-
Date submitted2024-05-11
-
Date accepted2025-01-28
-
Date published2025-03-21
Research and development of technology for the construction of snow airfields for accommodating wheeled aircraft in Antarctica
- Authors:
- Sergey P. Polyakov
- Sergey V. Popov
Construction of a new wintering complex at the Antarctic Vostok Station required prompt delivery of builders and mechanics to Progress Station to move them further to the work area. To solve this major logistical issue, a new landing site, later named Zenit, certified for accommodating heavy wheeled aircraft, was prepared in the Progress Station area from March to August 2022. Its snow pavement slab with a total area of 350 thousand m2 is from 100 to 120 cm high. It was made by applying snow layers with their subsequent compaction by a specially designed compaction platform for snow airfields suitable for heavy wheeled aircraft. As a result, the pavement has a surface hardness of at least 1 MPa. The layer from 30 to 60 cm has a hardness of at least 0.8 MPa, and the bottom layer at least 0.6 MPa. The first Il-76TD-90VD aircraft of the Russian company Volga-Dnepr was accommodated to the new runway on 7 November 2022. The aircraft landed in normal mode. The depth of the chassis wheels track after landing did not exceed 3 cm. The research provided in-depth understanding of the mechanisms for forming the supporting base of the runway from snow and ice in Antarctica. The experience gained can be used to solve similar issues in the Far North.
-
Date submitted2024-03-29
-
Date accepted2024-11-07
-
Date published2025-02-26
Well killing with absorption control
The development of new fields with low-permeability reservoirs required the introduction of new production technologies, of which the most significant for well killing and underground repair were multi-ton hydraulic fracturing, the simultaneous operation of two or three development sites by one well grid, and an increase in the rate of fluid extraction. These global decisions in field development have led to the need to search for new effective materials and technologies for well killing. The article is devoted to the analysis of problems associated with the process of killing production wells in fields characterized by increased fracturing, both natural and artificial (due to hydraulic fracturing), with reduced reservoir pressure and a high gas factor. The relevance of the analysis is due to the increase in the number of development sites where complications arise when wells are killed. Particular attention is paid to technical solutions aimed at preserving the filtration and capacity properties of the bottomhole formation zone, preventing the absorption of process fluid, and blocking the manifestation of gas. The classification of block-packs used in killing is given, based on the nature of the process fluid. Suspension thickened water-salt solutions are considered, forming a waterproof crust on the surface of the rock, which prevents the penetration of water and aqueous solutions into the formation. This approach ensures the safety and efficiency of killing operations, especially when working with formations in which maintaining water saturation and preventing the ingress of the water phase are of critical importance. Modern trends in the development of technology are revealed, and promising areas for further improvement of well killing with absorption control are outlined.
-
Date submitted2021-05-08
-
Date accepted2022-07-21
-
Date published2023-12-25
Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement
- Authors:
- Vladimir P. Zubov
- Denis G. Sokol
The results of the analysis of practical experience in the development of potash seams using longwall mining systems at the mines of OAO “Belaruskali” are presented. Positive changes in the technical and economic indicators of mines and an increase in the safety of mining operations were noted with the introduction of resource-saving technologies without leaving the pillars between the excavation columns or with leaving the pillars between the columns with dimensions at which they are destroyed by mining pressure in the goaf. It is noted that the use of mechanized stoping complexes characterized by high energy capacity, combined with large depths of development, is the main reason for the temperature increase in longwalls to values exceeding the maximum permissible air temperature regulated by sanitary standards. Based on production studies, it was concluded that the temperature regime along the length of the longwall face is determined by the temperature of rocks in the developed longwall space, heat emissions from the equipment of the power train, and the temperature of the rock mass ahead of the longwall. The conclusion has been drawn about the feasibility of using developed technological schemes in deep mining conditions, which provide a reduction in longwall temperature by 6-9 °C or more through isolated ventilation of longwall and power trains, as well as heat exchange between the airflow entering the longwall and the rocks in the developed space.
-
Date submitted2022-01-21
-
Date accepted2022-11-14
-
Date published2023-08-28
Strategy of mine ventilation control in optimal mode using fuzzy logic controllers
- Authors:
- Aleksei V. Kashnikov
- Yuri V. Kruglov
The issues related to improving the efficiency of automatic ventilation control systems of mines that regulate the air supply to the mine in accordance with the need are considered. During the tests of such a system in the 3RU mine of OAO Belaruskali, the shortcomings of its existing, implementation, associated with the incorrect choice of the most difficult-to-ventilate direction, were revealed. The possibilities of implementing a control strategy, in which the system automatically determines the optimal configuration of the operating modes of fans and regulators, are demonstrated. As an alternative to the implemented algorithms, it is proposed to use a fuzzy control device to account for the nonlinearity of the dependence of the input and output parameters of ventilation equipment and to set the conditions for the optimal operating mode of the system in a declarative form. To assess the effectiveness of the proposed approach, the data of simulation modeling of the current ventilation mode and the transition from one ventilation mode to another are analyzed with comparison with the actual data of the system operation. The simulation results show that the use of an upgraded control scheme for the main ventilation fan based on fuzzy logic in the implementation of automatic ventilation control systems makes it possible to eliminate the possibility of a shortage of fresh air in the regulated directions of its movement, as well as excessive power consumption of the main ventilation fan.
-
Date submitted2021-07-05
-
Date accepted2022-11-17
-
Date published2022-12-29
Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation
A large amount of gas is emitted during underground mining processes, so mining productivity decreases and safety risks increase. Efficient methane drainage from the coal seam and surrounding rocks in underground mines not only improves safety but also leads to higher productivity. Methane drainage must be performed when the ventilation air cannot dilute the methane emissions in the mine to a level below the allowed limits. The cross-measure borehole method is one of the methane drainage methods that involves drilling boreholes from the tailgate roadway to an un-stressed zone in the roof or floor stratum of a mined seam. This is the main method used in Tabas coal mine N 1. One of the effective parameters in this method is the distance between methane drainage stations, which has a direct effect on the length of boreholes required for drainage. This study was based on the measurement of ventilation air methane by methane sensors and anemometers placed at the longwall panel as well as measuring the amount of methane drainage. Moreover, in this study, the obtained and analyzed data were used to determine the suitable distance between methane drainage stations based on the cross-measure borehole method. In a field test, three borehole arrangements with different station distances in Panel E4 of Tabas coal mine N 1 were investigated. Then, the amounts of gas drained from these arrangements were compared with each other. The highest methane drainage efficiency was achieved for distances in the range of 9-12 m between methane drainage stations.
-
Date submitted2022-05-03
-
Date accepted2022-07-21
-
Date published2022-11-03
Determination of rational steam consumption in steam-air mixture flotation of apatite-nepheline ores
Relevance of the study is determined by the decisions taken to increase the production volume of certain commercial products from mineral raw materials. The scale, impact and consequences of the projects on developing the resource-saving technologies for beneficiation of mineral raw materials are socially significant, and the economic growth of mining production complies with the sustainable development goals. The aim of the study is to develop the flotation circuit and mode that improve the technological performance of beneficiation of apatite-nepheline ores of the Khibiny Massif in the Kola Peninsula. The scientific idea of the work is to develop the flotation circuit, the movement of beneficiation products in which ensures a major increase in the content of the recovered component in the rougher flotation procedure with a simultaneous increase in dressability of the material. The above condition is met when mixing the feedstock with rough concentrate. Recovery of the valuable component from the resulting mixture is accomplished in a mode differing from the known ones in that the heat of steam condensation is used to increase water temperature in the interphase film between the particle and the bubble. For pulp aeration during flotation, a mixture of air and hot steam is used as the gas phase. A high recovery of the valuable component in ore flotation according to the developed circuit and mode is facilitated by increasing water temperature in wetting films due to the steam condensation heat. A high selectivity of flotation with a steam-air mixture can be explained using the concepts of a phonon component of disjoining pressure, the value and sign of which are associated with a difference in the dynamic structure of liquid in the wetting film and bulk liquid.
-
Date submitted2021-10-14
-
Date accepted2022-04-07
-
Date published2022-04-29
The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow
The results of the analysis of statistical data on accidents at Russian mines caused by explosions in the workings space have shown that explosions of methane-dust-air mixtures at underground coal mines are the most severe accidents in terms of consequences. A detailed analysis of literature sources showed that in the total number of explosions prevails total share of hybrid mixtures, i.e. with the simultaneous participation of gas (methane) and coal dust, as well as explosions with the possible or partial involvement of coal dust. The main causes contributing to the occurrence and development of dust-air mixture explosions, including irregular monitoring of by mine engineers and technicians of the schedule of dust explosion protective measures; unreliable assessment of the dust situation, etc., are given. The main problem in this case was the difficulty of determining the location and volume of dust deposition zones in not extinguished and difficult to access for instrumental control workings. Determination of the class-shape of coal dust particles is a necessary condition for constructing a model of the dust situation reflecting the aerosol distribution in the workings space. The morphological composition of coal mine dust fractions with dispersion less than 0.1 has been studied. Particle studies conducted using an LEICA DM 4000 optical microscope and IMAGE SCOPE M software made it possible to establish the different class-shapes of dust particles found in operating mines. It was found that the coal dust particles presented in the samples correspond to the parallelepiped shape to the greatest extent. The mathematical model based on the specialized ANSYS FLUENT complex, in which this class-form is incorporated, is used for predicting the distribution of explosive and combustible coal dust in the workings space. The use of the obtained model in production conditions will allow to determine the possible places of dust deposition and to develop measures to prevent the transition of coal dust from the aerogel state to the aerosol state and thereby prevent the formation of an explosive dust-air mixture.
-
Date submitted2021-10-14
-
Date accepted2022-01-24
-
Date published2022-04-29
Monitoring of compressed air losses in branched air flow networks of mining enterprises
Compressed air as a type of safe technological energy carrier is widely used in many industries. In economically developed countries energy costs for the production and distribution of compressed air reach 10 % of the total energy costs. The analysis of compressed air production and distribution systems in the industrial sector shows that the efficiency of the systems is at a relatively low level. This is due to the fact that insufficient attention is paid to these systems since the compressed air systems energy monitoring has certain difficulties – the presence of complex and branched air pipeline networks with unique characteristics; low sensitivity of the equipment which consumes compressed air; the complexity of auditing pneumatic equipment that is in constant operation. The article analyzes the options for reducing the cost of production and compressed air distribution. One of the promising ways to reduce the compressed air distribution cost is timely detection and elimination of leaks that occur in the external air supply network of the enterprise. The task is solved by hardware-software monitoring of compressed air pressure at key points in the network. The proposed method allows real-time detecting of emerging air leaks in the air duct network and sending commands to maintenance personnel for their timely localization. This technique was tested in the industrial conditions of ALROSA enterprises on the air pipeline network of the Mir mine of the Mirninsky Mining and Processing Plant and showed satisfactory convergence of the calculated leakage values with the actual ones. The practical significance of the obtained results is that the developed method for monitoring air leaks in the air duct network is simple, it requires an uncomplicated software implementation and allows to localize leaks in a timely manner, thereby reducing unproductive energy costs at the enterprises.
-
Date submitted2020-12-16
-
Date accepted2021-07-27
-
Date published2021-10-21
Features of the thermal regime formation in the downcast shafts in the cold period of the year
In the cold period of the year, to ensure the required thermal regime in underground mine workings, the air supplied to the mine is heated using air handling systems. In future, the thermodynamic state of the prepared air flow when it is lowered along the mine shaft changes due to the influence of a number of factors. At the same time, the processes of heat and mass exchange between the incoming air and its environment are of particular interest. These processes directly depend on the initial parameters of the heated air, the downcast shaft depth and the presence of water flows into the mine shaft. Based on the obtained experimental data and theoretical studies, the analysis of the influence of various heat and mass transfer factors on the formation of microclimatic parameters of air in the downcast shafts of the Norilsk industrial district mines is carried out. It is shown that in the presence of external water flows from the flooded rocks behind the shaft lining, the microclimatic parameters of the air in the shaft are determined by the heat transfer from the incoming air flow to the underground water flowing down the downcast shaft lining. The research results made it possible to describe and explain the effect of lowering the air temperature entering the underground workings of deep mines
-
Date submitted2020-10-26
-
Date accepted2021-07-28
-
Date published2021-10-21
Investigation of the influence of the geodynamic position of coal-bearing dumps on their endogenous fire hazard
The paper investigates the hypothesis according to which one of the factors influencing the spontaneous combustion of coal-bearing dumps is its geodynamic position, i.e. its location in the geodynamically dangerous zone (GDZ) at the boundary of the Earth crust blocks. This hypothesis is put forward on the basis of scientific ideas about the block structure of the Earth crust and the available statistical data on the location of burning dumps and is studied using computer modeling. A dump located in the area of Eastern Donbass was chosen as the object of research. The simulation results show that the penetration of air into the dump body from the mine through the GDZ, which crosses the mining zone, is possible at an excess pressure of 1000 Pa created by the main ventilation fans. The fire source appearance in the dump body causes an increase in the temperature of the dump mass and becomes a kind of trigger that "turns on" the aerodynamic connection between the dump and the environment, carried out through the GDZ. It is concluded that the establishment of an aerodynamic connection between the mine workings and the dump through the GDZ can be an important factor contributing to the endogenous fire hazard of coal-bearing dumps. The simulation results can be used in the development of projects for monitoring coal-bearing dumps and measures to combat their spontaneous combustion.
-
Date submitted2021-03-04
-
Date accepted2021-04-05
-
Date published2021-06-24
Justification and selection of design parameters of the eccentric gear mechanism of the piston lubrication and filling unit for the mining machines maintenance
Piston pumps are widely used in the lubrication systems of mining machines. When carrying out technical maintenance (MOT), including lubrication and filling works, at the site of operation of mining machines due to the remoteness from repair shops and warehouses of fuels and lubricants (FAL), mobile repair shops ( MRS), maintenance units (MU) and mechanized filling units (MFU) are used. The specificity of carrying out maintenance is to create conditions for the supply of oils, working fluids and lubricants to the corresponding systems of mining machines for their refueling. Existing piston pumps and pumping units, as a rule, are single-flow, and the piston is driven by a crank mechanism driven from the engine through a worm gear. The emergence of unique, hydraulic, low-mobility mining machines in open pit mining required a significant increase in the power of the MU and MFU oil pumping units, primarily for greases. However, the traditional design of the drive design of a crank-type piston pump unit at a power of over 80 kW does not allow achieving the specified operating time, it is accompanied by intensive wear of the drive elements and increased dynamics during operation. In addition, it is necessary to apply various designs of pumping units for the supply of liquid and grease lubricants. Thus, it is necessary to develop new circuit solutions for pumping units of the crank type, to improve mobile refueling facilities with a modernized design of the pump unit drive of the mobile lubrication and filling station MRS.
-
Date submitted2020-05-26
-
Date accepted2020-09-23
-
Date published2020-12-29
Automated ventilation control in mines. Challenges, state of the art, areas for improvement
The article is divided into three main parts. The first part provides an overview of the existing literature on theoretical methods for calculating the optimal air distribution in mines according to the criteria of energy efficiency and providing all sections of mines with the required amount of air. It is shown that by the current moment there are many different formulations of the problem of searching the optimal air distribution, many different approaches and methods for optimizing air distribution have been developed. The case of a single (main) fan is most fully investigated, while for many fans a number of issues still remain unresolved. The second part is devoted to the review of existing methods and examples of the automated mine ventilation control systems implementation in Russia and abroad. Two of the most well-known concepts for the development of such systems are automated ventilation control systems (AVCS) in Russia and the CIS countries and Ventilation on demand (VOD) abroad. The main strategies of ventilation management in the framework of the AVCS and VOD concepts are described and also the key differences between them are shown. One of the key differences between AVCS and VOD today is the automatic determination of the operation parameters of fan units and ventilation doors using the optimal control algorithm, which is an integral part of the AVCS. The third part of the article describes the optimal control algorithm developed by the team of the Mining Institute of the Ural Branch of the Russian Academy of Sciences with the participation of the authors of the article. In this algorithm, the search for optimal air distribution is carried out by the system in a fully automated mode in real time using algorithms programmed into the microcontrollers of fans and ventilation doors. Minimization of energy consumption is achieved due to the most efficient selection of the fan speed and the rate of ventilation doors opening and also due to the air distribution shift control and the partial air recirculation systems introduction. It is noted that currently the available literature poorly covers the issue related to emergency operation modes ventilation systems of mines and also with the adaptation of automated control systems to different mining methods. According to the authors, further development of automated ventilation control systems should be carried out, in particular, in these two areas.
-
Date submitted2019-07-09
-
Date accepted2019-09-07
-
Date published2020-04-24
Promising model range career excavators operating time assessment in real operating conditions
The development prospects of the mining industry are closely related to the state and development of modern mining machinery and equipment that meet the technical and quality requirements of mining enterprises. Enterprises are focused on a quantitative assessment – the volume of mineral extraction, depending on the functioning efficiency of a promising series of mining machines, which include modern mining excavators. Downtime and unplanned shutdowns of mining excavators directly depend on the operating conditions of the mining machine, which has negative influence on the machine as a whole and its technical condition, which entails a decrease in the efficiency of using expensive mining equipment and economic losses of the mining enterprise. The rationale for external factors that affect the operating time and technical condition of mining excavators is given. For a more detailed assessment of the influence of external influences on the efficiency of operation of mining machines, the influencing factors are divided into two groups: ergatic, directly related to human participation, and factors of a natural-technogenic nature, where human participation is minimized. It was revealed that factors of a natural-technogenic nature have the greatest influence. An algorithm is proposed for a comprehensive assessment of the technical condition and forecasting of operating time both in nominal and in real operating conditions, taking into account factors of a natural and technogenic nature. It is proposed, based on the developed program for planning and evaluating the life of a mining excavator, to adjust the schedules for maintenance and repair (MOT and R) in order to minimize the number of unplanned downtime of a mining excavator and maintain it in good condition.
-
Date submitted2019-06-29
-
Date accepted2019-08-25
-
Date published2019-12-24
New technical solutions for ventilation in deep quarries
- Authors:
- S. G. Shakhrai
- G. S. Kurchin
- A. G. Sorokin
The paper discusses the issues of ventilating in deep quarries caused by the intensification of blasting operations at great depths, the increased distance of ore truck transportation to the daylight area, constant change in the geometrical parameters of the quarry, its microrelief and direction of mining, and increased isolation of the mined space from the environment. We provide a brief analysis of the current tools for forced airflow in deep quarries, which showed that the use of forced ventilation is often challenging since it leads to high energy consumption, high level of noise exceeding the permissible parameters, and high speeds of forced air flows may blow the dust off the quarry surfaces. The article presents methods and tools developed at the Siberian Federal University for intensifying the natural airflow in deep quarries by changing the air density at the entrance and exit points of the pit, as well as heating the shady areas using mirrors and solar energy, which do not interfere with mining and blasting operations.
-
Date submitted2019-03-17
-
Date accepted2019-05-21
-
Date published2019-08-23
Impact of External Factors on National Energy Security
- Authors:
- V. L. Ulanov
- E. Yu. Ulanova
The article examines both external and internal threats to national energy security, formulates the tasks of increasing energy security, discloses modern challenges, as well as measures to level them. In recent years, Russian economy has felt the growing influence of external threats and risks: unfair competition in world markets, high politicization of energy issues, and attempts to prevent Russia from monetizing national energy reserves. Influence of the use of renewable energy sources on national energy security, growth of liquefied natural gas production, stricter environmental requirements, changes in the demand for petroleum products, and introduction of anti-Russian sanctions are analyzed. The influence of internal risks is no less significant: quality of hydrocarbon reserves in the Russian Federation is declining, effectiveness of geological exploration is insufficient, and the share of hard-to-recover reserves is increasing. Energy security assessments are recommended taking into account modern challenges and on the basis of parameters such as ratio of the annual increase in the balance values of primary fuel and energy resources to the volume of their production, share of natural gas in the balance structure of primary fuel and energy resources, implementation of investment programs by fuel and energy sectors, change in the specific energy intensity of GDP, prices and etc.
-
Date submitted2018-12-25
-
Date accepted2019-03-22
-
Date published2019-06-25
Technology of blasting of strong valuable ores with ring borehole pattern
- Authors:
- I. V. Sokolov
- A. A. Smirnov
- A. A. Rozhkov
The ores of non-ferrous and precious metals, represented by hard rocks, has a peculiar feature, that is the effect of segregation, that is the tendency of ore minerals to break down into small size classes, which in the underground mining method accumulate in significant quantities on uneven surface of bottom layers and subsequently are lost. When mining valuable non-metallic materials, there is an acute problem of overgrinding, when fines do not meet the requirements for the quality of the final product. It is well known that the granulometric composition of the ore depends mainly on the technology and parameters of drilling and blasting operations. In underground mining of ore deposits, the main method of drilling and blasting is the borehole blasting with continuous construction charges with the ring pattern. The main drawbacks of the method are: uneven distribution of the explosive along the plane of the broken layer and the expenditure of a significant part of the blast energy of the charges of the continuous structure on the blasting effect, necessarily associated with over-grinding the ore. To solve these problems, the authors proposed a blasting technology, the essence of which lies in the fact that the uniform distribution of the energy concentration of explosives in the broken layer is ensured by the dispersion of charges by air gaps and a certain order of their placement in the ring plane. For the practical implementation of the technology, a method has been developed to form dispersed charges in deep boreholes that do not require a significant increase in labor costs and additional special means. A special technique has been created that allows defining the dispersion parameters, ensuring the sustained specific consumption of explosives over the entire plane of the broken layer. Experimental studies of the proposed technology in the natural conditions of an underground mine for the extraction of valuable granulated quartz were carried out. As a result, the possibility of a significant reduction in the specific consumption of explosives (by 42 %) has been established. At the same time, the yield of the commercial product increased by 10.7 % in total, and the yield of the fraction most favorable for further processing increased by 33.7 %.
-
Date submitted2019-01-03
-
Date accepted2019-03-23
-
Date published2019-06-25
Normalization of thermal mode of extended blind workings operating at high temperatures based on mobile mine air conditioners
Thermal working conditions in the deep mines of Donbass are the main deterrent to the development of coal mining in the region. Mining is carried out at the lower technical boundaries at a depth of almost 1,400 m with a temperature of rocks of 47.5-50.0 °C. The air temperature in the working faces significantly exceeds the permissible safety standards. The most severe climatic conditions are formed in the faces of blind development workings, where the air temperature is 38-42 °С. It is due to the adopted coal seam mining systems, the large remoteness of the working faces from the main air supply openings, the difficulty in providing blind workings with a calculated amount of air due to the lack of local ventilation fans of the required range. To ensure thermodynamic safety mine n.a. A.F.Zasyadko we accepted the development of a draft of a central cooling system with ground-based absorption refrigerating machines with a total capacity of 9 MW with the implementation of the three types of generation principle (generation of refrigeration, electrical and thermal energy). However, the long terms of design and construction and installation work necessitated the use of mobile air conditioners in blind development faces. The use of such air conditioners does not require significant capital expenditures, and the terms of their commissioning do not exceed several weeks. The use of a mobile air conditioner of the KPSh type with a cooling capacity of 130 kW made it possible to completely normalize the thermal working conditions at the bottom of the blind workings 2200 m long, carried out at a depth of 1220-1377 m at a temperature of host rocks 43.4-47.5 °С. It became possible due to the closest placement of the air conditioner to the face in combination with the use of a high-pressure local ventilation fan and ducts, which ensured the air flow produced by the calculated amount of air. The use of the air conditioner did not allow to fully normalize the thermal conditions along the entire length of the blind face but reduced the urgency of the problem of normalizing the thermal regime and ensured the commissioning of the clearing face.
-
Date submitted2018-07-02
-
Date accepted2018-09-04
-
Date published2018-12-21
Strategic Planning of Arctic Shelf Development Using Fractal Theory Tools
- Authors:
- V. S. Vasiltsov
- V. M. Vasiltsova
The paper justifies the necessity to utilize new methods of strategic planning in oil and gas field exploitation in the Arctic shelf during the implementation of high technology diversified model of development for oil and gas companies (OGC) based on principles and tools of fractal theory. It has been proved that despite its challenging conditions the Arctic represents not only resource potential of the country and a guarantee of national safety, but also a key driver of market self-identification and self-organization of OGCs. Identified and analyzed problems in institutional procurement of shelf development and utilized methods of strategic planning and project management, both on the levels of state and corporate governance, demonstrate that reductive approach of the fractal theory allows to take into account diversification of heterogeneous multicomponent project models, which can be reduced to a single management decision with inverse iterations of neural network modelling. Suggested approach is relevant for strategic planning not only on the stage of investment portfolio justification, but also for identification and assessment of project risks; ranking of projects according to the order of their implementation; back and - forth management (monitoring and supervision) and project completion. It has been detected that such basic properties of the fractal as self-similarity, recurrence, fragmentation and correlation between all fractal dimensions allow to systematize chaotically changing values of market parameters in the Arctic shelf development project, which provides an opportunity to forecast market development with minimal prediction errors.
-
Date submitted2017-09-10
-
Date accepted2017-11-10
-
Date published2018-02-22
Research of heat generation indicators of gas engines
- Authors:
- O. N. Didmanidze
- A. S. Afanasev
- R. T. Khakimov
A comprehensive strategy for reviving the production of mining industry equipment and ensuring its competitiveness includes the wide use of gas engines for various purposes. Experimental studies of the working cycle of a gas engine are one of the main tasks in determining the heat generation characteristics. To this end, indicator charts were recorded in various modes, which were subjected to analysis in order to determine the key parameters characterizing intra-cylinder processes. According to the experimental program, the maximum cycle pressure, the rate of pressure build-up, the heat generation characteristic, the first heat generation phase, the duration of the second combustion phase, and the effect of the ignition advance angle for the ignition period were determined. The results of an experimental study of the influence of gas engine working process with allowance for the change in the ignition advance angle for the ignition period are described and the parameters of the maximum cycle pressure, the rate of pressure build-up, and the heat generation characteristics are determined. In the processing of data, integral charts are constructed, the working cycle parameters are calculated, and the dynamics of the engine heat generation is determined.
-
Date submitted2016-11-07
-
Date accepted2016-12-27
-
Date published2017-04-14
Method of determining characteristics for air heating system in railway tunnels in harsh climatic conditions
- Authors:
- S. G. Gendler
- S. V. Sinyavina
The article describes climatic and mining-technical conditions influencing frost formation process. It was noted that the radical tools for preventing frost formation in winter periods is creation of positive temperature in tunnels by heating the incoming outside air. We formulated tasks, which solution will promote development of engineering calculation method for heating systems parameters. The article provides results of theoretical studies based on mathematical modelling and analytical solutions and data on field instrumental measurements, which were processed with similarity criteria. It compares mathematical modelling results on determining amount of tunnel incoming air flow with portal gates and calculations data from experimentally determined coefficient of local resistance. We proved the energy efficiency of placing the tunnel portal gates and validated the places of preheated air injection points and removal of cool air from this flow, which provides maximal energy effect.
-
Date submitted2016-09-23
-
Date accepted2016-11-07
-
Date published2017-02-22
Development of energy-saving technologies providing comfortable microclimate conditions for mining
The paper contains analysis of natural and technogenic factors influencing properties of mine atmosphere, defining level of mining safety and probability of emergencies. Main trends in development of energy-saving technologies providing comfortable microclimate conditions are highlighted. A complex of methods and mathematical models has been developed to carry out aerologic and thermophysical calculations. Main ways of improvement for existing calculation methods of stationary and non-stationary air distribution have been defined: use of ejection draught sources to organize recirculation ventilation; accounting of depression losses at working intersections; inertance impact of air streams and mined-out spaces for modeling transitory emergency scenarios. Based on the calculation algorithm of airflow rate distribution in the mine network, processing method has been developed for the results of air-depressive surveys under conditions of data shortage. Processes of dust transfer have been modeled in view of its coagulation and settlement, as well as interaction with water drops in case of wet dust prevention. A method to calculate intensity of water evaporation and condensation has been suggested, which allows to forecast time, duration and quantity of precipitation and its migration inside the mine during winter season.
-
Date submitted2016-08-30
-
Date accepted2016-10-30
-
Date published2017-02-22
Gas-dynamic processes affecting coal mine radon hazard
- Authors:
- V. I. Efimov
- A. B. Zhabin
- G. V. Stas
The paper focuses on vertical migration of radon in surrounding rocks described by Fick's first law as well as by the continuity equation for diffusion flow, with allowance for sorption and radioactive decay processes. Taking into account special characteristics of vertical radon diffusion, the process can be considered stable. It is demonstrated that for productive areas it is feasible to consider one-dimensional convective diffusion, as diffusive transport of radon by the air of productive areas occurs at steady-state conditions. Normally the factor of radon emissions prevails if atmospheric pressure is constant. Amount of air, calculated using this factor, by 20-30 % exceeds the one needed to dilute carbon dioxide to maximum allowed concentration (MAC).
-
Date submitted2015-08-17
-
Date accepted2015-10-25
-
Date published2016-04-22
Ecological aspects of vehicle tunnels ventilation in the conditions of megalopolises
- Authors:
- S. G. Gendler
The characteristic of Russia and foreign vehicle tunnels are provided in paper and advantages of their placement in the conditions of the city are noted. It is shown that one of the main factors defining negative impact on environment in the period of tunnels driving is mine equipment, and at operation – vehicles. The analysis of essential differences of features of pollution of atmospheric air at construction of tunnels from its pollution at construction of buildings on a surface is given. The examples illustrating levels of negative impact of the upcast ventilation shaft airflow on atmospheric air are given and the ventilation schemes reducing this influence are offered. It is shown that during operation of road tunnels of pollution of the air environment can extend on considerable distances from tunnel portals. Numerical calculations of concentration of carbon oxides and nitrogen during removal of the upcast ventilation shaft airflow through portals and through the mines built near them are executed. Technical solutions on purifications of tunnel air by means of electrostatic filters are described.
-
Date submitted2014-11-05
-
Date accepted2015-01-24
-
Date published2015-10-26
Use of geoinformation technologies for otpimized distribution of stations of atmospheric air quality monitoring
- Authors:
- M. V. Volkodaeva
The article deals with possible applications of modern geographic information systems for optimized distribution of stations of atmospheric air quality monitoring. Due to the fact that estimation of atmospheric pollutant concentrations is a reason for decisions to improve air quality, costly measures to protect the atmosphere and monitoring effectiveness of these actions, atmospheric air quality indicators, and therefore the proper distribution of monitoring stations, are of great importance. Results of model calculations of atmospheric air pollution, which have been recently developed in our country, in combination with GIS solutions, should be used for optimized distribution of stations of atmospheric air quality monitoring. One of the major factors of objective estimation of urban atmospheric air quality is proper reference of industrial and transport pollutant emission sources to the city’s topographic base (both in citywide and local coordinate systems), as well as distribution of stations of atmospheric air quality monitoring and selection of high-priority pollutants for a particular city district. Some recommendations for monitoring stations distribution and pollutants selection based on the GIS analysis of spatial distribution of maximum ground level concentrations of pollutants are given.
-
Date submitted2014-06-24
-
Date accepted2014-08-29
-
Date published2014-12-22
Mathematical modeling of mine air conditioning in the zone of mine works
- Authors:
- A. A. Lapshin
The article addresses the topical problem of normalizing the microclimate in the deep ore mines of the Krivbas and Zaporozhsky iron ore mines. Studies of heat exchange processes in the mine workings of the deep ore mines of Krivbas and Zaporozhsky iron ore have shown considerable changes in air temperature. Moreover, as a rule, in the zone of mining works, the air temperature exceeds the permissible values of 26 °С, and at depths of 1200-1500 m reaches 28-30 °C. A method of normalization of the thermal conditions in the zone of mining works due to cooling in the irrigation chamber is presented. A mathematical model of heat exchange processes in the irrigation chamber, which allows, by simulation modeling, to establish thermal regimes corresponding to the sanitary and hygienic norms of mining operations in the conditions of deep iron ore mines, is presented.