-
Date submitted2023-09-08
-
Date accepted2024-06-03
-
Date published2024-12-25
Modern approaches to barium ore benefication
Barite is one of the critically important minerals in several industries, including the fuel and energy, nuclear, and medical sectors. For decades, its extraction did not require any complex techniques; however, with the depletion of rich barite-bearing veins around the world, the circumstances have changed. While the demand for barite is growing widely, it is necessary to optimize and improve the existing methods for benefication of barite and barite-containing ores, and create new approaches to extracting this mineral, as well as develop technogenic barite deposits accumulated in large quantities during the previous ore production. Dumps and tailings often demonstrate high barite content, while new mining technologies make its extraction cost-efficient. Russian and foreign papers of the last 14 years provide data on the current state of primary and technogenic deposits, areas of barite use and the approaches employed for its benefication. Considering the expansion of the range of barite applications, the growing need for the mineral in the oil and gas industry and the difficulties in developing new barite deposits in Russia, the importance of new approaches to the enrichment of ore tailings in polymetallic deposits is revealed.
-
Date submitted2024-04-10
-
Date accepted2024-06-03
-
Date published2025-04-25
Combined method for processing spent acid etching solution obtained during manufacturing of titanium products
Possessing high strength, low density and significant chemical resistance, titanium has found wide application in various fields of the national economy – the chemical industry, aviation and rocket technology, mechanical engineering, medicine, etc. The production of titanium products is hampered by a fairly strong oxide film covering its surface. Removal of the oxide film from the surface of titanium workpieces is carried out by etching in solutions of mineral acids of various compositions. A spent acid etching solution (SAES) is formed, containing titanium salt and the remainder of unreacted acids. Almost all etching solutions contain HF and one of the strong acids. This is H2SO4, HCl or HNO3. Thus, the SAES includes ions of titanium, fluorine or chlorine, orsulfate, or nitrate. SAES is quite toxic and must be diluted or cleaned several times before being discharged into a reservoir. Most of the methods used to extract impurities contained in SAES lead to a decrease in their content. As a result of such purification, there is a loss of substances contained in SAES in significant quantities and of interest for further use. The work presents experimental results obtained from the combined processing of SAES containing titanium fluoride, hydrofluoric and hydrochloric acids. At the first stage, SAES is treated with sodium hydroxide. The resulting titanium hydroxide precipitate is filtered off. At the second stage, the filtrate containing sodium fluoride and chloride is processed in a membrane electrolyzer. In this case, not only the extraction of sodium salts from the filtrate occurs, but also the production of sodium hydroxide and a mixture of hydrofluoric and hydrochloric acids. Sodium hydroxide can be used for processing SAES, and a mixture of acids for etching titanium workpieces.
-
Date submitted2022-10-10
-
Date accepted2023-01-19
-
Date published2023-12-25
Assessment of the possibility of using leucoxene-quartz concentrate as raw material for production of aluminium and magnesium titanates
Leucoxene-quartz concentrate is a large-tonnage by-product of development of the Timan oil-titanium field (oil-saturated sandstones) which is not commercially used at present. High content of titanium compounds (to 50 % by weight) and lack of industrial, cost-effective, and safe technologies for its processing determine a high relevance of the work. Conventional processing technologies allow increasing the concentration of TiO2, but they are only a preparation for complex and hazardous selective chlorination. The process of pyrometallurgical conversion of leucoxene-quartz concentrate into aluminium and magnesium titanates was investigated. It was ascertained that the temperature of solid-phase reaction in Al2O3-TiO2-SiO2 system necessary for the synthesis of aluminium titanate (Al2TiO5) is 1,558 °С, and for MgO-TiO2-SiO2 system – 1,372 °С. Scaling up the process made it possible to synthesize a significant number of samples of titanate-containing products, the phase composition of which was studied by X-ray phase analysis. Two main phases were identified in the products: 30 % aluminium/magnesium titanate and 40 % silicon dioxide. In products of pyrometallurgical processing in the presence of aluminium, phases of pseudobrookite (3.5 %) and titanite (0.5 %) were also found. It was ascertained that in magnesium-containing system the formation of three magnesium titanates is possible: MgTiO3 – 25, Mg2TiO4 – 35, MgTi2O5 – 40 %. Experiments on sulphuric acid leaching of samples demonstrated a higher degree of titanium compounds extraction during sulphuric acid processing. An integrated conceptual scheme for processing leucoxene-quartz concentrate to produce a wide range of potential products (coagulants, catalysts, materials for ceramic industry) was proposed.
-
Date submitted2022-01-16
-
Date accepted2022-04-06
-
Date published2023-04-25
Production of biodiesel fuel from vegetable raw materials
One way to reduce the amount of harmful emissions from diesel fuel could be the replacement of part of the fuel with biofuel. Research is related to the production of biodiesel fuel in three ways: transesterification of vegetable oils; esterification of fat acids extracted from vegetable oil; and hydroprocessing of vegetable oils using catalysts in the diesel hydrotreatment process. Food and non-food oils, monatomic and diatomic alcohols were used to produce biodiesel fuel. Optimal parameters of vegetable oil transesterification have been determined: temperature; raw material ratio (oil/alcohol); mixing speed; time; type of process catalyst. The characteristics of the obtained biodiesel fuel samples were studied and compared with each other as well as with the requirements of EN 14214 “Automotive fuels. Fat acid methyl ethers for diesel engines. General technical requirements” and EN 590:2009 “EURO diesel fuel. Technical specifications”. With regard to the physical and chemical characteristics of biodiesel fuel, the best way to produce it is by transesterification of vegetable oils. However, all fuels can be used as components of a blended environmentally friendly diesel fuel.
-
Date submitted2021-09-02
-
Date accepted2022-01-24
-
Date published2022-04-29
Complex processing of high-carbon ash and slag waste
The paper considers a current issue of ash and slag processing for the Polyus Aldan JSC, that has accumulated over 1 million tons of this waste. Following the results of the review of Russian and foreign literature, four promising areas of their use were selected: road construction, building materials, reclamation of disturbed lands, and inert aggregates. To assess the possibility of implementing the selected disposal directions, the samples of ash and slag waste of the enterprise were sampled and analyzed. Fuel characteristics, chemical and mineral composition, as well as physico-chemical and mechanical properties of waste were determined. Taking into account the results of complex laboratory studies and the requirements of regulatory documents, each of the selected areas of using ash and slag waste was evaluated. It was found that their disposal by traditional methods has limitations, mainly related to the high content of unburned fuel residues. The high content of combustible substances and the high specific heat of combustion with a relatively low ash content suggested the possibility of thermal disposal of the studied waste. Based on the literature data, the characteristics of the preparation of organic coal-water suspensions based on the studied ash and slag waste were selected. As a result of a series of experiments on their flaring, the expediency of using the obtained fuel at the enterprise under consideration has been proved. The authors note the possibility of using ash obtained after thermal waste disposal in the road construction industry. The prospects for further research of technologies for the preparation and combustion modes of suspension fuel based on ash and slag waste are determined.
-
Date submitted2021-03-30
-
Date accepted2021-07-27
-
Date published2021-10-21
Integrated development of iron ore deposits based on competitive underground geotechnologies
- Authors:
- Vladimir L. Trushko
- Olga V. Trushko
The article presents an analytical review of the current state of the iron ore base of the ferrous metallurgy of Russia and the world, identifies the largest iron ore provinces and iron ore producers. The promising directions of development and improvement of the quality of the iron ore base of Russia and the features of the development of new deposits of rich iron ores are identified. Effective technologies for the development of rich iron ores deposits that ensure an increase in production volumes are proposed. The geomechanical justification of rational technological parameters that are easily adapted to changes in mining and geological conditions has been performed. Based on the results of field studies, the use of an elastic-plastic model with the Coulomb – Mohr strength criterion for modeling changes in the stress-strain state of an ore rock mass during mining operations is justified and recommendations for ensuring the stability of mine workings are developed. Effective engineering and technical solutions for the complex development and deep processing of rich iron ores with the production of fractionated sinter ore, which increases the efficiency of metallurgical processes, the production of high-grade iron oxide pigments and iron ore briquettes, which increase the competitiveness of iron ore companies and the full use of the resource potential of deposits, are presented.
-
Date submitted2020-05-24
-
Date accepted2020-07-23
-
Date published2020-11-24
Estimation of ore contour movements after the blast using the BMM system
Measurement of ore movements by blast is one of the key components of the quality control system at any mining enterprise, which allows to obtain the accuracy necessary for determining the location of ore contours. About 15 years ago, a monitoring system was developed in Australia that allows mine personnel to make three-dimensional measurements of ore blocks movement at each blast. Studies have shown that ore blocks movement is extremely variable, and it characterized by a complete absence of a deterministic component. The consequence is that modeling ore contour movements during the blast will be inaccurate, and the best results for the mining enterprise can only be achieved by directly measuring the movement. The technology of measuring ore contours movements considered in the article is based on three-dimensional movement vectors obtained in different parts of the blasted block, characterized by different movements. It is obvious that the accuracy of determining the ore contours position after the blast is proportional to the number of measurements made on the block. Currently, the movement control technology based on the BMM system is actively used by global mining companies, its use reduces losses and dilution of ore. In 2017, the pilot implementation of the BMM system was started at the Olympiadinsky GOK, and the system is being implemented in several Russian mining companies.
-
Date submitted2015-10-14
-
Date accepted2015-12-18
-
Date published2016-08-22
Complex utilization of treatment wastes from thermal power plants
- Authors:
- A. N. Shabarov
- N. V. Nikolaeva
The paper investigates present-day challenges related to accumulation, processing and disposal of the coal combustion wastes. The analysis of technogenic materials beneficiation practices using gravitation, magnetic and flotation beneficiation methods has been carried out. Quantitative and qualitative microscopic analysis of materials has been conducted. The study target were ash and slag wastes (ASW) from thermal power plant and coal combustion ash. Most metals are contained in coals and coal ashes in fine-dispersed (1-10 μm) mineral form. Various native metals and intermetallic compounds, sulfides, carbonates, sulfates, tungstates, silicates, rare earths phosphates and niobates have been discovered. Each metal may occur in several mineral phases, for instance tungsten may be in the form of wolframite, stolzite, ferberite, scheelite and represented by impurities. Not only composition of compounds is diversified, but also morphology of grains: well-defined and skeleton crystals, aggregates and polycrystalline structures, crystal twins and fragments; druses, globules and microspherules; porous shapes, flocculous and splintery clusters, lumpy aggregations, etc. Based on chemical silicate analysis of main ASW components the petrochemical properties of material have been assessed. Preliminary analyses have shown that concentration of ferrum-bearing components in ASW is around 5-11 %. The magnetic method of technogenic waste beneficiation with the help of high-gradient magnetic separation has been studied. The obtained evidences show that fine ASW are most efficiently separated in separators with high-gradient magnetic system. The studies provided justification of a process flow for complex treatment of technogenic carbon-containing material, including flotation, gravitation separation, magnetic heteroflocculation enrichment and high-gradient magnetic separation. The determined complex utilization ratio has proven the efficiency of complex processing.
-
Date submitted2015-08-27
-
Date accepted2015-10-05
-
Date published2016-04-22
Processing of alumina production red mud with recovery of scandium concentrate
The chemical and technological principles of scandium recovery from red mud of alumina production with the use of flue gases from sintering furnaces have been developed. The optimal conditions of hydrochemical processes of successive removal of impurities for the production of scandium concentrate with simultaneous obtaining of titanium-containing product have been worked out on a pilot plant.
-
Date submitted2015-07-14
-
Date accepted2015-09-27
-
Date published2016-02-24
Chemical and technological mechanisms of a alkaline aluminum silicates sintering and a hydrochemical sinter processing
- Authors:
- V. M. Sizyakov
Complex mineral raw material, as alkali aluminum silicates, is an interest for aluminum industry, chemical industry and for the production of constructional materials. They are well represented in the earth's crust, characterized by the complexity of material composition and variable content of the main components such as alumina, silica and alkalies. They often occur where due to the geological conditions there is no bauxite, for instance, in the United States, Canada, Venezuela, Mexico, Iran, Egypt, Portugal, Spain, Bulgaria and other countries. At the present time for the Russian economy the nephelines from this list are the most valuable and have the great concern for the raw materials balance of the national aluminum industry. Because of limited reserves the bauxites proportion of alumina produced from nephelines by sintering is 40 % and in time this proportion will increase due to the involvement in the production of new deposits of alkali aluminum silicates. Many of foreign companies have also shown interest to the complex processing of ores. The investigation of technology is based on the method of sintering ore with limestone. As a result, the after-sintering mixture consists of alkali metal aluminates and dicalcium silicate; after-sintering mixture is leached by circulating alkaline aluminate solution, alumina, soda and potash are thrown out from the solution. Dicalcium silicate (nepheline sludge) is processed to Portland. For the investigated after-sintering mixture the tendency shows the increasing of optimum sintering temperature with the lowering Al 2 O 3 content. With the increasing of silicate module (SiO 2 / Al 3 O 3 ) of the initial alkali aluminum silicates charges the temperature of after-sintering mixture formation increases. After-sintering mixtures that are on base of alkali aluminum silicates have different microstructure and the degree of crystallization in which b-С 2 S and sodium aluminate is improved with a decrease of the aluminate phase amount. Results of investigations show a very limited solubility of aluminate phase in dicalcium silicate, which theoretically justifies a sufficiently high level of useful components chemical extraction in the processing of different types of alkali aluminum silicates by sintering.
-
Date submitted2014-11-24
-
Date accepted2015-01-02
-
Date published2015-10-26
Complex processing of apatite-nepheline ores based on the creation of closed-loop process flow sheets
- Authors:
- A. I. Alekseev
The article presents the chemical and engineering fundamentals of processing apatite and nepheline concentrates directly on the Kola Peninsula. Implementation of the existing separate processing of nepheline and apatite concentrates demonstrates inefficiency of these technologies due to the formation of waste calcium sulfate and calcium silicate, which have so far not found a practical use and are wastes stored in sludge repositories of the Russian Federation. Suggested new scientific and technical solutions will allow enterprises to significantly increase the volume of production of new in-demand marketable products due to rational and complex use of mineral raw materials of the Kola Peninsula, reduce their costs while decreasing the volume of rock extraction and eliminate waste creating a closed-loop technological cycle of processing apatite and nepheline ores.
-
Date submitted2014-07-21
-
Date accepted2014-09-19
-
Date published2014-12-22
Preliminary preparation of oil for primary processing
Oil supplied for primary processing always undergoes preliminary preparation, the purpose of which is to eliminate the harmful effect of water and salt contained in the oil. It is thought that corrosion of the equipment is connected mainly with chlorides of magnesium and calcium, which are subjected to hydrolysis with the formation of hydrochloric acid. Under the influence of hydrochloric acid the destruction (corrosion) of metal equipment at technological plants occurs (especially refrigerating-condensing and heatexchange equipment, furnaces of rectification units etc.). The authors of the article, on the basis of thermodynamic calculations, provide their point of view on this process and give a methodology by which the process of preliminary oil dehydration and desalting can be controlled. The thermodynamic calculations executed for standard conditions on the basis of refer-enced data confirm a high probability of chemical interaction of iron with hydrogen ions, hy-drogen sulphide and especially with carbonic acid. This testifies to high activity of the carbon dioxide dissolved in water and the impossibility of hydrolysis of ions of magnesium, calcium and iron. The calculations show that only the hydrolysis of magnesium chloride is possible tak-ing into account the ionic composition of the water phase in the oil. It should be noted that the presence of ions of chlorine shifts the iron potential in a nega-tive direction and increases the speed of corrosion of petrochemical equipment. The solution of this problem is in the development of modern methods of crude oil dehydration and desalting. It is also, however, in an intensification of the processes of mixing water-oil emulsions with wash-ing water by using various physical fields (for example, ultrasound) and creating new effective mixing devices on the basis of them.
-
Date submitted2009-08-23
-
Date accepted2009-10-05
-
Date published2010-02-01
Developing a rational technology of utilization оf bio and oil slimes of the Kinef Ltd by an extraction оf useful components
- Authors:
- K. A. Moiseeva
The paper deal with the problem of developing a rational technology of slime and silt recycling for company «KINEF», which nowadays is one of the leading companies in Russia in it area. Therefore the question of soil-waste utilization is one of the major issues to adress for this organisation. During the reaserch samples of soil waste were taken and analyised, which helped to work out a complite technology of recycling. Special attention is paid to the necessity of extraction of the useful components.
-
Date submitted2009-08-22
-
Date accepted2009-10-30
-
Date published2010-02-01
Problems and prospects of the exploration of the primary oil refining
- Authors:
- A. Yu. Volovikov
The basic principles of operation and device of the innovation laboratory complex for studying processes of oil refining are described in the paper. The issue of research is reviewed in terms of computer simulation of technological processes separately, because it presents the greatest interest in terms of economic development.
-
Date submitted1952-07-26
-
Date accepted1952-09-26
-
Date published1953-01-01
A new method for separating copper-nickel converter mattes
- Authors:
- I. I. Maslenitskii
- L. A. Krichevskii
The separation of copper-nickel converter mattes in the general scheme of processing sulphide copper-nickel ores is one of the most complex and expensive operations. Of the large number of methods proposed for the separation of converter mattes, the modern copper-nickel industry, as is known, has settled on three, of which the most widespread is the separation smelting of converter matte with sodium sulfide. However, this process, which is approximately sixty years old, is distinguished by significant complexity, and in addition, its implementation at our plants requires long-distance imported materials. Therefore, it is natural to search for more advanced and cheaper methods of separating copper-nickel converter mattes. One of the main prerequisites in developing a process for separating any material is the availability of data on its material composition and structure.