-
Date submitted2024-10-29
-
Date accepted2024-10-29
-
Date published2024-11-12
Study of thermodynamic processes of the Earth from the position of the genesis of hydrocarbons at great depths
In the context of significant depletion of traditional proven oil reserves in the Russian Federation and the inevitability of searching for new directions of study and expansion of the raw material base of hydrocarbon raw materials in hard-to-reach regions and on the Arctic shelf, a scientific search is underway for accumulations in complex geological conditions and in manifestations that differ significantly from traditional ones, which include the processes of oil and gas formation and preservation of oil and gas in low-permeability “shale” strata and in heterogeneous reservoirs at great and super-great depths. Within the oil and gas provinces of the world, drilling of a number of deep and super-deep wells has revealed deposits at great depths, established connections between hydrocarbon deposits and “traces” of hydrocarbon migration left in the core of deep wells, which has made it possible to significantly re-evaluate theoretical ideas on the issue of oil and gas formation conditions and the search for technologies aimed at solving applied problems. Modern geochemical, chromatographic, bituminological, coal petrographic and pyrolytic methods of studying oil and bitumoids extracted from the host rocks of deep well cores give a hope for identifying correlations in the oil-source system, revealing processes that determine the possibility of hydrocarbon formation and accumulation, and defining predictive criteria for oil and gas potential at great depths.
-
Date submitted2024-05-13
-
Date accepted2024-09-05
-
Online publication date2024-09-26
-
Date published2024-11-12
Potential trace element markers of naphthogenesis processes: modeling and experimentation
With the growing demand for hydrocarbon energy resources, there is a need to involve oil fields at deeper horizons in processing and increase the profitability of their development. Reduction of expenses on prospecting works is possible at revealing and substantiation of physicochemical markers of the naphthogenesis processes. One of the key markers is the transition metals content, which are both a measure of oil age and markers of potential associated processes in the migration and formation of hydrocarbons in the Earth's strata. The elemental composition of samples of oil and reservoir rocks of the Timan-Pechora field was studied. Based on the results of thermodynamic modeling, plausible processes of contact rock minerals transformation were proposed. Based on the results of molecular modeling the probable structure of vanadium and nickel host molecules in the heavy fraction of oils is proposed. The ratios of transition metal and sulfur contents were experimentally established, and assumptions about possible mechanisms of formation of deep hydrocarbon reservoirs were made. Analysis of the obtained ratios of transition metal contents in reservoir rocks and oil samples allowed to suggest possible processes of mantle fluids contact with the host rock and subsequent accumulation of hydrocarbons on sorption active rocks. According to the combined results of experimental and theoretical studies it was found that polymers of heavy fraction more selectively capture vanadium, which indicates the predominance of vanadium content in oil-bearing rocks in relation to the content of nickel. In this case, oil acts as a transport of transition metals, leaching them from the bedrock.
-
Date submitted2024-04-22
-
Date accepted2024-09-24
-
Date published2024-11-12
On peculiarities of composition and properties of ancient hydrocarbon source rocks
Precambrian rocks are widespread within all continents of the Earth; that said, sedimentary associations of these deposits are of special interest in search for oil and gas fields. A wide range of paleontological, lithological and geochemical methods is utilized for conducting integrated geological-geochemical analysis and evaluating the initial hydrocarbon generating potential of organic matter of Precambrian source rocks. Investigated were peculiarities of depositional environments of the organic matter, specific features of its composition in sedimentary rocks and its generation characteristics. Own research efforts were performed in combination with generalization of other authors’ publications focused on Precambrian sequences enriched in organic matter – their occurrence, isotopic and biomarker characteristics and realization schemes of the hydrocarbon generation potential of Precambrian organic matter in the process of catagenesis. Geochemical peculiarities of initial organic matter are illustrated on various examples, type of the organic matter is determined together with the character of evolution of realization of its initial generation potential.
-
Date submitted2024-05-03
-
Date accepted2024-10-14
-
Date published2024-11-12
Genetic geological model of diamond-bearing fluid magmatic system
The article proposes a genetic geological model of diamond deposit formation associated with kimberlites and lamproites. It is based on the synthesis of published data on diamond-bearing kimberlite systems and an original study of the ontogenetic features of diamond crystals. Deep diamond crystallization, its upward transportation and subsequent concentration in near-surface kimberlite-lamproite bodies and other rocks, including those brought to the surface by high-amplitude uplifts of crystalline basement rocks, are combined in a single system. An assumption is made about the primary sources of the Anabar placer diamonds. The possibility of hydrocarbon generation at mantle levels corresponding to diamond formation areas and their transportation to the upper crustal zones by a mechanism similar to the mantle-crust migration of diamond-bearing fluidized magmas is shown. The high rate of their upward movement allows transportation to the surface without significant loss as a result of dissolution in melts and sorption on the surface of mineral phases. The significant role of fluid dynamics at all stages of this system is noted.
-
Date submitted2024-04-16
-
Date accepted2024-09-24
-
Date published2024-11-12
Deep-buried Lower Paleozoic oil and gas systems in eastern Siberian Platform: geological and geophysical characteristics,estimation of hydrocarbon resources
The study of deep-buried oil and gas systems is a promising trend in the preparation of hydrocarbon resources. The study of the factors determining oil and gas potential is extremely important. The Lena-Vilyui sedimentary basin in the eastern Siberian Platform has a potential for the discovery of large oil and gas fields in deep-buried Cambrian deposits. The use of original methodological approaches to the analysis of black shale and overlying deposits, generalization of the results of lithological, biostratigraphic and geochemical studies of Cambrian deposits in territories adjoining the study area, modern interpretation of geophysical data showed that siliceous, carbonate, mixed rocks (kerogen-mixtite) of the Kuonamka complex and clastic clinoform-built Mayan deposits are most interesting in terms of oil and gas potential. Oil and gas producing rocks of the Lower and Middle Cambrian Kuonamka complex subsided to the depths of 14 km. The interpretation of modern seismic surveying data confirms the hypothesis of a limited occurrence of the Upper Devonian Vilyui rift system. Based on generalization of geological, geophysical and geochemical archival and new materials on the Lower Paleozoic deposits of the eastern Siberian Platform, a probabilistic estimation of geological hydrocarbon resources of the Cambrian and younger Paleozoic complexes in the Lena-Vilyui sedimentary basin was performed. Based on basin modelling results it was concluded that the resources were mainly represented by gas. It is presumed that oil resources can be discovered in traps of the barrier reef system as well as on the Anabar and Aldan slopes of the Vilyui Hemisyneclise. With a confidence probability of 0.9, it can be stated that total initial resources of oil and gas (within the boundaries of the Vilyui Hemisyneclise) exceed 5 billion t of conventional hydrocarbons. The recommended extremely cautious estimate of resources of the pre-Permian complexes is 2.2 billion t of conventional hydrocarbons. In the study area, it is necessary to implement a program of deep and super-deep parametric drilling without which it is impossible to determine the oil and gas potential of the Lower Paleozoic.
-
Date submitted2023-08-31
-
Date accepted2023-12-27
-
Online publication date2024-04-23
-
Date published2024-11-12
Geochemical studies of rocks of the Siberian igneous province and their role in the formation theory of unique platinum-copper-nickel deposits
- Authors:
- Nadezhda А. Krivolutskaya
The Norilsk deposits, unique both in their geological structure and reserves of nickel and platinum, have attracted the attention of researchers for several decades. Several hypotheses have been proposed to explain their formation. Two of them are the most widely accepted: the model of ore formation in an intermediate chamber from picritic melt enriched in sulphides and the formation of sulphides in situ through the assimilation of sulphate-bearing sediments by tholeiitic magma as it rises to the surface. The main questions regarding the genesis of these deposits are: the composition of the parental magmas that formed the ore-bearing massifs; the relationship between intrusions and effusive rocks; and the extent and role of assimilation of host rocks by magmas. These issues are discussed in the article using a large amount of analytical data obtained by the author during the study of the magmatic rocks and geological structures in the Norilsk area. Based on these data, it was concluded that none of the proposed models could fully explain all observed geological features of the deposits as well as the appearance of the unique sulphide ores. In order to solve the problem of the genesis of the Norilsk deposits, it is necessary to analyse the evolution of P3-T1 magmatism over time in the Siberian large igneous province, especially in its eastern part, and to determine its association with ore-forming processes; and its investigating it is a priority task for understanding sulphide ore formation. Solving this task should be based not only on geophysical data but also on studies of the geochemistry of igneous rocks within the province.
-
Date submitted2024-04-12
-
Date accepted2024-09-05
-
Online publication date2024-09-25
-
Date published2024-11-12
Promising reagents for the extraction of strategic metals from difficult-to-enrich mineral raw materials
The need of the mining and processing industry for new types of directional reagents is due to the deterioration of the material composition of the processed ores. Low Au content (less than 0.5-1.0 g/t), finely dispersed Au inclusions (0.1-10.0 microns) in the ore, similar properties of the separated minerals have an extremely negative effect on flotation performance when using traditional reagents, which leads to significant losses of valuable metal with enrichment tailings. Expanding the range of domestic flotation reagents based on the latest achievements of fundamental research and their targeted application at mining and processing companies will compensate for the negative impact of the mineral composition of raw materials and ensure maximum extraction of strategic metals from difficult-to-enrich ores. The use of modern research methods (scanning electron and laser microscopy, UV spectrophotometry, XRF and chemical analysis) made it possible to visualize the adsorption layer of new reagents-collectors of a number of dithiocarbamates with different structures of a hydrocarbon radical and an organic modifier on the surface of gold-containing sulfides. The amount of adsorbed reagents on the surface of minerals has been experimentally determined. The specific features of the fixation of reagents on minerals of various compositions led to optimal correlations of their consumption in the flotation process. Scientifically based reagent regimes ensured an increase in the gold content in the concentrate and a decrease in the loss of gold with tailings by 5-6 % during flotation enrichment of the refractory ore of the Malinovskoe deposit.
-
Date submitted2024-04-25
-
Date accepted2024-09-24
-
Date published2024-11-12
Specific features of kinetics of thermal transformation of organic matter in Bazhenov and Domanik source rocks based on results of pyrolysis gas chromatography
Pyrolysis of organic matter with subsequent analysis of hydrocarbon composition of the resulting products allows obtaining multicomponent distribution spectra of the generation potential by the activation energies of reactions of kerogen transformation into hydrocarbons. Configuration of the spectra depends on the structure of kerogen and is individual for each type of organic matter. Studies of kerogen kinetics showed that the distribution of activation energies is unique for each oil source rocks. The kinetic model of thermal decomposition of kerogen of the same type, for example, marine planktonic (type II), can differ significantly in different sedimentary basins due to the multivariate relationship of chemical bonds and their reaction energy threshold. The developed method for calculating multicomponent kinetic spectra (four-component models are used) based on results of pyrolysis gas chromatography allows obtaining one of the most important elements of modelling the history of oil and gas generation in geological basins. Kinetic parameters of organic matter of oil and gas source rocks influence the onset time of generation and directly reflect differences in the composition and structure of different types of kerogens. The results of determining the kinetic parameters of two high-carbon source rocks occurring across the territory of three oil and gas basins are shown. Generation and updating of the data of kinetic models of certain oil and gas source rocks will increase the reliability of forecasting oil and gas potential using the basin modelling method.
-
Date submitted2024-04-24
-
Date accepted2024-09-24
-
Date published2024-11-12
Study and justification of the combination of beneficiation processes for obtaining flake graphite from technogenic carbon-containing dusts
The most important task of modern production development is to provide the mineral and raw materials sector of the economy with resources included in the list of strategic raw materials, including flake graphite. In addition to natural raw materials, the source of its obtaining can be metallurgical production wastes not involved in processing. Development of metallurgical dust beneficiation technology will solve the problem of obtaining high-purity flake graphite with a crystal structure close to ideal and in demand in the production of high-tech materials. It will allow creating a renewable raw material base of graphite and utilising metallurgical production wastes. The research included the study of dust beneficiation by coarseness, magnetic and flotation methods, the influence of dust disintegration processes on beneficiation indicators. Based on the established technological properties of the components of dusts, magnetic, flotation and gravity beneficiation methods can be applied for their separation in different sequence. It is shown that dusts from different sites have different enrichability by these methods, and it should be taken into account when developing a complex technology of their processing. The degree of beneficiation increases in a row of dusts from the blast furnace shop (BF) – electric steel smelting shop (ESS) – oxygen-converter shop (OCS). The method of grinding has a significant influence on the separation indicators – at dry grinding in a centrifugal-impact mill with subsequent pneumatic classification the quality of graphite concentrates increases by 22.7 % of carbon for BF dust and by 13.48 % of carbon for ESS dust. OCS dust beneficiation indicators are high at coarse grinding with steel medium – mass fraction of carbon 96.1 %.
-
Date submitted2024-05-17
-
Date accepted2024-10-02
-
Date published2024-11-12
Black shales – an unconventional source of noble metals and rhenium
The content of noble metals and rhenium in the Lower Paleozoic black shales of the eastern Baltic paleobasin in Russia was estimated. Shales are enriched in platinoids (PGM to 0.12 g/t) and rhenium (to 1.54 g/t). The main accessory elements of noble metals and Re are U, V, Mo, Cu, and Ni. Black shales consist of organic (9-26 rel.% ), clay (40-60 rel.% ), and silt-sandy (25-50 rel.% ) components and a nodule complex (2-5 rel.% ) (carbonate, sulfide, phosphate and silicate nodules). Noble metals occur sporadically in the silt-sandy admixture as native forms and intermetallics: Au nat , Au-Ag, Au-Cu, Au-(Cu)-Hg, Au-Hg, Ag-Cu, Pt-Fe. Micromineral phases of noble metals were found in diagenetic sulfides: Au nat , chalcopyrite with Au admixture, pyrite with platinoid admixture. Clay fraction is 10-fold enriched in noble metals as compared to shale – to 0.28 g/t Au, 0.55 g/t Pt, 1.05 g/t Pd, and 1.56 g/t Re. Organic matter sorbs noble metals to a limited extent but accumulates rhenium. Pore space of black shales contains a colloidal salt component (submicron fraction) which is represented by particles smaller than 1,000 nm. The share of submicron fraction in black shales is 0.1-6 wt.%. The submicron fraction contains on average: PGM – 14 g/t, Au – 0.85 g/t, and Re – 4.62 g/t. The geochemical resource of noble metals (Au, Pt, Pd), Re and the accessory elements (U, V, Mo, Cu, and Ni) for black shales as a whole and their submicron fraction was estimated. Black shales are recommended as an integrated source of raw materials.
-
Date submitted2024-04-10
-
Date accepted2024-10-14
-
Date published2024-11-12
The influence of ocean anoxia on conditions for the Domanik deposits formation
The article considers one of conditions for the Domanik facies formation on the example of Tatarstan and Bashkortostan. The main emphasis is on the influence of anoxic paleobasin conditions on the high-carbon strata formation. A detailed study of the hydrocarbon composition of Domanik deposits made it possible to find characteristic biomarkers in their composition. They are based on the composition and structure of diagenetic products of biological compounds composing the sulphur bacteria living in anoxic/euxinic paleobasin conditions. Such compounds include C 40 diaryl isoprenoids – isorenieratane and paleorenieratane. C 10 tetramethylbenzenes also occupy a special place in the Domanik deposits study. Their appearance in the composition of organic matter of these deposits results from the transformation of sulphur bacteria compounds. Diaryl isoprenoids and tetramethylbenzenes are a reliable indicator of anoxic conditions of the Domanik deposits formation. The thermodynamic state of the hydrocarbon environment can be determined from the ratio of tetramethylbenzene isomers.
-
Date submitted2024-05-30
-
Date accepted2024-10-02
-
Date published2024-11-12
Thermodynamic modelling as a basis for forecasting phase states of hydrocarbon fluids at great and super-great depths
The possibility of discovering oil and gas occurrences at great (more than 5 km) and super-great (more than 6 km) depths is considered in two aspects. The first one is the preservation conditions of large hydrocarbon accumulations forming at depths to 4 km and caused by different geological and tectonic processes occurring at great and super-great depths with partial oil-to-gas transformation. It was ascertained that among the factors controlling preservation of liquid and gaseous hydrocarbons are the temperature, pressure, subsidence rate (rate of temperature and pressure increase), time spent under ultrahigh thermobaric conditions, and initial composition of organic matter. The possibility of existence of liquid components of oil at great and super-great depths is characteristic of sedimentary basins of China, the Gulf of Mexico, the Santos and Campos basins on the Brazilian shelf, and in the Russian Federation it is most probable for the Caspian Depression, some submontane troughs and zones of intense accumulation of young sediments. Determination of critical temperatures and pressures of phase transitions and the onset of cracking is possible using the approach considered in the article, based on estimation of organic matter transformation degree, kinetic and thermobaric models taking into account the composition of hydrocarbon fluid. The second aspect is the estimation of composition of hydrocarbons associated with rocks forming at great depths or rocks transformed under conditions of critical temperatures and pressures. This aspect of considerable science intensity can hardly be considered as practically significant. The study focuses on the investigation of the possibilities of thermodynamic modelling and the use of alternative methods for studying the transformation degree of liquid formation fluid into components of the associated gas through the example of two areas with identified oil, condensate and gas accumulations.
-
Date submitted2024-05-03
-
Date accepted2024-08-27
-
Date published2024-11-12
Platinum group elements as geochemical indicators in the study of oil polygenesis
This study examines elements of the platinum group (PGE), primarily platinum and palladium, as geochemical indicators in the investigation of oil polygenesis. It has been found that, like other trace elements such as nickel, vanadium, and cobalt, platinum group elements and gold can occur in oil fields at both background levels and in elevated or even anomalously high concentrations. The objective of this research is to analyze PGE and trace elements as geochemical markers to identify the geological factors, including endogenous processes, responsible for these unusually high concentrations in oil. A comprehensive review of the literature on this subject was conducted, along with new data on the presence of precious metals in oils from Russia and globally. The study explores the geological mechanisms behind elevated PGE concentrations in oils, utilizing atomic absorption spectroscopy with atomization in the HGA-500 graphite furnace to measure PGE content. Previously, the tellurium co-deposition method (ISO 10478:1994) was used to isolate noble metals from associated elements. Possible geological origins of abnormally high concentrations of platinum metals in oils have been identified. These include endogenous factors such as the spatial proximity of oil fields to ultrabasic rock massifs, the effects of contact-metasomatic processes, and influences from mantle dynamics. Moreover, data concerning mantle elements can serve as indicators of the depth origins of certain hydrocarbon fluids, thus contributing to the study of oil polygenesis.
-
Date submitted2024-09-09
-
Date accepted2024-11-12
-
Date published2024-11-12
Acoustic emission criteria for analyzing the process of rock destruction and evaluating the formation of fractured reservoirs at great depths
In order to study the mechanism of destruction of rocks of various genesis and the formation of fractured reservoirs at great depths, laboratory studies of rock samples in the loading conditions of comprehensive pressure with registration of acoustic emission (AE) and parameters of the process of changing the strength and deformation properties of samples were carried out. The spatial distributions of the hypocenters of AE events for each sample were investigated. By the nature of the distributions, the fracture geometry is described, then visually compared with the position of the formed macrofractures in the samples as a result of the tests. The time trends of the amplitude distribution b , set by the Guttenberg – Richter law, were calculated, which were compared with the loading curves and trends of the calculated AE activity. Based on the analysis of the AE process for three types of rocks – igneous (urtites), metamorphic (apatite-nepheline ores), and sedimentary (limestones) – parameterization of acoustic emission was carried out to determine the features of the deformation process and related dilatancy. As a result, three types of destruction of samples were identified, their geometry and changes in strength and seismic criteria were established.