight train not only by the diagrams of speed and forces in the modes of acceleration-deceleration and uniform movement, but also the positions of the plungers and tractive forces on the couplings of the electric locomotive and all trolleys involved in the movement of goods. The practical application of the proposed method lies in the possibility of starting a heavily laden train from its place on the ascent section in conditions of insufficient adhesion coefficient with contaminated roads.
-
Date submitted2020-05-16
-
Date accepted2021-03-02
-
Date published2021-04-26
Study of drive currents for lifting bridge cranes of metallurgical enterprises for early diagnosis of load excess weight
The article discusses an approach based on the analysis of the drive motor currents to create an additional means of protection against emergency situations during the operation of bridge cranes associated with lifting a load with a mass exceeding the permissible one . A mathematical model of an overhead crane drive is described, as well as the results of computer simulation. It is shown that in the process of lifting up, before the stage of lifting the load, the stator current of the drive electric motor does not depend of the load mass, but when the load is detached, already for several periods of the mains voltage after the rope is pulled, when the mass of the load is exceeded, a measurable excess of the amplitude value of the current is recorded. This pattern has been confirmed for a number of cranes of various lifting capacities used at metallurgical enterprises. The possibility of diagnosing excess weight of the lifted load with a higher speed than existing mechanical methods of overload control is demonstrated, at the same time it is not required to make changes to the structural elements of overhead cranes.
-
Date submitted2020-06-16
-
Date accepted2020-11-09
-
Date published2020-12-29
Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology
To solve the problems accompanying the development of forecasting methods, a probabilistic method of data analysis is proposed. Using a carbonate object as an example, the application of a probabilistic technique for predicting the effectiveness of proppant hydraulic fracturing (HF) technology is considered. Forecast of the increase in the oil production of wells was made using probabilistic analysis of geological and technological data in different periods of HF implementation. With the help of this method, the dimensional indicators were transferred into a single probabilistic space, which allowed performing a comparison and construct individual probabilistic models. An assessment of the influence degree for each indicator on the HF efficiency was carried out. Probabilistic analysis of indicators in different periods of HF implementation allowed identifying universal statistically significant dependencies. These dependencies do not change their parameters and can be used for forecasting in different periods of time. Criteria for the application of HF technology on a carbonate object have been determined. Using individual probabilistic models, integrated indicators were calculated, on the basis of which regression equations were constructed. Equations were used to predict the HF efficiency on forecast samples of wells. For each of the samples, correlation coefficients were calculated. Forecast results correlate well with the actual increase (values of the correlation coefficient r = 0.58-0.67 for the examined samples). Probabilistic method, unlike others, is simple and transparent. With its use and with careful selection of wells for the application of HF technology, the probability of obtaining high efficiency increases significantly.
-
Date submitted2020-07-22
-
Date accepted2020-11-12
-
Date published2020-12-29
Simulation of the electric drive of the shearer to assess the energy efficiency indicators of the power supply system
- Authors:
- Vyacheslav A. Voronin
- Fedor S. Nepsha
This paper considers the problem of electric drive of shearers simulation to assess the indicators of power supply system (PSS) energy efficiency in the context of the introduction of modern devices for controlling the flow of electricity and power. The block diagram of the shearer electric drive simulation model is presented. To take into account fluctuations in the level of consumption of active and reactive power, a model of the executive body of the shearer was used in the work, including a model of the moment of resistance on the auger when cutting. As a result, in the MATLAB Simulink environment, a simulation model of the electric drive of the UKD300 shearer was developed, suitable for assessing the energy efficiency of the electrical complex of mining areas and the feasibility of using modern devices for controlling the flow of electricity and power. As a result of the simulation, it was found that a significant irregularity in the graph of reactive power consumption, caused by repeated short-term operation, makes the use of capacitor units ineffective to compensate for reactive power.
-
Date submitted2020-05-21
-
Date accepted2020-10-05
-
Date published2020-11-24
Method of calculating pneumatic compensators for plunger pumps with submersible drive
- Authors:
- Eduard O. Timashev
One of the most promising ways to improve the efficiency of mechanized oil production is a plunger pump with a submersible drive, which allows obtaining harmonic reciprocating movement of the plunger. In the pumping process of well products by plunger pumps, oscillations in the velocity and pressure of the liquid in the lifting pipes occur, which lead to an increase in cyclic variable loads on the plunger, a decrease in the drive life period and the efficiency of the pumping unit. To eliminate the pulsation characteristics of the plunger pump and increase the reliability indicators of the pumping unit (in particular, the overhaul period), pneumatic compensators can be used. A method for calculating the optimal technological parameters of a system of deep pneumatic compensators for plunger pumping units with a submersible drive, based on mathematical modeling of hydrodynamic processes in pipes, has been developed. Calculations of the forming flow velocity and pressure in the lifting pipes of submersible plunger units equipped with pneumatic compensators (PC) have been carried out. Influence of the PC technological parameters on the efficiency of smoothing the oscillations of velocity and pressure in the pipes has been analyzed. Non-linear influence of the charging pressure and PC total volume on the efficiency of their work has been established. Optimal pressure of PC charging, corresponding to the minimum pressure in the tubing during the pumping cycle for the considered section of the tubing, is substantiated. Two ultimate options of PC system placement along the lifting pipes are considered. In the first option, PC are placed sequentially directly at the outlet of the plunger pump, in the second - evenly along the lift. It is shown that the first option provides the minimum amplitude of pressure oscillations at the lower end of the tubing and, accordingly, variable loads on the pump plunger. Nature of the pressure and flow velocity oscillations in the tubing at the wellhead for both options of PC placement has similar values .
-
Date submitted2020-06-22
-
Date accepted2020-07-24
-
Date published2020-06-30
Methods for assessing the technical compatibility of heterogeneous elements within a technical system
The article provides methods for assessing the compatibility of elements in the design of complex technical systems. The compatibility of the elements is considered as the main indicator that determines the quality of systems including heterogeneous elements. The presented methods make it possible at the design stage to choose a technical solution that is most suitable for the project objectives, taking into account the operating conditions of the system. The methods make it possible to evaluate compatibility by a single and complex indicator. The choice of indicator depends on the purpose of the assessment. An example of methods implementation in the design of systems including an electric drive and pipeline shutoff valves is considered. It has been experimentally proved that in systems with low values of the compatibility level, the actual power characteristics exceed the required values, which leads to additional voltages in the system elements and their breakdowns. The results of the assessment of typical systems allowed to identify the shortcomings of existing structures and propose alternative solutions to problems. The compatibility of elements within the framework of a technical system makes it possible to increase the functional efficiency of systems with minimum weight and size and power characteristics, to optimize the price-quality ratio, and to increase the competitiveness of the final product.
-
Date submitted2019-07-22
-
Date accepted2020-01-04
-
Date published2020-04-24
“Ural-20R” combines loading drives evaluation in two-stage development of the face
The technological features of the use of high-performance Ural-20R combines in the conditions of potash mines in Russia are described. It is shown that when the capacity of the worked potash seams is over 4 m, a two-layer ore extraction is used. The formation of cutting process, implemented by the second course of the combine in the treatment chamber, is carried out by an incomplete section of the executive bodies. The standard control system, display and protection of the Ural-20R combine does not allow monitoring and reliable estimation of the magnitude of dynamic components on the drives of the mining machine loads, as well as tracking the feed rate of the combine to the face. The regulation of the operating parameters and the assessment of the degree of loading of the drives of the excavating machine in real time are assigned to the operator. The fundamentals of the experimental research methodology for assessing the loading of drives of Ural-20R combines with the destruction of the potash mass by an incomplete section of the executive bodies are described. The device and the operating procedure of the “Vatur” software-recording complex, which measures, records and records the electrical parameters of the drive motors of a mining machine, is described. The process studies results of forming loads on drive elements of Ural-20R combines when mining a face with an incomplete section of executive bodies are presented. It is proved that the work of combine harvesters on the undercut of the formation with a high feed rate is accompanied by significant dynamic loads on the drives of planetary organs and an overload of the drives of the Berm organs, which leads to an accelerated consumption of the resource and emergency failures of the gearboxes and motors of the extraction machine.
-
Date submitted2019-05-05
-
Date accepted2019-07-03
-
Date published2019-10-23
Scraper Face Conveyors Dynamic Load Control
- Authors:
- E. K. Eshchin
The task of controlling the dynamic loading of scraper face conveyors (SC) is considered and the unsatisfactory state of loading of mechanical and electrical components of the SC is recorded. The possibility of the appearance of a self-oscillatory nature of the entire system load due to the peculiarities of the movement of the traction chain along the lattice frame of the SC is indicated. The property of the system is noted – the cyclic nature of the loading of the circuit during movement, which causes energy exchange processes between the mechanical and electromotive components of the conveyor (when using the head and tail electric drives) through the common cable network of the power supply system of the SC. A high level of dynamic loading of the electromechanical system causes the problem of eliminating the self-oscillating operating mode of the SC that generates it which is proposed to be solved by changing the angular rotation speeds of the SC drive sprockets. Angular speeds can be changed by applying frequency control of asynchronous electric motors. The efficiency of setting the frequency of electric motor stator currents of the head and tail drives of the conveyor is established in proportion to the frequency of rotors rotation to eliminate self- oscillating modes of operation in the main operating mode. The possibility of reducing the starting shock values of the electromagnetic moments of electric motors is considered. The results of the calculation of the start-up and liquidation of the self-oscillating operating mode are presented on the example of the scraper face conveyor Anzhera-34. The results of calculations of the start-up modes and the main operational transportation of coal in an uncontrolled mode of operation and after the introduction of control are compared, based on which it is concluded that it is advisable to use active control of the dynamic loading ofSC.
-
Date submitted2019-03-21
-
Date accepted2019-05-05
-
Date published2019-08-23
Stimulation of the Drilling Process with the Top Driven Screw Downhole Motor
- Authors:
- S. L. Simonyants
- M. Al Taee
Paper considers application of the top driven screw downhole motor during drilling of directional wells. The advantages and disadvantages of the rotation-sliding technology with implementation of top drive together with screw downhole motor are shown. It has been proven that the use of a screw downhole motor with simultaneous rotation of drilling pipes using the drilling rig's top drive allows increasing the bit rotation frequency without additional loading of the drilling string. Field data for the work out of one-type PDC bits in identical geological and technical conditions with different types of drives during the construction of three directed wells at the Rumaila oil field of the Republic of Iraq were obtained. A regular increase in the mechanical penetration rate, which is explained by an increase in the bit rotation frequency, has been proved. According to the data obtained, a comparative analysis of the drilling indices was carried out, as a result of which the feasibility of joint use of top power drive with screw downhole motor at drilling oil and gas wells was proved.
-
Date submitted2019-01-20
-
Date accepted2019-03-04
-
Date published2019-06-25
Improving transportation efficiency belt conveyor with intermediate drive
- Authors:
- I. S. Trufanova
- S. L. Serzhan
Modern industry in the XXI century requires high-performance and fully automated technology. The best way to meet these requirements is the introduction of new progressive technologies in the process of transportation. One of the possible ways to increase productivity, as well as automate the process of transportation, is the transition from cyclic machines to continuous transport, namely to belt conveyors. However, with the increase in the length of the conveyor there is a need for stronger belts. This can be avoided by using intermediate drives of various designs. The article describes the principle of operation of the intermediate linear drive with transverse partitions, provides formulas for calculating the values of the tractive effort, gives comparative graphs showing the effectiveness of the use of an intermediate drive in various conditions. The possibilities of increasing the capacity of an intermediate linear drive are described.
-
Date submitted2018-12-25
-
Date accepted2019-03-08
-
Date published2019-06-25
Determination of the operating time and residual life of self-propelled mine cars of potassium mines on the basis of integrated monitoring data
Statistical data on the reliability of self-propelled mine cars (SPMC), operating in the potassium mines of the Verkhnekamskoye potassium and magnesium salts deposit are analyzed. Identified the main nodes that limit the resource SPMC. It has been proven that the most common failures of self-propelled cars are the failure of wheel hubs, bevel gears and traveling electric motors. The analysis of the system of maintenance and repair of mine self-propelled cars. It is indicated that the planning and preventive system of SPMC repairs is characterized by low efficiency and high material costs: car maintenance is often carried out upon the occurrence of a failure, which leads to prolonged downtime not only of a specific haul truck, but of the entire mining complex. A method for assessing the technical condition of the electromechanical part of a mine self-propelled car by the nature of power consumption is proposed. This method allows you to control the loading of the drives of the mine self-propelled car, as well as to assess the technical condition of the drives of the delivery machines in real time. Upon expiration of the standard service life of a mine propelled car specified in the operational documentation, its further operation is prohibited and the car is subject to industrial safety expertise. As part of the examination, it is necessary to determine the operating time and calculate the service life of a mine self-propelled car outside the regulatory period. A method has been developed for determining the residual service life of mine car on the basis of instrumentation control data in the conditions of potash mines.